Particle Markov Chain Monte Carlo Methods

Arnaud Doucet
University of British Columbia, Vancouver, Canada

Kyoto, 15th June 2011

General State-Space Models

- State-space models also known as Hidden Markov models are ubiquitous time series models in ecology, econometrics, engineering, statistics etc.

General State-Space Models

- State-space models also known as Hidden Markov models are ubiquitous time series models in ecology, econometrics, engineering, statistics etc.
- Let $\left\{X_{n}\right\}_{n \geq 1}$ be a latent/hidden Markov process defined by

$$
X_{1} \sim \mu_{\theta}(\cdot) \text { and } X_{n} \mid\left(X_{n-1}=x_{n-1}\right) \sim f_{\theta}\left(\cdot \mid x_{n-1}\right)
$$

General State-Space Models

- State-space models also known as Hidden Markov models are ubiquitous time series models in ecology, econometrics, engineering, statistics etc.
- Let $\left\{X_{n}\right\}_{n \geq 1}$ be a latent/hidden Markov process defined by

$$
X_{1} \sim \mu_{\theta}(\cdot) \text { and } X_{n} \mid\left(X_{n-1}=x_{n-1}\right) \sim f_{\theta}\left(\cdot \mid x_{n-1}\right)
$$

- We only have access to a process $\left\{Y_{n}\right\}_{n \geq 1}$ such that, conditional upon $\left\{X_{n}\right\}_{n \geq 1}$, the observations are statistically independent and

$$
Y_{n} \mid\left(X_{n}=x_{n}\right) \sim g_{\theta}\left(\cdot \mid x_{n}\right) .
$$

General State-Space Models

- State-space models also known as Hidden Markov models are ubiquitous time series models in ecology, econometrics, engineering, statistics etc.
- Let $\left\{X_{n}\right\}_{n \geq 1}$ be a latent/hidden Markov process defined by

$$
X_{1} \sim \mu_{\theta}(\cdot) \text { and } X_{n} \mid\left(X_{n-1}=x_{n-1}\right) \sim f_{\theta}\left(\cdot \mid x_{n-1}\right)
$$

- We only have access to a process $\left\{Y_{n}\right\}_{n \geq 1}$ such that, conditional upon $\left\{X_{n}\right\}_{n \geq 1}$, the observations are statistically independent and

$$
Y_{n} \mid\left(X_{n}=x_{n}\right) \sim g_{\theta}\left(\cdot \mid x_{n}\right) .
$$

- θ is an unknown parameter of prior density $p(\theta)$.

Examples of State-Space Models

- Canonical univariate SV model (Ghysels et al., 1996)

$$
\begin{aligned}
& X_{n}=\alpha+\phi\left(X_{n-1}-\alpha\right)+\sigma V_{n} \\
& Y_{n}=\exp \left(X_{n} / 2\right) W_{n}
\end{aligned}
$$

where $X_{1} \sim \mathcal{N}\left(\alpha, \sigma^{2} /\left(1-\phi^{2}\right)\right), V_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$ and $W_{m} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$ and $\theta=(\alpha, \phi, \sigma)$.

Examples of State-Space Models

- Canonical univariate SV model (Ghysels et al., 1996)

$$
\begin{aligned}
& X_{n}=\alpha+\phi\left(X_{n-1}-\alpha\right)+\sigma V_{n} \\
& Y_{n}=\exp \left(X_{n} / 2\right) W_{n}
\end{aligned}
$$

where $X_{1} \sim \mathcal{N}\left(\alpha, \sigma^{2} /\left(1-\phi^{2}\right)\right), V_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$ and $W_{m} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$ and $\theta=(\alpha, \phi, \sigma)$.

- Wishart processes for multivariate SV (Gourieroux et al., 2009)

$$
\begin{aligned}
& X_{n}^{m}=M X_{n-1}^{m}+V_{n}^{m}, V_{n}^{m} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0, \Xi), m=1, \ldots, K \\
& \Sigma_{n}=\sum_{m=1}^{K} X_{n}^{m}\left(X_{n}^{m}\right)^{\top} \\
& Y_{n} \mid \Sigma_{n} \sim \mathcal{N}\left(0, \Sigma_{n}\right) .
\end{aligned}
$$

where $\theta=(M, \Xi)$.

Examples of State-Space Models

- U.S./U.K. exchange rate model (Engle \& Kim, 1999). Log exchange rate values Y_{n} are modeled through

$$
\begin{aligned}
& Y_{n}=\alpha_{n}+\eta_{n} \\
& \alpha_{n}=\alpha_{n-1}+\sigma_{\alpha} V_{n, 1}, \\
& \eta_{n}=a_{1} \eta_{n-1}+a_{2} \eta_{n-2}+\sigma_{\eta, z_{n}} V_{n, 2}
\end{aligned}
$$

where $V_{n, 1} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1), V_{n, 2} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$ and $Z_{n} \in\{1,2,3,4\}$ is an unobserved Markov chain of unknown transition matrix.

Examples of State-Space Models

- U.S./U.K. exchange rate model (Engle \& Kim, 1999). Log exchange rate values Y_{n} are modeled through

$$
\begin{aligned}
& Y_{n}=\alpha_{n}+\eta_{n} \\
& \alpha_{n}=\alpha_{n-1}+\sigma_{\alpha} V_{n, 1}, \\
& \eta_{n}=a_{1} \eta_{n-1}+a_{2} \eta_{n-2}+\sigma_{\eta, z_{n}} V_{n, 2}
\end{aligned}
$$

where $V_{n, 1} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1), V_{n, 2} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$ and $Z_{n} \in\{1,2,3,4\}$ is an unobserved Markov chain of unknown transition matrix.

- This can be reformulated as a state-space by selecting

$$
X_{n}=\left[\begin{array}{llll}
\alpha_{n} & \eta_{n} & \eta_{n-1} & Z_{n}
\end{array}\right]^{\top} \text { and } \theta=\left(a_{1}, a_{2}, \sigma_{\alpha}, \sigma_{1: 4}, P\right)
$$

Other Applications

- Macroeconomics: dynamic generalized stochastic equilibrium (Flury \& Shephard, Econometrics Review, 2011; Smith, J. Econometrics, 2012).

