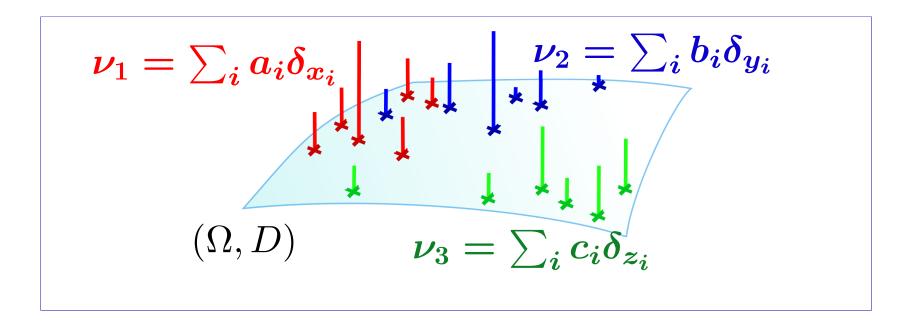
ICML 2014 Fast Computation of Wasserstein Barycenters

<u>M. Cuturi¹</u> A. Doucet²

¹Kyoto University ²University of Oxford

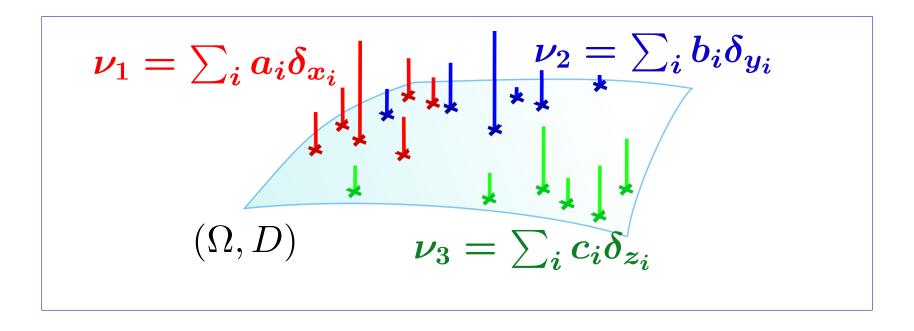
Problem: Average N **Probability Measures**



• $\{\Omega, D\}$ a metric space

• $\{\nu_1, \cdots, \nu_N\}$ family of empirical probability measures.

Problem: Average N **Probability Measures**



Can we summarize the $\{\nu_i\}$ as an "average" or a "barycentric" single empirical probability measure? *interest in ML: empirical measure = dataset, histogram/bags-of-features, single observation with uncertainty*

Euclidean Means for Vectors

• For vectors $\{x_1, \cdots, x_N\}$ in a Hilbert, their average is

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Euclidean Means for Vectors

• For vectors $\{x_1, \cdots, x_N\}$ in a Hilbert, their average is

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

• behind this formula lies a **variational** problem

$$\bar{x} = \operatorname*{argmin}_{u \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N ||u - x_i||_2^2$$

Euclidean Means for Measures

• For probability measures $\{\nu_i\}_{i=1..N}$, we can also use:

$$\mu = rac{1}{N} \sum_{i=1}^N
u_i,$$

• as well as, using a smoothing kernel $k = e^{-D^2/\sigma}$,

$$\mu = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{k} * \nu_i)$$

(a.k.a *RKHS* mean map [Gretton'07])

Other Means for Probabilities

 Other means can be defined using other metrics or divergences:

$$\operatorname*{argmin}_{\mu\in P(\Omega)}\sum_{i=1}^N oldsymbol{\Delta}(\mu,
u_i).$$

- KL, Symmetrized KL [Nielsen'12]
- Bregman Divergence [Bhanerjee'05]
- Wasserstein Distance (a.k.a EMD) [Agueh'11]

Wasserstein Barycenter Problem

• [Agueh'11] defined

$$\operatorname*{argmin}_{\mu\in P(\Omega)}\sum_{i=1}^{N} \boldsymbol{W_{p}^{p}}(\mu,
u_{i}),$$

provided theoretical analysis, unicity of solution.

- Simple cases (N = 2, multivariate Gaussians) covered.
- very challenging computational problem.

