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Problem: Average N Probability Measures

ν2 =
∑

i biδyiν1 =
∑

i aiδxi

ν3 =
∑

i ciδzi
(Ω,D)

• {Ω, D} a metric space

• {ν1, · · · , νN} family of empirical probability measures.
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Problem: Average N Probability Measures

ν2 =
∑

i biδyiν1 =
∑

i aiδxi

ν3 =
∑

i ciδzi
(Ω,D)

Can we summarize the {νi} as an “average” or a

“barycentric” single empirical probability measure?

interest in ML: empirical measure = dataset,

histogram/bags-of-features, single observation with uncertainty
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Euclidean Means for Vectors

• For vectors {x1, · · · , xN} in a Hilbert, their average is

x̄ =
1

N

N
∑

i=1

xi
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Euclidean Means for Vectors

• For vectors {x1, · · · , xN} in a Hilbert, their average is

x̄ =
1

N

N
∑

i=1

xi

• behind this formula lies a variational problem

x̄ = argmin
u∈Rd

1

N

N
∑

i=1

‖u− xi‖
2
2
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Euclidean Means for Measures

• For probability measures {νi}i=1..N , we can also use:

µ =
1

N

N
∑

i=1

νi,

• as well as, using a smoothing kernel k = e−D2/σ,

µ =
1

N

N
∑

i=1

(k ∗ νi)

(a.k.a RKHS mean map [Gretton’07])
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Other Means for Probabilities

• Other means can be defined using other metrics or

divergences:

argmin
µ∈P (Ω)

N
∑

i=1

∆(µ, νi).

◦ KL, Symmetrized KL [Nielsen’12]

◦ Bregman Divergence [Bhanerjee’05]

◦ Wasserstein Distance (a.k.a EMD) [Agueh’11]
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Wasserstein Barycenter Problem

• [Agueh’11] defined

argmin
µ∈P (Ω)

N
∑

i=1

W p
p (µ, νi),

provided theoretical analysis, unicity of solution.

• Simple cases (N = 2, multivariate Gaussians) covered.

• very challenging computational problem.

22.06.14 8



Our Contribution

• First computational approach to solve efficiently

variational Wasserstein problems,

• including the Wasserstein barycenter problem,

argmin
µ∈P (Ω)

N
∑

i=1

W p
p (µ, νi),

• that is applicable for arbitrary (Ω, D) and p > 0, using

entropy-smoothed optimal transport [Cuturi’13].
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Our Contribution

• First computational approach to solve efficiently

variational Wasserstein problems,

• including the Wasserstein barycenter problem,

argmin
µ∈P (Ω)

N
∑

i=1

W p
p (µ, νi),

• that is applicable for arbitrary (Ω, D) and p > 0, using

entropy-smoothed optimal transport [Cuturi’13].

([Rabin’12,Bonneel’14] studied case Ω = R
2)
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Motivating Examples
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2 Points on the Real Line

−10 −5 0 5 10

x = −5 y = 3
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Their Average

−10 −5 0 5 10

x = −5 y = 3

 

z = x+y

2
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2 Points as Diracs
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Euclidean Mean of Diracs
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Wasserstein Mean of Diracs

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

δx δy
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 Wasserstein Mean 

δ x+y

2
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Smoothed Measures (RKHS mean map)
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Euclidean Mean of 2 Gaussians
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Wasserstein Mean of 2 Gaussians
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6 Gaussians
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Euclidean Mean
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1
N

∑
i kx i
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Wasserstein Mean
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Motivation in 2D

{ν1, · · · , ν30} ∈ P ([0, 1]2).
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Euclidean / Centered / Jeffrey / RKHS

Euclidean distance / recentered,

Sym. Kullback / RKHS Mean Map
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Wasserstein Barycenter

2-Wasserstein barycenter

(computed with our method)
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Variational Perspective on
the Wasserstein Distance
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Wasserstein for Empirical Measures

ν =
∑m

j=1 bjδyj

µ =
∑n

i=1 aiδxi

(Ω, D)

• (Ω, D) metric. p ≥ 1.