Other Applications

- Macroeconomics: dynamic generalized stochastic equilibrium (Flury \& Shephard, Econometrics Review, 2011; Smith, J. Econometrics, 2012).
- Econometrics: stochastic volatility models, nonlinear term structures (Li, JBES, 2011; Giordani, Kohn \& Pitt, JCGS, 2011; Andreasen 2011)

Other Applications

- Macroeconomics: dynamic generalized stochastic equilibrium (Flury \& Shephard, Econometrics Review, 2011; Smith, J. Econometrics, 2012).
- Econometrics: stochastic volatility models, nonlinear term structures (Li, JBES, 2011; Giordani, Kohn \& Pitt, JCGS, 2011; Andreasen 2011)
- Epidemiology: disease dynamic models (lonides et al., JASA, 2011).

Other Applications

- Macroeconomics: dynamic generalized stochastic equilibrium (Flury \& Shephard, Econometrics Review, 2011; Smith, J. Econometrics, 2012).
- Econometrics: stochastic volatility models, nonlinear term structures (Li, JBES, 2011; Giordani, Kohn \& Pitt, JCGS, 2011; Andreasen 2011)
- Epidemiology: disease dynamic models (lonides et al., JASA, 2011).
- Ecology: population dynamic (Thomas et al., 2009; Peters et al., 2011).

Other Applications

- Macroeconomics: dynamic generalized stochastic equilibrium (Flury \& Shephard, Econometrics Review, 2011; Smith, J. Econometrics, 2012).
- Econometrics: stochastic volatility models, nonlinear term structures (Li, JBES, 2011; Giordani, Kohn \& Pitt, JCGS, 2011; Andreasen 2011)
- Epidemiology: disease dynamic models (lonides et al., JASA, 2011).
- Ecology: population dynamic (Thomas et al., 2009; Peters et al., 2011).
- Environmentrics: Phytoplankton-Zooplankton model (Parslow et al., 2009), Paleoclimate reconstruction (Rougier, 2010).

Other Applications

- Macroeconomics: dynamic generalized stochastic equilibrium (Flury \& Shephard, Econometrics Review, 2011; Smith, J. Econometrics, 2012).
- Econometrics: stochastic volatility models, nonlinear term structures (Li, JBES, 2011; Giordani, Kohn \& Pitt, JCGS, 2011; Andreasen 2011)
- Epidemiology: disease dynamic models (lonides et al., JASA, 2011).
- Ecology: population dynamic (Thomas et al., 2009; Peters et al., 2011).
- Environmentrics: Phytoplankton-Zooplankton model (Parslow et al., 2009), Paleoclimate reconstruction (Rougier, 2010).
- Biochemical Systems: stochastic kinetic models (Wilkinson \& Golightly, 2010).

Bayesian Inference in General State-Space Models

- Given a collection of observations $y_{1: T}:=\left(y_{1}, \ldots, y_{T}\right)$, we are interested in carrying out inference about θ and $X_{1: T}:=\left(X_{1}, \ldots, X_{T}\right)$.

Bayesian Inference in General State-Space Models

- Given a collection of observations $y_{1: T}:=\left(y_{1}, \ldots, y_{T}\right)$, we are interested in carrying out inference about θ and $X_{1: T}:=\left(X_{1}, \ldots, X_{T}\right)$.
- Inference relies on the posterior density

$$
\begin{aligned}
p\left(\theta, x_{1: T} \mid y_{1: T}\right) & =p\left(\theta \mid y_{1: T}\right) p_{\theta}\left(x_{1: T} \mid y_{1: T}\right) \\
& \propto p\left(\theta, x_{1: T}, y_{1: T}\right)
\end{aligned}
$$

where

$$
p\left(\theta, x_{1: T}, y_{1: T}\right) \propto p(\theta) \mu_{\theta}\left(x_{1}\right) \prod_{n=2}^{T} f_{\theta}\left(x_{n} \mid x_{n-1}\right) \prod_{n=1}^{T} g_{\theta}\left(y_{n} \mid x_{n}\right) .
$$

Bayesian Inference in General State-Space Models

- Given a collection of observations $y_{1: T}:=\left(y_{1}, \ldots, y_{T}\right)$, we are interested in carrying out inference about θ and $X_{1: T}:=\left(X_{1}, \ldots, X_{T}\right)$.
- Inference relies on the posterior density

$$
\begin{aligned}
p\left(\theta, x_{1: T} \mid y_{1: T}\right) & =p\left(\theta \mid y_{1: T}\right) p_{\theta}\left(x_{1: T} \mid y_{1: T}\right) \\
& \propto p\left(\theta, x_{1: T}, y_{1: T}\right)
\end{aligned}
$$

where

$$
p\left(\theta, x_{1: T}, y_{1: T}\right) \propto p(\theta) \mu_{\theta}\left(x_{1}\right) \prod_{n=2}^{T} f_{\theta}\left(x_{n} \mid x_{n-1}\right) \prod_{n=1}^{T} g_{\theta}\left(y_{n} \mid x_{n}\right) .
$$

- No closed-form expression for $p\left(\theta, x_{1: T} \mid y_{1: T}\right)$, numerical approximations are required.

Common MCMC Approaches and Limitations

- MCMC Idea: Simulate an ergodic Markov chain $\left\{\theta(i), X_{1: T}(i)\right\}_{i \geq 0}$ of invariant distribution $p\left(\theta, x_{1: T} \mid y_{1: T}\right) \ldots$ infinite number of possibilities.

Common MCMC Approaches and Limitations

- MCMC Idea: Simulate an ergodic Markov chain $\left\{\theta(i), X_{1: T}(i)\right\}_{i \geq 0}$ of invariant distribution $p\left(\theta, x_{1: T} \mid y_{1: T}\right) \ldots$ infinite number of possibilities.
- Typical strategies consists of updating iteratively $X_{1: T}$ conditional upon θ then θ conditional upon $X_{1: T}$.

Common MCMC Approaches and Limitations

- MCMC Idea: Simulate an ergodic Markov chain $\left\{\theta(i), X_{1: T}(i)\right\}_{i \geq 0}$ of invariant distribution $p\left(\theta, x_{1: T} \mid y_{1: T}\right) \ldots$ infinite number of possibilities.
- Typical strategies consists of updating iteratively $X_{1: T}$ conditional upon θ then θ conditional upon $X_{1: T}$.
- To update $X_{1: T}$ conditional upon θ, use MCMC kernels updating subblocks according to $p_{\theta}\left(x_{n: n+K-1} \mid y_{n: n+K-1}, x_{n-1}, x_{n+K}\right)$.