Our Contribution

- First computational approach to solve efficiently variational Wasserstein problems,
- including the Wasserstein barycenter problem,

$$\operatorname*{argmin}_{\mu\in P(\Omega)}\sum_{i=1}^{N} oldsymbol{W_p^p}(\mu,
u_i),$$

 that is applicable for arbitrary (Ω, D) and p > 0, using entropy-smoothed optimal transport [Cuturi'13].

Our Contribution

- First computational approach to solve efficiently variational Wasserstein problems,
- including the Wasserstein barycenter problem,

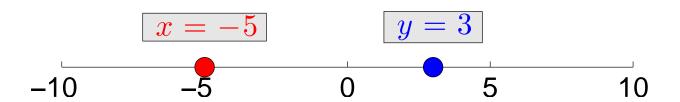
$$\operatorname*{argmin}_{\mu\in P(\Omega)}\sum_{i=1}^{N} \boldsymbol{W_{p}^{p}}(\mu, \nu_{i}),$$

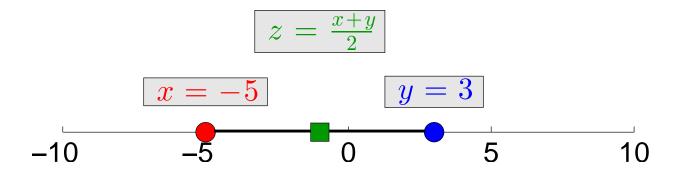
 that is applicable for arbitrary (Ω, D) and p > 0, using entropy-smoothed optimal transport [Cuturi'13].

([Rabin'12,Bonneel'14] studied case $\Omega = \mathbb{R}^2$)

