

Motivation: Averaging Measures **Empirical Probability Measures** Play a Crucial Role in Machine Learning. • A dataset, a sample = empirical measure. • A bag-of-words, a histogram = empirical measure (finite probability space). How can we average a set of Empirical Probability Measures $\{\nu_1, \cdots, \nu_N\}$? (Ω,\overline{D}) $\nu_3 = \sum_i c_i \delta_{z_i}$ Ω : finite set (histograms), Hilbert, Metric... D: Riemannian, Hilbert, APSP on a graph... First question: how can we define averages? • For vectors $\{x_1, \dots, x_N\}$ in a Hilbert space, their average is $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$ (Explicit formula) $= \operatorname{argmin} \|u - x_i\|_2^2 = \operatorname{argmin} D_{\operatorname{Euclidean}}(u, x_i)^2$ (Variational formulation) • For non-Euclidean spaces (e.g. probability simplex) define a **metric**/ a **diver**gence [Banerjee et al'05, Nielsen'13] and min. the variational formulation. **Our contribution**: A Fast Computational Approach to compute that average when **D** = the Optimal Transport Distance a.k.a Wasserstein, EMD, Monge-Kantorovich Wasserstein Barycenters (theory by [Agueh, Carlier'11])

• Wasserstein...: for $p \in [1, \infty), \mu, \nu$ in $P(\Omega)$,

 $W_p(\mu,\nu) \stackrel{\text{def}}{=} \left(\inf_{\pi \in \Pi(\mu,\nu)} \int_{\Omega^2} D(x,y)^p d\pi(x,y) \right)^{1/p}$ [Villani'09],

where $\Pi(\mu, \nu)$ is the set of probability measures on Ω^2 with marginals μ, ν . • ...Barycenters: $\operatorname{argmin}_{\mu} f(\mu) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{i=1}^{N} W_p^p(\mu, \nu_i).$

Fast Computation of Wasserstein Barycenters

Marco Cuturi¹, Arnaud Doucet² ¹ Kyoto University - Graduate School of Informatics ² University of Oxford - Department of Statistics

Computation

$$W_p^p(\mu,\nu) = \begin{cases} \mathbf{p}(a,b,M_{XY}) \\ \mathbf{d}(a,b,M_{XY}) \\ & \text{where} \end{cases}$$

(Sub)differentiability of Wasserstein Distance

- $\partial W|_a = \alpha^* \Rightarrow dual \ opt. \ \alpha^*$ is a subgradient of $W|_a$

Given ν_i with supp. Y_i and weights b_i , find support X and weight a to min. f(a, X)

 $f(\boldsymbol{a}, \boldsymbol{X}) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{i=1}^{N} \mathbf{p}(\boldsymbol{a}, \boldsymbol{b}_{i}, M_{\boldsymbol{X}\boldsymbol{Y}_{i}})$

Naive Subgradient Method (Hopeless...)

Efficient Computations using Sinkhorn

- - $\mathbf{p}_{\lambda}(a,b;M)$
 - $\mathbf{d}_{\lambda}(a,b;M)$

Proposition: Let $K \stackrel{\text{def}}{=} e^{-\lambda M_{XY}}$. Then there exists a pair of vectors $(u, v) \in$ $\mathbb{R}^n_+ \times \mathbb{R}^m_+$ recoverable with Sinkhorn's algorithm in O(nm) such that

 $T_{\lambda}^{\star} = \mathbf{diag}(u)K$

• \Rightarrow do a simple (projected) gradient descent on smoothed objectives.

More details (GPU parallelization, links with constrained clustering etc) in the paper.

Optimal Transport

• Let $\mu = \sum_{i=1}^{n} a_i \delta_{x_i}$ and $\nu = \sum_{j=1}^{n} b_j \delta_{y_j}$ be 2 probability measures.

• Let the **(pairwise distance matrix)**^{*p*} $M_{XY} \stackrel{\text{def}}{=} [D(x_i, y_j)^p]_{ij} \in \mathbb{R}^{n \times m}$ • Let the transportation polytope U(a, b) of $a \in \Sigma_n$ and $b \in \Sigma_m$ be

 $U(a,b) \stackrel{\text{def}}{=} \{ T \in \mathbb{R}^{n \times m} \mid T \mathbf{1}_m = a, \ T^T \mathbf{1}_n = b \}.$

• Then, their *p*-Wasserstein distance is the solution (*either* primal or dual LP)

 $) \stackrel{\text{def}}{=} \min_{T \in U(a,b)} \langle T, M_{XY} \rangle$ (primal) $\stackrel{\text{def}}{=} \max_{(\alpha,\beta)\in C_{M_{XY}}} \alpha^T a + \beta^T b, \quad \text{(dual)} \quad = W(a,X)$ $C_M = \{ (\alpha, \beta) \in \mathbb{R}^{n+m} \, | \, \alpha_i + \beta_j \le M_{ij} \}.$

• $\partial W|_X = YT^{\star T} \operatorname{diag}(a^{-1}) \Rightarrow primal opt.$ is a subgr. of $W|_X$ (in Euclidean case.)

• $a \to f(a, X)$ is **CONVEX**: simple subgradient works (in theory...) • $X \to f(a, X)$ is **NOT CONVEX**: can only converge to local minima (k-means)

• ENTROPY SMOOTHED [Cuturi'13] primal/dual optimal transports

$$= \min_{T \in U(a,b)} \langle X, M \rangle - \frac{1}{\lambda} h(T).$$

$$= \max_{(\alpha,\beta) \in \mathbb{R}^{n+m}} \alpha^T a + \beta^T b - \sum_{i \le n, j \le m} \frac{e^{-\lambda(m_{ij} - \alpha_i - \beta_j)}}{\lambda}$$

$\mathbf{diag}(v), \qquad \alpha_{\lambda}^{\star} = -$	$-\frac{\log(u)}{\lambda}$ -	$+ \frac{\log(u)^T 1_n}{\lambda n} 1_n.$
---	------------------------------	--