Common MCMC Approaches and Limitations

- MCMC Idea: Simulate an ergodic Markov chain $\left\{\theta(i), X_{1: T}(i)\right\}_{i \geq 0}$ of invariant distribution $p\left(\theta, x_{1: T} \mid y_{1: T}\right) \ldots$ infinite number of possibilities.
- Typical strategies consists of updating iteratively $X_{1: T}$ conditional upon θ then θ conditional upon $X_{1: T}$.
- To update $X_{1: T}$ conditional upon θ, use MCMC kernels updating subblocks according to $p_{\theta}\left(x_{n: n+K-1} \mid y_{n: n+K-1}, x_{n-1}, x_{n+K}\right)$.
- Standard MCMC algorithms are inefficient if θ and $X_{1: T}$ are strongly correlated.

Common MCMC Approaches and Limitations

- MCMC Idea: Simulate an ergodic Markov chain $\left\{\theta(i), X_{1: T}(i)\right\}_{i \geq 0}$ of invariant distribution $p\left(\theta, x_{1: T} \mid y_{1: T}\right) \ldots$ infinite number of possibilities.
- Typical strategies consists of updating iteratively $X_{1: T}$ conditional upon θ then θ conditional upon $X_{1: T}$.
- To update $X_{1: T}$ conditional upon θ, use MCMC kernels updating subblocks according to $p_{\theta}\left(x_{n: n+K-1} \mid y_{n: n+K-1}, x_{n-1}, x_{n+K}\right)$.
- Standard MCMC algorithms are inefficient if θ and $X_{1: T}$ are strongly correlated.
- Strategy impossible to implement when it is only possible to sample from the prior but impossible to evaluate it pointwise.

Metropolis-Hastings (MH) Sampling

- To bypass these problems, we want to update jointly θ and $X_{1: T}$.

Metropolis-Hastings (MH) Sampling

- To bypass these problems, we want to update jointly θ and $X_{1: T}$.
- Assume that the current state of our Markov chain is $\left(\theta, x_{1: T}\right)$, we propose to update simultaneously the parameter and the states using a proposal

$$
q\left(\left(\theta^{*}, x_{1: T}^{*}\right) \mid\left(\theta, x_{1: T}\right)\right)=q\left(\theta^{*} \mid \theta\right) q_{\theta^{*}}\left(x_{1: T}^{*} \mid y_{1: T}\right)
$$

Metropolis-Hastings (MH) Sampling

- To bypass these problems, we want to update jointly θ and $X_{1: T}$.
- Assume that the current state of our Markov chain is $\left(\theta, x_{1: T}\right)$, we propose to update simultaneously the parameter and the states using a proposal

$$
q\left(\left(\theta^{*}, x_{1: T}^{*}\right) \mid\left(\theta, x_{1: T}\right)\right)=q\left(\theta^{*} \mid \theta\right) q_{\theta^{*}}\left(x_{1: T}^{*} \mid y_{1: T}\right)
$$

- The proposal $\left(\theta^{*}, x_{1: T}^{*}\right)$ is accepted with MH acceptance probability

$$
1 \wedge \frac{p\left(\theta^{*}, x_{1: T}^{*} \mid y_{1: T}\right)}{p\left(\theta, x_{1: T} \mid y_{1: T}\right)} \frac{q\left(\left(x_{1: T}, \theta\right) \mid\left(x_{1: T}^{*}, \theta^{*}\right)\right)}{q\left(\left(x_{1: T}^{*}, \theta^{*}\right) \mid\left(x_{1: T}, \theta\right)\right)}
$$

Metropolis-Hastings (MH) Sampling

- To bypass these problems, we want to update jointly θ and $X_{1: T}$.
- Assume that the current state of our Markov chain is $\left(\theta, x_{1: T}\right)$, we propose to update simultaneously the parameter and the states using a proposal

$$
q\left(\left(\theta^{*}, x_{1: T}^{*}\right) \mid\left(\theta, x_{1: T}\right)\right)=q\left(\theta^{*} \mid \theta\right) q_{\theta^{*}}\left(x_{1: T}^{*} \mid y_{1: T}\right)
$$

- The proposal $\left(\theta^{*}, x_{1: T}^{*}\right)$ is accepted with MH acceptance probability

$$
1 \wedge \frac{p\left(\theta^{*}, x_{1: T}^{*} \mid y_{1: T}\right)}{p\left(\theta, x_{1: T} \mid y_{1: T}\right)} \frac{q\left(\left(x_{1: T}, \theta\right) \mid\left(x_{1: T}^{*}, \theta^{*}\right)\right)}{q\left(\left(x_{1: T}^{*}, \theta^{*}\right) \mid\left(x_{1: T}, \theta\right)\right)}
$$

- Problem: Designing a proposal $q_{\theta^{*}}\left(x_{1: T}^{*} \mid y_{1: T}\right)$ such that the acceptance probability is not extremely small is very difficult.

"Idealized" Marginal MH Sampler

- Consider the following so-called marginal Metropolis-Hastings (MH) algorithm which uses as a proposal

$$
q\left(\left(x_{1: T}^{*}, \theta^{*}\right) \mid\left(x_{1: T}, \theta\right)\right)=q\left(\theta^{*} \mid \theta\right) p_{\theta^{*}}\left(x_{1: T}^{*} \mid y_{1: T}\right) .
$$

"Idealized" Marginal MH Sampler

- Consider the following so-called marginal Metropolis-Hastings (MH) algorithm which uses as a proposal

$$
q\left(\left(x_{1: T}^{*}, \theta^{*}\right) \mid\left(x_{1: T}, \theta\right)\right)=q\left(\theta^{*} \mid \theta\right) p_{\theta^{*}}\left(x_{1: T}^{*} \mid y_{1: T}\right) .
$$

- The MH acceptance probability is

$$
\begin{aligned}
& 1 \wedge \frac{p\left(\theta^{*}, x_{1: T}^{*} \mid y_{1: T}\right)}{p\left(\theta, x_{1: T} \mid y_{1: T}\right)} \frac{q\left(\left(x_{1: T}, \theta\right) \mid\left(x_{1: T}^{*}, \theta^{*}\right)\right)}{q\left(\left(x_{1: T}^{*}, \theta^{*}\right) \mid\left(x_{1: T}, \theta\right)\right)} \\
& \quad=1 \wedge \frac{p_{\theta^{*}}\left(y_{1: T}\right) p\left(\theta^{*}\right)}{p_{\theta}\left(y_{1: T}\right) p(\theta)} \frac{q\left(\theta \mid \theta^{*}\right)}{q\left(\theta^{*} \mid \theta\right)}
\end{aligned}
$$