Motivating Examples

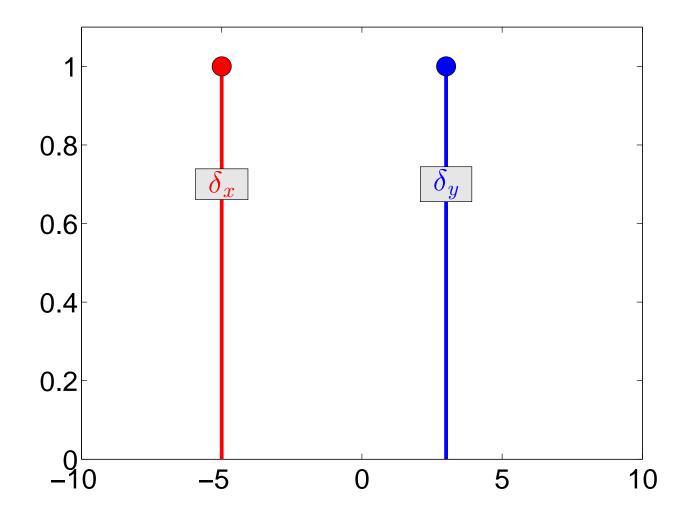
2 Points on the Real Line



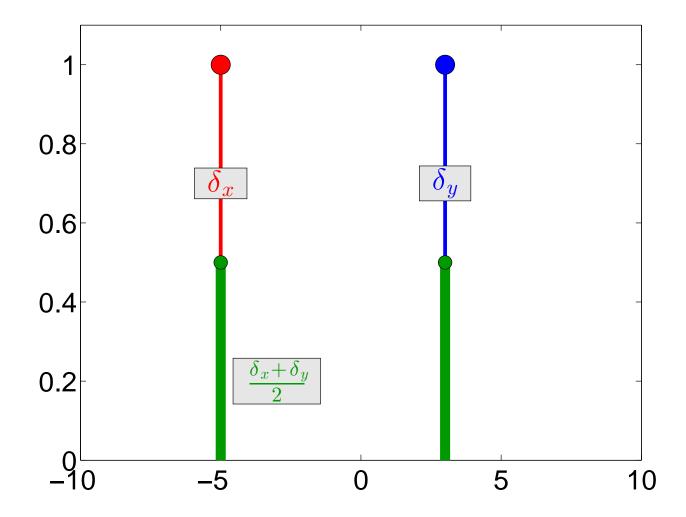


22.06.14

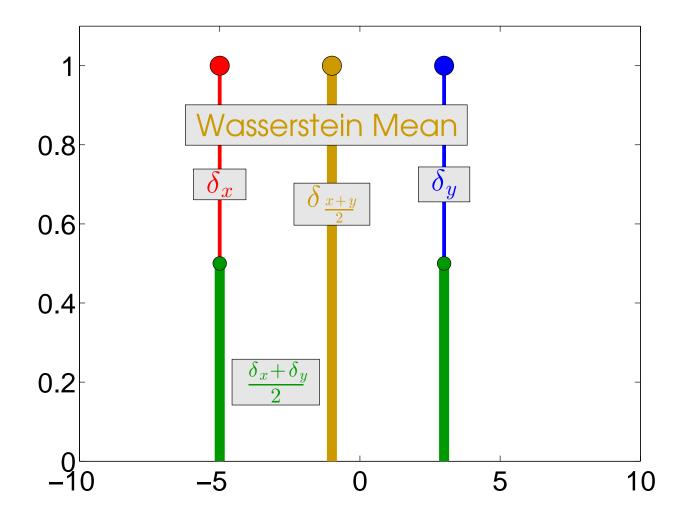
Points as Diracs



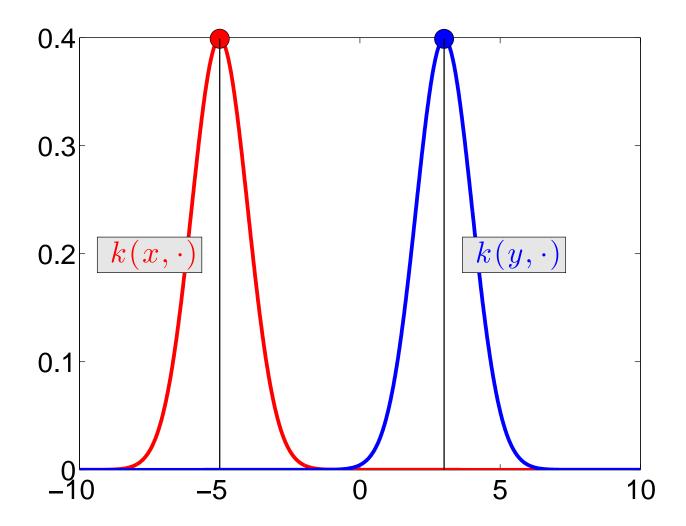
Euclidean Mean of Diracs



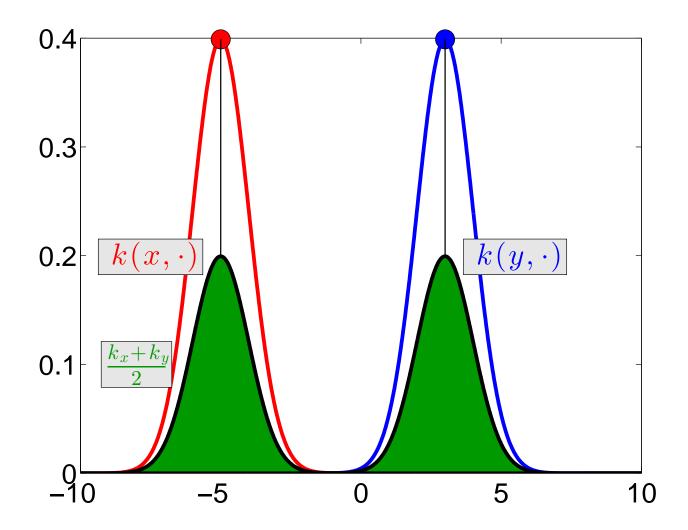
Wasserstein Mean of Diracs



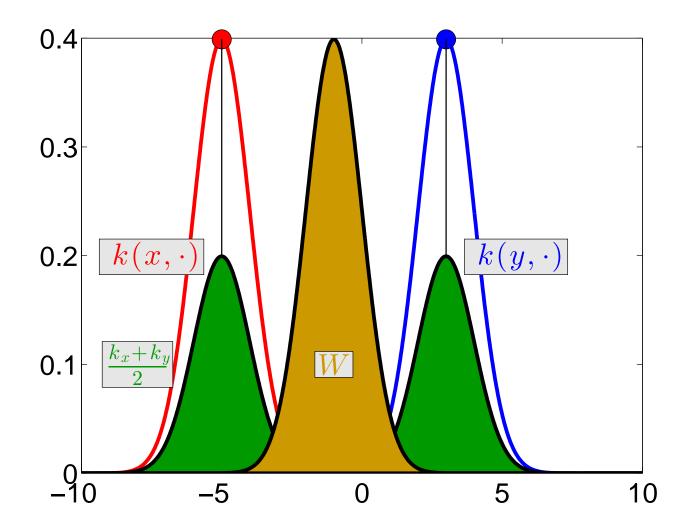
Smoothed Measures (RKHS mean map)