• Two empirical measures µ,ν.

p-Wasserstein distance Wp(µ,ν)?
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Computing p Wasserstein Distances

µ =
n

∑

i=1

aiδxi
, ν =

m
∑

j=1

bjδyj,

Wp(µ,ν) is the solution of a linear program involving:

1. MXY
def
=[D(xi,yj)

p]ij ∈ R
n×m

2. U(a, b)
def
={T ∈ R

n×m
+ | T1m = a, T T

1n = b}.
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Computing the OT Distance

• p-Wasserstein is the solution (primal or dual LP):

W p
p (µ,ν) =



































primal(a, b,MXY )
def
= min

T∈U(a,b)
〈T,MXY 〉

or

dual(a, b,MXY )
def
= max

(α,β)∈CMXY

αTa+ βTb ,

where CM = {(α, β) ∈ R
n+m |αi + βj ≤ Mij}.
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Computing the OT Distance

• p-Wasserstein is the solution (primal or dual LP):

W p
p (µ,ν) =



































primal(a, b,MXY )
def
= min

T∈U(a,b)
〈T,MXY 〉

or

dual(a, b,MXY )
def
= max

(α,β)∈CMXY

αTa+ βTb ,

where CM = {(α, β) ∈ R
n+m |αi + βj ≤ Mij}.

Changes in f(a,X)
def
= W p

p (µ,ν) as a & X change?
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Wasserstein (Sub)differentiability

f(a, X) = max
(α,β)∈CMXY

αTa+ βTb

• ∂f |a = α⋆: the dual optimum α⋆ is a subgradient.

f(a,X) = min
T∈U(a,b)

〈T,MXY 〉

• ∂f |X = Y T ⋆T diag(a−1): primal optimum T ⋆T yields

a subgradient (when D =Euclidean, p = 2).
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Average of Wasserstein Distances

g(a,X)
def
=

1

N

N
∑

i=1

W p
p (µ,νi)

=
1

N

N
∑

i=1

primal(a, bi,MXYi
)

• a → g(a,X) is convex, non-smooth

• X → g(a,X) is not convex, non-smooth
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Wasserstein Barycenter Problem

min
a

g(a, X) =
1

N

N
∑

i=1

primal(a, bi,MXYi
)

• a → g(a, X) is convex

◦ subgradient method works (in theory).

◦ Great if X is fixed (b-o-w or discretized Ω)!

◦ Need to solve {α⋆
i} at each subgradient step.
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Wasserstein Barycenter Problem

min
X

g(a,X) =
1

N

N
∑

i=1

primal(a, bi,MXYi
)

• X → g(a,X) is not convex

◦ (and so far only applicable when Ω is Rd.)

◦ local minimum with subgradient method

◦ Need to compute {T ⋆
i } at each subgradient step
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To recapitulate...

min
a,X

g(a,X)

• convex w.r.t weights a, not locations X.

• only subgradients (g is usually very degenerate).

• computationally intractable (cost of OT ≈ n3 logn)

• computationally inefficient (hard to parallelize)
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Solution: Entropic Smoothing

Original primal problem gives us T ⋆:

primal(a, b,MXY ) = min
T∈U(a,b)

〈T ,MXY 〉

Original dual problem gives us α⋆:

dual(a, b,MXY ) = max
(α,β),αi+βj≤Mij

αTa+ βTb
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Solution: Entropic Smoothing

Smoothed (λ > 0) primal problem gives us T ⋆
λ :

primalλ(a, b,MXY ) = min
T∈U(a,b)

〈T ,MXY 〉 −
1

λ
h(T )

Smoothed dual problem gives us α⋆
λ:

dualλ(a, b,MXY ) = max
(α,β)

αTa+βTb−
∑

i≤n,j≤m

e−λ(mij−αi−βj)

λ
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Benefits of Smoothing [Cuturi’13]

• Objective now strongly convex vs. piecewise linear:

infinitely more efficient in practice [Nesterov’05].

• Primal/dual smoothed optima α⋆
λ, T

⋆
λ can be solved

◦ In O(n2) with Sinkhorn’s algorithm,

◦ in parallel on GPGPUs for any metric on finite Ω,

◦ millions of time faster than simplex,

◦ can deal with large dimensions (≈ 20.000).
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To conclude...

• our approach also generalizes k-means

◦ can consider weight constraints (see paper),

◦ can quantize simultaneously different datasets

• Versatile and scalable approach for other variational

Wasserstein problems (e.g. Wasserstein

propagation [Solomon’14])

• Future applications to visualization of measures on

Riemanian manifolds, data-fusion, inference...
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