"Idealized" Marginal MH Sampler

- Consider the following so-called marginal Metropolis-Hastings (MH) algorithm which uses as a proposal

$$
q\left(\left(x_{1: T}^{*}, \theta^{*}\right) \mid\left(x_{1: T}, \theta\right)\right)=q\left(\theta^{*} \mid \theta\right) p_{\theta^{*}}\left(x_{1: T}^{*} \mid y_{1: T}\right) .
$$

- The MH acceptance probability is

$$
\begin{aligned}
& 1 \wedge \frac{p\left(\theta^{*}, x_{1: T}^{*} \mid y_{1: T}\right)}{p\left(\theta, x_{1: T} \mid y_{1: T}\right)} \frac{q\left(\left(x_{1: T}, \theta\right) \mid\left(x_{1: T}^{*}, \theta^{*}\right)\right)}{q\left(\left(x_{1: T}^{*}, \theta^{*}\right) \mid\left(x_{1: T}, \theta\right)\right)} \\
&=1
\end{aligned}
$$

- In this MH algorithm, $X_{1: T}$ has been essentially integrated out.

Implementation Issues

- Problem 1: We do not know $p_{\theta}\left(y_{1: T}\right)=\int p_{\theta}\left(x_{1: T}, y_{1: T}\right) d x_{1: T}$ analytically.

Implementation Issues

- Problem 1: We do not know $p_{\theta}\left(y_{1: T}\right)=\int p_{\theta}\left(x_{1: T}, y_{1: T}\right) d x_{1: T}$ analytically.
- Problem 2: We do not know how to sample from $p_{\theta}\left(x_{1: T} \mid y_{1: T}\right)$.

Implementation Issues

- Problem 1: We do not know $p_{\theta}\left(y_{1: T}\right)=\int p_{\theta}\left(x_{1: T}, y_{1: T}\right) d x_{1: T}$ analytically.
- Problem 2: We do not know how to sample from $p_{\theta}\left(x_{1: T} \mid y_{1: T}\right)$.
- "Idea": Use SMC approximations of $p_{\theta}\left(x_{1: T} \mid y_{1: T}\right)$ and $p_{\theta}\left(y_{1: T}\right)$.

Sequential Monte Carlo aka Particle Filters

- Given θ, SMC methods provide approximations of $p_{\theta}\left(x_{1: T} \mid y_{1: T}\right)$ and $p_{\theta}\left(y_{1: T}\right)$.

Sequential Monte Carlo aka Particle Filters

- Given θ, SMC methods provide approximations of $p_{\theta}\left(x_{1: T} \mid y_{1: T}\right)$ and $p_{\theta}\left(y_{1: T}\right)$.
- To sample from $p_{\theta}\left(x_{1: T} \mid y_{1: T}\right)$, SMC proceed sequentially by first approximating $p_{\theta}\left(x_{1} \mid y_{1}\right)$ and $p_{\theta}\left(y_{1}\right)$ at time 1 then $p_{\theta}\left(x_{1: 2} \mid y_{1: 2}\right)$ and $p_{\theta}\left(y_{1: 2}\right)$ at time 2 and so on.

Sequential Monte Carlo aka Particle Filters

- Given θ, SMC methods provide approximations of $p_{\theta}\left(x_{1: T} \mid y_{1: T}\right)$ and $p_{\theta}\left(y_{1: T}\right)$.
- To sample from $p_{\theta}\left(x_{1: T} \mid y_{1: T}\right)$, SMC proceed sequentially by first approximating $p_{\theta}\left(x_{1} \mid y_{1}\right)$ and $p_{\theta}\left(y_{1}\right)$ at time 1 then $p_{\theta}\left(x_{1: 2} \mid y_{1: 2}\right)$ and $p_{\theta}\left(y_{1: 2}\right)$ at time 2 and so on.
- SMC methods approximate the distributions of interest via a cloud of N particles which are propagated using Importance Sampling and Resampling steps.

Importance Sampling

- Assume you have at time $n-1$

$$
\widehat{p}_{\theta}\left(x_{1: n-1} \mid y_{1: n-1}\right)=\frac{1}{N} \sum_{k=1}^{N} \delta_{X_{1: n-1}^{k}}\left(x_{1: n-1}\right)
$$

Importance Sampling

- Assume you have at time $n-1$

$$
\widehat{p}_{\theta}\left(x_{1: n-1} \mid y_{1: n-1}\right)=\frac{1}{N} \sum_{k=1}^{N} \delta_{X_{1: n-1}^{k}}\left(x_{1: n-1}\right)
$$

- By sampling $\bar{X}_{n}^{k} \sim f_{\theta}\left(\cdot \mid X_{n-1}^{k}\right)$ and setting $\bar{X}_{1: n}^{k}=\left(X_{1: n-1}^{k}, \bar{X}_{n}^{k}\right)$ then

$$
\widehat{p}_{\theta}\left(x_{1: n} \mid y_{1: n-1}\right)=\frac{1}{N} \sum_{k=1}^{N} \delta_{\bar{x}_{1: n}^{k}}\left(x_{1: n}\right)
$$

Importance Sampling

- Assume you have at time $n-1$

$$
\widehat{p}_{\theta}\left(x_{1: n-1} \mid y_{1: n-1}\right)=\frac{1}{N} \sum_{k=1}^{N} \delta_{X_{1: n-1}^{k}}\left(x_{1: n-1}\right)
$$

- By sampling $\bar{X}_{n}^{k} \sim f_{\theta}\left(\cdot \mid X_{n-1}^{k}\right)$ and setting $\bar{X}_{1: n}^{k}=\left(X_{1: n-1}^{k}, \bar{X}_{n}^{k}\right)$ then

$$
\widehat{p}_{\theta}\left(x_{1: n} \mid y_{1: n-1}\right)=\frac{1}{N} \sum_{k=1}^{N} \delta_{\bar{x}_{1: n}^{k}}\left(x_{1: n}\right) .
$$