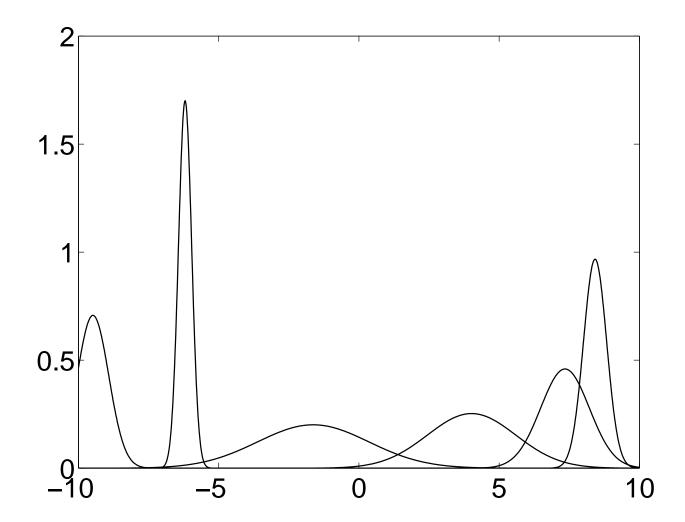
Euclidean Mean of 2 Gaussians



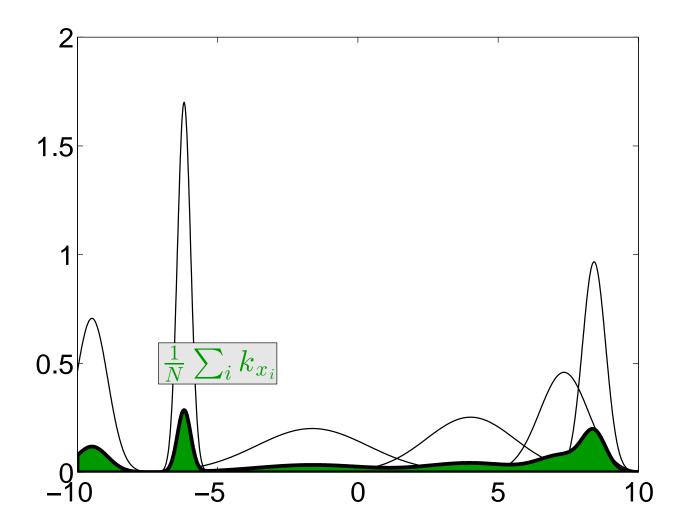
Wasserstein Mean of 2 Gaussians



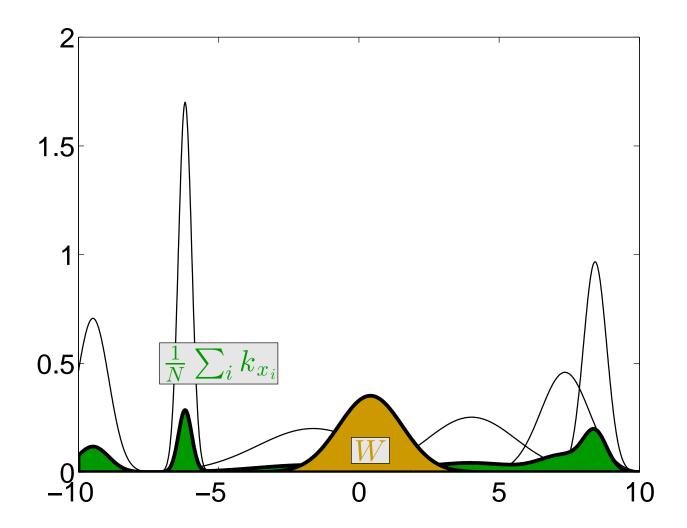
Gaussians



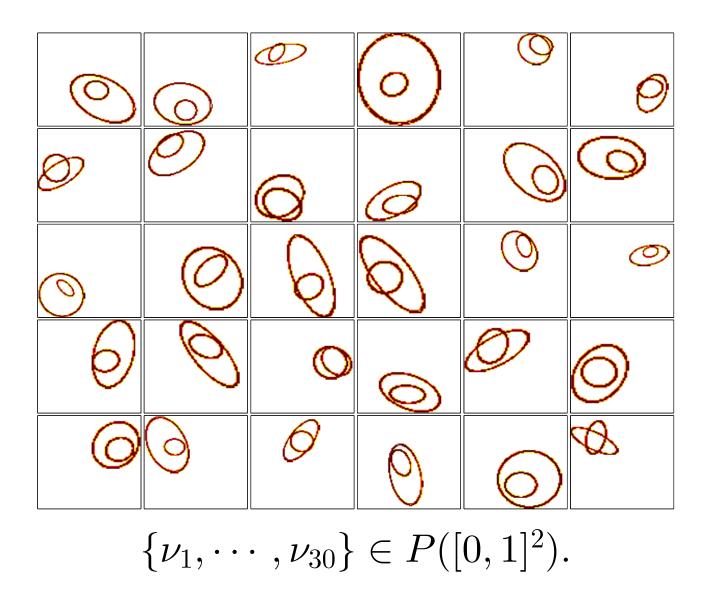
Euclidean Mean



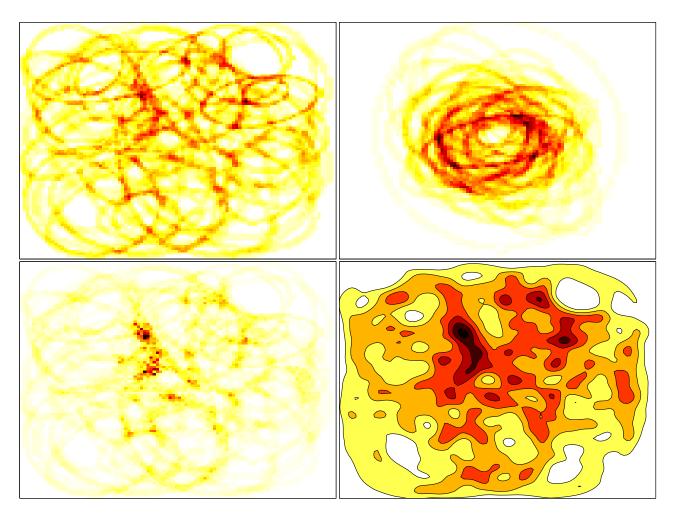
Wasserstein Mean



Motivation in 2D

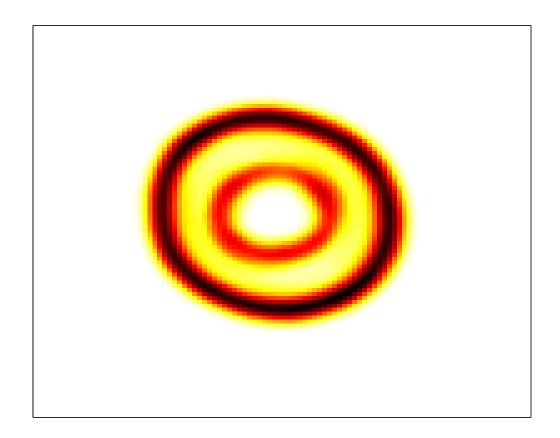


