Fast Computation of Wasserstein Barycenters

Marco Cuturi ${ }^{1}$, Arnaud Doucet ${ }^{2}$
${ }^{1}$ Kyoto University - Graduate School of Informatics ${ }^{2}$ University of Oxford - Department of Statistics

Motivation: Averaging Measures

Empirical Probability Measures Play a Crucial Role in Machine Learning.

- A dataset, a sample $=$ empirical measure .
- A bag-of-words, a histogram = empirical measure (finite probability space).

How can we average

a set of Empirical Probability Measures $\left\{\nu_{1}, \cdots, \nu_{N}\right\}$?

Ω : finite set (histograms), Hilbert, Metric...
D : Riemannian, Hilbert, APSP on a graph...

First question: how can we define averages?

- For vectors $\left\{x_{1}, \cdots, x_{N}\right\}$ in a Hilbert space, their average is

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \quad \text { (Explicit formula) }
$$

$$
=\underset{u \in \mathbb{R}^{d}}{i=1}\left\|u-x_{i}\right\|_{2}^{2}=\underset{u \in \mathbb{R}^{d}}{\operatorname{argmin}} D_{\text {Euclidean }}\left(u, x_{i}\right)^{2} \quad \text { (Variational formulation) }
$$

- For non-Euclidean spaces (e.g. probability simplex) define a metric / a divergence [Banerjee et al'05, Nielsen'13] and min. the variational formulation.

Our contribution: A Fast Computational Approach to compute that average when
$D=$ the Optimal Transport Distance a.k.a Wasserstein, EMD, Monge-Kantorovich

Wasserstein Barycenters (theory by [Agueh,Carlier'11])

- Wasserstein.... for $p \in[1, \infty), \mu, \nu$ in $P(\Omega)$,

$$
W_{p}(\mu, \nu) \stackrel{\text { def }}{=}\left(\inf _{\pi \in \Pi \mu, \nu)} \int_{\Omega^{2}} D(x, y)^{p} d \pi(x, y)\right)^{1 / p} \quad \text { [Villani'09], }
$$

where $\Pi(\mu, \nu)$ is the set of probability measures on Ω^{2} with marginals μ, ν.

- ...Barycenters: $\operatorname{argmin}_{\mu} f(\mu) \stackrel{\text { def }}{=} \frac{1}{N} \sum_{i=1}^{N} W_{p}^{p}\left(\mu, \nu_{i}\right)$.

Wasserstein Barycenters in One Example

30 measures on the plane $[0,1]^{2}$, discretized as a 100×100 grid. (in memory: 30 gray level histograms of dimension 10.000, each sums to 1)

2-Wasserstein Mean
How can we get that? Duality, Sinkhorn's Matrix Scaling Algorithm to Solve Entropy Smoothed Optimal Transport, GPGPU

Computation

Optimal Transport

- Let $\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}$ and $\nu=\sum_{j=1}^{n} b_{j} \delta_{y_{j}}$ be 2 probability measures.
- Let the (pairwise distance matrix) ${ }^{p} M_{X Y} \stackrel{\text { def }}{=}\left[D\left(x_{i}, y_{j}\right)^{p}\right]_{i j} \in \mathbb{R}^{n \times m}$
- Let the transportation polytope $U(a, b)$ of $a \in \Sigma_{n}$ and $b \in \Sigma_{m}$ be

$$
U(a, b) \stackrel{\text { def }}{=}\left\{T \in \mathbb{R}_{+}^{n \times m} \mid T \mathbf{1}_{m}=a, T^{T} \mathbf{1}_{n}=b\right\} .
$$

- Then, their p-Wasserstein distance is the solution (either primal or dual LP)

(Sub)differentiability of Wasserstein Distance
- $\left.\partial W\right|_{a}=\alpha^{\star} \Rightarrow$ dual opt. α^{\star} is a subgradient of $\left.W\right|_{a}$
- $\left.\partial W\right|_{X}=Y T^{\star T} \operatorname{diag}\left(a^{-1}\right) \Rightarrow$ primal opt. is a subgr. of $\left.W\right|_{X}$ (in Euclidean case.)

Given ν_{i} with supp. Y_{i} and weights b_{i}, find support X and weight a to $\min . f(a, X)$

$$
f(a, X) \stackrel{\text { def }}{=} \frac{1}{N} \sum_{i=1}^{N} \mathbf{p}\left(a, b_{i}, M_{X Y_{i}}\right)
$$

Naive Subgradient Method (Hopeless...)

- $a \rightarrow f(a, X)$ is CONVEX: simple subgradient works (in theory...)
- $X \rightarrow f(a, X)$ is NOT CONVEX: can only converge to local minima (k-means)

Efficient Computations using Sinkhorn

- ENTROPY SMOOTHED [Cuturi'13] primal/dual optimal transports

$$
\begin{aligned}
& \mathbf{p}_{\lambda}(a, b ; M)=\min _{T \in U(a, b)}\langle X, M\rangle-\frac{1}{\lambda} h(T) . \\
& \mathbf{d}_{\lambda}(a, b ; M) \underset{(\alpha, \beta) \in \mathbb{R}^{n+m}}{\max ^{T} a+\beta^{T} b-\sum_{i \leq n, j \leq m} \frac{e^{-\lambda\left(m_{i j}-\alpha_{i}-\beta_{j}\right)}}{\lambda}}
\end{aligned}
$$

Proposition: Let $K \stackrel{\text { def }}{=} e^{-\lambda M_{X Y}}$. Then there exists a pair of vectors $(u, v) \in$ $\mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{m}$ recoverable with Sinkhorn's algorithm in $O(n m)$ such that

$$
T_{\lambda}^{\star}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad \alpha_{\lambda}^{\star}=-\frac{\log (u)}{\lambda}+\frac{\log (u)^{T} \mathbf{1}_{n}}{\lambda n} \mathbf{1}_{n} .
$$

- \Rightarrow do a simple (projected) gradient descent on smoothed objectives.

More details (GPU parallelization, links with constrained clustering etc) in the paper.