- Our target at time n is

$$
p_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\frac{g_{\theta}\left(y_{n} \mid x_{n}\right) p_{\theta}\left(x_{1: n} \mid y_{1: n-1}\right)}{\int g_{\theta}\left(y_{n} \mid x_{n}\right) p_{\theta}\left(x_{1: n} \mid y_{1: n-1}\right) d x_{1: n}}
$$

so by substituting $\widehat{p}_{\theta}\left(x_{1: n} \mid y_{1: n-1}\right)$ to $p_{\theta}\left(x_{1: n} \mid y_{1: n-1}\right)$ we obtain

$$
\bar{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\sum_{k=1}^{N} W_{n}^{k} \delta_{\bar{X}_{1: n}^{k}}\left(x_{1: n}\right), \quad W_{n}^{k} \propto g_{\theta}\left(y_{n} \mid \bar{X}_{1: n}^{k}\right) .
$$

Resampling

- We have a "weighted" approximation $\bar{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)$ of $p_{\theta}\left(x_{1: n} \mid y_{1: n}\right)$

$$
\bar{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\sum_{k=1}^{N} W_{n}^{k} \delta_{\bar{X}_{1: n}^{k}}\left(x_{1: n}\right) .
$$

Resampling

- We have a "weighted" approximation $\bar{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)$ of $p_{\theta}\left(x_{1: n} \mid y_{1: n}\right)$

$$
\bar{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\sum_{k=1}^{N} W_{n}^{k} \delta_{\bar{x}_{1: n}^{k}}\left(x_{1: n}\right) .
$$

- To obtain N samples $X_{1: n}^{k}$ approximately distributed according to $p_{\theta}\left(x_{1: n} \mid y_{1: n}\right)$, we just resample

$$
X_{1: n}^{k} \sim \bar{p}_{\theta}\left(\cdot \mid y_{1: n}\right)
$$

to obtain

$$
\widehat{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\frac{1}{N} \sum_{k=1}^{N} \delta_{X_{1: n}^{k}}\left(x_{1: n}\right)
$$

Resampling

- We have a "weighted" approximation $\bar{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)$ of $p_{\theta}\left(x_{1: n} \mid y_{1: n}\right)$

$$
\bar{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\sum_{k=1}^{N} W_{n}^{k} \delta_{\bar{x}_{1: n}^{k}}\left(x_{1: n}\right) .
$$

- To obtain N samples $X_{1: n}^{k}$ approximately distributed according to $p_{\theta}\left(x_{1: n} \mid y_{1: n}\right)$, we just resample

$$
X_{1: n}^{k} \sim \bar{p}_{\theta}\left(\cdot \mid y_{1: n}\right)
$$

to obtain

$$
\widehat{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\frac{1}{N} \sum_{k=1}^{N} \delta_{X_{1: n}^{k}}\left(x_{1: n}\right)
$$

- Particles with high weights are copied multiples times, particles with low weights die.

Bootstrap Filter (Gordon, Salmond \& Smith, 1993)

At time $n=1$

- Sample $\bar{X}_{1}^{k} \sim \mu_{\theta}(\cdot)$ then

$$
\bar{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\sum_{k=1}^{N} W_{1}^{k} \delta_{\bar{X}_{1}^{k}}\left(x_{1}\right), W_{1}^{k} \propto g_{\theta}\left(y_{1} \mid \bar{X}_{1}^{k}\right) .
$$

Bootstrap Filter (Gordon, Salmond \& Smith, 1993)

At time $n=1$

- Sample $\bar{X}_{1}^{k} \sim \mu_{\theta}(\cdot)$ then

$$
\bar{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\sum_{k=1}^{N} W_{1}^{k} \delta_{\bar{X}_{1}^{k}}\left(x_{1}\right), W_{1}^{k} \propto g_{\theta}\left(y_{1} \mid \bar{X}_{1}^{k}\right) .
$$

- Resample $X_{1}^{k} \sim \bar{p}_{\theta}\left(x_{1} \mid y_{1}\right)$ to obtain $\widehat{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1}^{k}}\left(x_{1}\right)$.

Bootstrap Filter (Gordon, Salmond \& Smith, 1993)

At time $n=1$

- Sample $\bar{X}_{1}^{k} \sim \mu_{\theta}(\cdot)$ then

$$
\bar{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\sum_{k=1}^{N} W_{1}^{k} \delta_{\bar{X}_{1}^{k}}\left(x_{1}\right), W_{1}^{k} \propto g_{\theta}\left(y_{1} \mid \bar{X}_{1}^{k}\right) .
$$

- Resample $X_{1}^{k} \sim \bar{p}_{\theta}\left(x_{1} \mid y_{1}\right)$ to obtain $\widehat{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1}^{k}}\left(x_{1}\right)$.

Bootstrap Filter (Gordon, Salmond \& Smith, 1993)

At time $n=1$

- Sample $\bar{X}_{1}^{k} \sim \mu_{\theta}(\cdot)$ then

$$
\bar{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\sum_{k=1}^{N} W_{1}^{k} \delta_{\bar{X}_{1}^{k}}\left(x_{1}\right), W_{1}^{k} \propto g_{\theta}\left(y_{1} \mid \bar{X}_{1}^{k}\right) .
$$

- Resample $X_{1}^{k} \sim \bar{p}_{\theta}\left(x_{1} \mid y_{1}\right)$ to obtain $\widehat{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1}^{k}}\left(x_{1}\right)$. At time $n \geq 2$
- Sample $\bar{X}_{n}^{k} \sim f_{\theta}\left(\cdot \mid X_{n-1}^{k}\right)$, set $\bar{X}_{1: n}^{k}=\left(X_{1: n-1}^{k}, \bar{X}_{n}^{k}\right)$ and

$$
\bar{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\sum_{k=1}^{N} W_{n}^{k} \delta_{\bar{X}_{1: n}^{k}}\left(x_{1: n}\right), W_{n}^{k} \propto g_{\theta}\left(y_{n} \mid \bar{X}_{n}^{k}\right) .
$$

Bootstrap Filter (Gordon, Salmond \& Smith, 1993)

At time $n=1$

- Sample $\bar{X}_{1}^{k} \sim \mu_{\theta}(\cdot)$ then

$$
\bar{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\sum_{k=1}^{N} W_{1}^{k} \delta_{\bar{X}_{1}^{k}}\left(x_{1}\right), W_{1}^{k} \propto g_{\theta}\left(y_{1} \mid \bar{X}_{1}^{k}\right) .
$$