Euclidean / Centered / Jeffrey / RKHS



Euclidean distance / recentered, Sym. Kullback / RKHS Mean Map

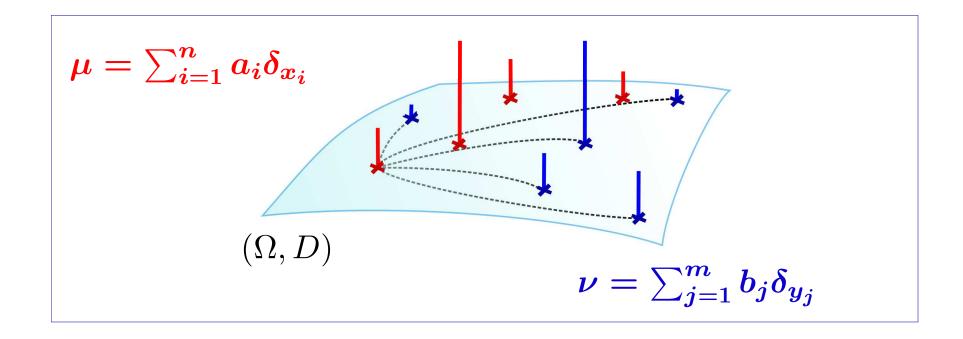
Wasserstein Barycenter



2-Wasserstein barycenter (computed with our method)

Variational Perspective on the Wasserstein Distance

Wasserstein for Empirical Measures



- (Ω, D) metric. $p \ge 1$.
- Two empirical measures μ, ν .

p-Wasserstein distance $W_p(\mu, \nu)$?

Computing p Wasserstein Distances

$$\mu = \sum_{i=1}^{n} \boldsymbol{a_i} \delta_{\boldsymbol{x_i}}, \quad \nu = \sum_{j=1}^{m} \boldsymbol{b_j} \delta_{\boldsymbol{y_j}},$$

 $W_p(\mu, \nu)$ is the solution of a linear program involving:

1.
$$M_{\boldsymbol{X}\boldsymbol{Y}} \stackrel{\text{def}}{=} [D(\boldsymbol{x_i}, \boldsymbol{y_j})^p]_{ij} \in \mathbb{R}^{n \times m}$$

2. $U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text{def}}{=} \{T \in \mathbb{R}^{n \times m}_+ \mid T \mathbb{1}_m = \boldsymbol{a}, \ T^T \mathbb{1}_n = \boldsymbol{b}\}.$

Computing the OT Distance

• *p*-Wasserstein is the solution (primal or dual LP):

$$W_p^p(\boldsymbol{\mu}, \boldsymbol{\nu}) = \begin{cases} \mathbf{primal}(\boldsymbol{a}, \boldsymbol{b}, M_{\boldsymbol{X}\boldsymbol{Y}}) \stackrel{\text{def}}{=} \min_{T \in U(\boldsymbol{a}, \boldsymbol{b})} \langle T, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle \\ \text{or} \\ \mathbf{dual}(\boldsymbol{a}, \boldsymbol{b}, M_{\boldsymbol{X}\boldsymbol{Y}}) \stackrel{\text{def}}{=} \max_{(\alpha, \beta) \in C_{M_{\boldsymbol{X}\boldsymbol{Y}}}} \alpha^T \boldsymbol{a} + \beta^T \boldsymbol{b} , \\ \text{where } C_M = \{(\alpha, \beta) \in \mathbb{R}^{n+m} \mid \alpha_i + \beta_j \leq M_{ij}\} \end{cases}$$

Computing the OT Distance

• *p*-Wasserstein is the solution (primal or dual LP):

$$W_p^p(\boldsymbol{\mu}, \boldsymbol{\nu}) = \begin{cases} \mathbf{primal}(\boldsymbol{a}, \boldsymbol{b}, M_{\boldsymbol{X}\boldsymbol{Y}}) \stackrel{\text{def}}{=} \min_{T \in U(\boldsymbol{a}, \boldsymbol{b})} \langle T, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle \\ \text{or} \\ \mathbf{dual}(\boldsymbol{a}, \boldsymbol{b}, M_{\boldsymbol{X}\boldsymbol{Y}}) \stackrel{\text{def}}{=} \max_{(\alpha, \beta) \in C_{M_{\boldsymbol{X}\boldsymbol{Y}}}} \alpha^T \boldsymbol{a} + \beta^T \boldsymbol{b} , \\ \text{where } C_M = \{(\alpha, \beta) \in \mathbb{R}^{n+m} \mid \alpha_i + \beta_j \leq M_{ij}\} \end{cases}$$

Changes in $f(\boldsymbol{a}, \boldsymbol{X}) \stackrel{\text{def}}{=} W_p^p(\boldsymbol{\mu}, \boldsymbol{\nu})$ as $\boldsymbol{a} \& \boldsymbol{X}$ change?

Wasserstein (Sub)differentiability

$$f(\boldsymbol{a}, X) = \max_{(\alpha, \beta) \in C_{M_{\boldsymbol{X}\boldsymbol{Y}}}} \alpha^{T} \boldsymbol{a} + \beta^{T} \boldsymbol{b}$$

• $\partial f|_a = \alpha^*$: the *dual optimum* α^* is a subgradient.

$$f(a, \mathbf{X}) = \min_{T \in U(\mathbf{a}, \mathbf{b})} \langle T, M_{\mathbf{X}\mathbf{Y}} \rangle$$

• $\partial f|_X = Y T^{\star T} \operatorname{diag}(a^{-1})$: primal optimum $T^{\star T}$ yields a subgradient (when $D = \operatorname{Euclidean}, p = 2$).