- Resample $X_{1}^{k} \sim \bar{p}_{\theta}\left(x_{1} \mid y_{1}\right)$ to obtain $\widehat{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1}^{k}}\left(x_{1}\right)$. At time $n \geq 2$
- Sample $\bar{X}_{n}^{k} \sim f_{\theta}\left(\cdot \mid X_{n-1}^{k}\right)$, set $\bar{X}_{1: n}^{k}=\left(X_{1: n-1}^{k}, \bar{X}_{n}^{k}\right)$ and

$$
\bar{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\sum_{k=1}^{N} W_{n}^{k} \delta_{\bar{X}_{1: n}^{k}}\left(x_{1: n}\right), W_{n}^{k} \propto g_{\theta}\left(y_{n} \mid \bar{X}_{n}^{k}\right) .
$$

- Resample $X_{1: n}^{k} \sim \bar{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)$ to obtain $\widehat{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1: n}^{k}}\left(x_{1: n}\right)$.

SMC Output

- At time T, we obtain the following approximation of the posterior of interest

$$
\widehat{p}_{\theta}\left(x_{1: T} \mid y_{1: T}\right)=\frac{1}{N} \sum_{k=1}^{N} \delta_{X_{1: T}^{k}}\left(d x_{1: T}\right)
$$

and an approximation of $p_{\theta}\left(y_{1: T}\right)$ is given by

$$
\widehat{p}_{\theta}\left(y_{1: T}\right)=\widehat{p}_{\theta}\left(y_{1}\right) \prod_{n=2}^{T} \hat{p}_{\theta}\left(y_{n} \mid y_{1: n-1}\right)=\prod_{n=1}^{T}\left(\frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_{n} \mid X_{n}^{k}\right)\right) .
$$

SMC Output

- At time T, we obtain the following approximation of the posterior of interest

$$
\widehat{p}_{\theta}\left(x_{1: T} \mid y_{1: T}\right)=\frac{1}{N} \sum_{k=1}^{N} \delta_{X_{1: T}^{k}}\left(d x_{1: T}\right)
$$

and an approximation of $p_{\theta}\left(y_{1: T}\right)$ is given by

$$
\widehat{p}_{\theta}\left(y_{1: T}\right)=\widehat{p}_{\theta}\left(y_{1}\right) \prod_{n=2}^{T} \widehat{p}_{\theta}\left(y_{n} \mid y_{1: n-1}\right)=\prod_{n=1}^{T}\left(\frac{1}{N} \sum_{k=1}^{N} g_{\theta}\left(y_{n} \mid X_{n}^{k}\right)\right) .
$$

- These approximations are asymptotically (i.e. $N \rightarrow \infty$) consistent under very weak assumptions.

Some Theoretical Results

- Under mixing assumptions (Del Moral, 2004), we have

$$
\left\|\mathcal{L}\left(X_{1: T} \in \cdot\right)-p_{\theta}\left(\cdot \mid y_{1: T}\right)\right\|_{\mathrm{tv}} \leq C_{\theta} \frac{T}{N}
$$

where $X_{1: T} \sim \mathbb{E}\left[\hat{p}_{\theta}\left(\cdot \mid y_{1: T}\right)\right]$.

Some Theoretical Results

- Under mixing assumptions (Del Moral, 2004), we have

$$
\left\|\mathcal{L}\left(X_{1: T} \in \cdot\right)-p_{\theta}\left(\cdot \mid y_{1: T}\right)\right\|_{\mathrm{tv}} \leq C_{\theta} \frac{T}{N}
$$

where $X_{1: T} \sim \mathbb{E}\left[\hat{p}_{\theta}\left(\cdot \mid y_{1: T}\right)\right]$.

- Under mixing assumptions (Del Moral et al., 2010) we also have

$$
\frac{\mathbb{V}\left[\widehat{p}_{\theta}\left(y_{1: T}\right)\right]}{p_{\theta}^{2}\left(y_{1: T}\right)} \leq D_{\theta} \frac{T}{N}
$$

Some Theoretical Results

- Under mixing assumptions (Del Moral, 2004), we have

$$
\left\|\mathcal{L}\left(X_{1: T} \in \cdot\right)-p_{\theta}\left(\cdot \mid y_{1: T}\right)\right\|_{\mathrm{tv}} \leq C_{\theta} \frac{T}{N}
$$

where $X_{1: T} \sim \mathbb{E}\left[\widehat{p}_{\theta}\left(\cdot \mid y_{1: T}\right)\right]$.

- Under mixing assumptions (Del Moral et al., 2010) we also have

$$
\frac{\mathbb{V}\left[\widehat{p}_{\theta}\left(y_{1: T}\right)\right]}{p_{\theta}^{2}\left(y_{1: T}\right)} \leq D_{\theta} \frac{T}{N}
$$

- Loosely speaking, the performance of SMC only degrade linearly with time rather than exponentially for naive approaches.

Some Theoretical Results

- Under mixing assumptions (Del Moral, 2004), we have

$$
\left\|\mathcal{L}\left(X_{1: T} \in \cdot\right)-p_{\theta}\left(\cdot \mid y_{1: T}\right)\right\|_{\mathrm{tv}} \leq C_{\theta} \frac{T}{N}
$$

where $X_{1: T} \sim \mathbb{E}\left[\hat{p}_{\theta}\left(\cdot \mid y_{1: T}\right)\right]$.

- Under mixing assumptions (Del Moral et al., 2010) we also have

$$
\frac{\mathbb{V}\left[\widehat{p}_{\theta}\left(y_{1: T}\right)\right]}{p_{\theta}^{2}\left(y_{1: T}\right)} \leq D_{\theta} \frac{T}{N}
$$

- Loosely speaking, the performance of SMC only degrade linearly with time rather than exponentially for naive approaches.
- Problem: We cannot compute analytically the particle filter proposal $q_{\theta}\left(x_{1: T} \mid y_{1: T}\right)=\mathbb{E}\left[\widehat{p}_{\theta}\left(x_{1: T} \mid y_{1: T}\right)\right]$ as it involves an expectation w.r.t all the variables appearing in the particle algorithm...

"Idealized" Marginal MH Sampler

At iteration i

- Sample $\theta^{*} \sim q(\cdot \mid \theta(i-1))$.