Average of Wasserstein Distances

$$egin{aligned} g(oldsymbol{a},oldsymbol{X}) & \stackrel{ ext{def}}{=} rac{1}{N} \sum_{i=1}^{N} W_p^p(oldsymbol{\mu},oldsymbol{
u}_i) \ & = rac{1}{N} \sum_{i=1}^{N} extbf{primal}(oldsymbol{a},oldsymbol{b}_i,M_{oldsymbol{X}oldsymbol{Y}_i}) \end{aligned}$$

• $a \to g(a, X)$ is convex, non-smooth

• $X \to g(a, X)$ is **not convex**, **non-smooth**

Wasserstein Barycenter Problem

$$\min_{\boldsymbol{a}} g(\boldsymbol{a}, X) = \frac{1}{N} \sum_{i=1}^{N} \operatorname{primal}(\boldsymbol{a}, \boldsymbol{b}_{i}, M_{X\boldsymbol{Y}_{i}})$$

• $\mathbf{a} \to g(\mathbf{a}, X)$ is convex

- subgradient method works (in theory).
- \circ Great if X is fixed (b-o-w or discretized Ω)!
- Need to solve $\{\alpha_i^{\star}\}$ at each subgradient step.

Wasserstein Barycenter Problem

$$\min_{\mathbf{X}} g(a, \mathbf{X}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{primal}(a, \mathbf{b}_{i}, M_{\mathbf{X}\mathbf{Y}_{i}})$$

• $X \to g(a, X)$ is not convex

- \circ (and so far only applicable when Ω is \mathbb{R}^d .)
- local minimum with subgradient method
- Need to compute $\{T_i^{\star}\}$ at each subgradient step

To recapitulate...

 $\min_{\boldsymbol{a},\boldsymbol{X}} g(\boldsymbol{a},\boldsymbol{X})$

- convex w.r.t weights a, not locations X.
- only subgradients (g is usually very degenerate).
- computationally intractable (cost of $OT \approx n^3 \log n$)
- **computationally inefficient** (hard to parallelize)

Solution: Entropic Smoothing

Original primal problem gives us T^* : primal $(a, b, M_{XY}) = \min_{T \in U(a,b)} \langle T, M_{XY} \rangle$

Original dual problem gives us α^* :

 $\mathbf{dual}(a, b, M_{XY}) = \max_{(\boldsymbol{\alpha}, \boldsymbol{\beta}), \boldsymbol{\alpha_i} + \boldsymbol{\beta_j} \le M_{ij}} \boldsymbol{\alpha}^T a + \boldsymbol{\beta}^T b$

Solution: Entropic Smoothing

Smoothed $(\lambda > 0)$ primal problem gives us T_{λ}^{\star} : primal_{λ} $(a, b, M_{XY}) = \min_{\mathbf{T} \in U(a,b)} \langle \mathbf{T}, M_{XY} \rangle - \frac{1}{\lambda} h(\mathbf{T})$

Smoothed dual problem gives us α_{λ}^{\star} :

$$\operatorname{dual}_{\lambda}(a, b, M_{XY}) = \max_{(\boldsymbol{\alpha}, \boldsymbol{\beta})} \boldsymbol{\alpha}^{T} a + \boldsymbol{\beta}^{T} b - \sum_{i \leq n, j \leq m} \frac{e^{-\lambda \left(m_{ij} - \alpha_{i} - \beta_{j}\right)}}{\lambda}$$

Benefits of Smoothing [Cuturi'13]

- Objective now **strongly convex** vs. **piecewise linear**: infinitely more efficient in practice **[Nesterov'05]**.
- Primal/dual smoothed optima α^{*}_λ, T^{*}_λ can be solved
 In O(n²) with Sinkhorn's algorithm,
 in parallel on GPGPUs for any metric on finite Ω,
 - millions of time faster than simplex,
 - \circ can deal with large dimensions (≈ 20.000).

To conclude...

- our approach also **generalizes** *k*-**means**
 - can consider weight constraints (see paper),
 - o can quantize simultaneously different datasets
- Versatile and scalable approach for other variational Wasserstein problems (*e.g.* Wasserstein propagation [Solomon'14])
- Future applications to visualization of measures on Riemanian manifolds, data-fusion, inference...