"Idealized" Marginal MH Sampler

At iteration i

- Sample $\theta^{*} \sim q(\cdot \mid \theta(i-1))$.
- Sample $X_{1: T}^{*} \sim p_{\theta^{*}}\left(\cdot \mid y_{1: T}\right)$.

"Idealized" Marginal MH Sampler

At iteration i

- Sample $\theta^{*} \sim q(\cdot \mid \theta(i-1))$.
- Sample $X_{1: T}^{*} \sim p_{\theta^{*}}\left(\cdot \mid y_{1: T}\right)$.
- With probability

$$
1 \wedge \frac{p_{\theta^{*}}\left(y_{1: T}\right) p\left(\theta^{*}\right)}{p_{\theta(i-1)}\left(y_{1: T}\right) p(\theta(i-1))} \frac{q\left(\theta(i-1) \mid \theta^{*}\right)}{q\left(\theta^{*} \mid \theta(i-1)\right)}
$$

set $\theta(i)=\theta^{*}, X_{1: T}(i)=X_{1: T}^{*}$ otherwise set $\theta(i)=\theta(i-1)$, $X_{1: T}(i)=X_{1: T}(i-1)$.

Particle Marginal MH Sampler

At iteration i

- Sample $\theta^{*} \sim q(\cdot \mid \theta(i-1))$ and run an SMC algorithm to obtain $\widehat{p}_{\theta^{*}}\left(x_{1: T} \mid y_{1: T}\right)$ and $\widehat{p}_{\theta^{*}}\left(y_{1: T}\right)$.

Particle Marginal MH Sampler

At iteration i

- Sample $\theta^{*} \sim q(\cdot \mid \theta(i-1))$ and run an SMC algorithm to obtain $\widehat{p}_{\theta^{*}}\left(x_{1: T} \mid y_{1: T}\right)$ and $\widehat{p}_{\theta^{*}}\left(y_{1: T}\right)$.
- Sample $X_{1: T}^{*} \sim \widehat{p}_{\theta^{*}}\left(\cdot \mid y_{1: T}\right)$.

Particle Marginal MH Sampler

At iteration i

- Sample $\theta^{*} \sim q(\cdot \mid \theta(i-1))$ and run an SMC algorithm to obtain $\widehat{p}_{\theta^{*}}\left(x_{1: T} \mid y_{1: T}\right)$ and $\widehat{p}_{\theta^{*}}\left(y_{1: T}\right)$.
- Sample $X_{1: T}^{*} \sim \widehat{p}_{\theta^{*}}\left(\cdot \mid y_{1: T}\right)$.
- With probability

$$
1 \wedge \frac{\hat{p}_{\theta^{*}}\left(y_{1: T}\right) p\left(\theta^{*}\right)}{\hat{p}_{\theta(i-1)}\left(y_{1: T}\right) p(\theta(i-1))} \frac{q\left(\theta(i-1) \mid \theta^{*}\right)}{q\left(\theta^{*} \mid \theta(i-1)\right)}
$$

set $\theta(i)=\theta^{*}, X_{1: T}(i)=X_{1: T}^{*}$ otherwise set $\theta(i)=\theta(i-1)$,
$X_{1: T}(i)=X_{1: T}(i-1)$.

Validity of the Particle Marginal MH Sampler

- Assume that the 'idealized' marginal MH sampler is irreducible and aperiodic then, under very weak assumptions, the PMMH sampler generates a sequence $\left\{\theta(i), X_{1: T}(i)\right\}$ whose marginal distributions $\left\{\mathcal{L}^{N}\left(\theta(i), X_{1: T}(i) \in \cdot\right)\right\}$ satisfy for any $N \geq 1$

$$
\left\|\mathcal{L}^{N}\left(\theta(i), X_{1: T}(i) \in \cdot\right)-p\left(\cdot \mid y_{1: T}\right)\right\|_{\mathrm{TV}} \rightarrow 0 \text { as } i \rightarrow \infty
$$

Validity of the Particle Marginal MH Sampler

- Assume that the 'idealized' marginal MH sampler is irreducible and aperiodic then, under very weak assumptions, the PMMH sampler generates a sequence $\left\{\theta(i), X_{1: T}(i)\right\}$ whose marginal distributions $\left\{\mathcal{L}^{N}\left(\theta(i), X_{1: T}(i) \in \cdot\right)\right\}$ satisfy for any $N \geq 1$

$$
\left\|\mathcal{L}^{N}\left(\theta(i), X_{1: T}(i) \in \cdot\right)-p\left(\cdot \mid y_{1: T}\right)\right\|_{\mathrm{TV}} \rightarrow 0 \text { as } i \rightarrow \infty
$$

- Corollary of a more general result: the PMMH sampler is a standard MH sampler of target distribution $\tilde{\pi}^{N}$ and proposal \widetilde{q}^{N} defined on an extended space associated to all the variables used to generate the proposal.

Explicit Structure of the Target Distribution

- For pedagogical reasons, we limit ourselves to the case where $T=1$.

Explicit Structure of the Target Distribution

- For pedagogical reasons, we limit ourselves to the case where $T=1$.
- The proposal is

$$
\widetilde{q}^{N}\left(\left(\theta^{*}, k^{*}, x_{1}^{* 1: N}\right) \mid\left(\theta, k, x_{1}^{1: N}\right)\right)=q\left(\theta^{*} \mid \theta\right) \prod_{m=1}^{N} \mu_{\theta^{*}}\left(x_{1}^{* m}\right) w_{1}^{k^{*}}
$$

Explicit Structure of the Target Distribution

- For pedagogical reasons, we limit ourselves to the case where $T=1$.
- The proposal is

$$
\tilde{q}^{N}\left(\left(\theta^{*}, k^{*}, x_{1}^{* 1: N}\right) \mid\left(\theta, k, x_{1}^{1: N}\right)\right)=q\left(\theta^{*} \mid \theta\right) \prod_{m=1}^{N} \mu_{\theta^{*}}\left(x_{1}^{* m}\right) w_{1}^{k^{*}}
$$

- The artificial target is

$$
\begin{aligned}
\tilde{\pi}^{N}\left(\theta, k, x_{1}^{1: N}\right) & =\frac{p\left(\theta, x_{1}^{k} \mid y_{1}\right)}{N} \prod_{m=1 ; m \neq k}^{N} \mu_{\theta}\left(x_{1}^{m}\right) \\
& =\frac{1}{N} \frac{p(\theta) g_{\theta}\left(y_{1} \mid x_{1}^{k}\right)}{p_{\theta}\left(y_{1}\right)} \prod_{m=1}^{N} \mu_{\theta}\left(x_{1}^{m}\right)
\end{aligned}
$$

Explicit Structure of the Target Distribution

- For pedagogical reasons, we limit ourselves to the case where $T=1$.
- The proposal is

$$
\widetilde{q}^{N}\left(\left(\theta^{*}, k^{*}, x_{1}^{* 1: N}\right) \mid\left(\theta, k, x_{1}^{1: N}\right)\right)=q\left(\theta^{*} \mid \theta\right) \prod_{m=1}^{N} \mu_{\theta^{*}}\left(x_{1}^{* m}\right) w_{1}^{k^{*}}
$$

- The artificial target is

$$
\begin{aligned}
\tilde{\pi}^{N}\left(\theta, k, x_{1}^{1: N}\right) & =\frac{p\left(\theta, x_{1}^{k} \mid y_{1}\right)}{N} \prod_{m=1 ; m \neq k}^{N} \mu_{\theta}\left(x_{1}^{m}\right) \\
& =\frac{1}{N} \frac{p(\theta) g_{\theta}\left(y_{1} \mid x_{1}^{k}\right)}{p_{\theta}\left(y_{1}\right)} \prod_{m=1}^{N} \mu_{\theta}\left(x_{1}^{m}\right)
\end{aligned}
$$

- We have indeed

$$
\frac{\tilde{\pi}\left(\theta^{*}, k^{*}, x_{1}^{* 1: N}\right)}{\widetilde{q}^{N}\left(\left(\theta^{*}, k^{*}, x_{1}^{* 1: N}\right) \mid\left(\theta, k, x_{1}^{1: N}\right)\right)}=\frac{p\left(\theta^{*}\right)}{q\left(\theta^{*} \mid \theta\right)} \frac{\frac{1}{N} \sum_{i=1}^{N} g_{\theta^{*}}\left(y_{1} \mid x_{1}^{* i}\right)}{p_{\theta}\left(y_{1}\right)}
$$

"Idealized" Block Gibbs Sampler

At iteration i

- Sample $\theta(i) \sim p\left(\cdot \mid y_{1: T}, X_{1: T}(i-1)\right)$.

"Idealized" Block Gibbs Sampler

At iteration i

- Sample $\theta(i) \sim p\left(\cdot \mid y_{1: T}, X_{1: T}(i-1)\right)$.
- Sample $X_{1: T}(i) \sim p\left(\cdot \mid y_{1: T}, \theta(i)\right)$.

"Idealized" Block Gibbs Sampler

At iteration i

- Sample $\theta(i) \sim p\left(\cdot \mid y_{1: T}, X_{1: T}(i-1)\right)$.
- Sample $X_{1: T}(i) \sim p\left(\cdot \mid y_{1: T}, \theta(i)\right)$.
- Naive particle approximation where $X_{1: T}(i) \sim \widehat{p}\left(\cdot \mid y_{1: T}, \theta(i)\right)$ is substituted to $X_{1: T}(i) \sim p\left(\cdot \mid y_{1: T}, \theta(i)\right)$ is obviously incorrect.

Particle Gibbs Sampler

- A (collapsed) Gibbs sampler to sample from $\tilde{\pi}^{N}$ for $T=1$ can be implemented using

$$
\begin{gathered}
\tilde{\pi}^{N}\left(\theta, x_{1}^{-k} \mid k, x_{1}^{k}\right)=p\left(\theta \mid y_{1}, x_{1}^{k}\right) \prod_{m=1 ; m \neq k}^{N} \mu_{\theta}\left(x_{1}^{m}\right), \\
\widetilde{\pi}^{N}\left(K=k \mid \theta, x_{1}^{1: N}\right)=\frac{g_{\theta}\left(y_{1} \mid x_{1}^{k}\right)}{\sum_{i=1}^{N} g_{\theta}\left(y_{1} \mid x_{1}^{i}\right)} .
\end{gathered}
$$

Particle Gibbs Sampler

- A (collapsed) Gibbs sampler to sample from $\tilde{\pi}^{N}$ for $T=1$ can be implemented using

$$
\begin{gathered}
\tilde{\pi}^{N}\left(\theta, x_{1}^{-k} \mid k, x_{1}^{k}\right)=p\left(\theta \mid y_{1}, x_{1}^{k}\right) \prod_{m=1 ; m \neq k}^{N} \mu_{\theta}\left(x_{1}^{m}\right), \\
\widetilde{\pi}^{N}\left(K=k \mid \theta, x_{1}^{1: N}\right)=\frac{g_{\theta}\left(y_{1} \mid x_{1}^{k}\right)}{\sum_{i=1}^{N} g_{\theta}\left(y_{1} \mid x_{1}^{i}\right)} .
\end{gathered}
$$

- Note that even for fixed θ, this is a non-standard MCMC update for $p_{\theta}\left(x_{1} \mid y_{1}\right)$. This generalizes Baker's acceptance rule (Baker, 1965).

Particle Gibbs Sampler

- A (collapsed) Gibbs sampler to sample from $\tilde{\pi}^{N}$ for $T=1$ can be implemented using

$$
\begin{gathered}
\tilde{\pi}^{N}\left(\theta, x_{1}^{-k} \mid k, x_{1}^{k}\right)=p\left(\theta \mid y_{1}, x_{1}^{k}\right) \prod_{m=1 ; m \neq k}^{N} \mu_{\theta}\left(x_{1}^{m}\right) \\
\widetilde{\pi}^{N}\left(K=k \mid \theta, x_{1}^{1: N}\right)=\frac{g_{\theta}\left(y_{1} \mid x_{1}^{k}\right)}{\sum_{i=1}^{N} g_{\theta}\left(y_{1} \mid x_{1}^{i}\right)}
\end{gathered}
$$

- Note that even for fixed θ, this is a non-standard MCMC update for $p_{\theta}\left(x_{1} \mid y_{1}\right)$. This generalizes Baker's acceptance rule (Baker, 1965).
- The target and associated Gibbs sampler can be generalized to $T>1$.

Particle Gibbs Sampler

At iteration i

- Sample $\theta(i) \sim p\left(\cdot \mid y_{1: T}, X_{1: T}(i-1)\right)$.

Particle Gibbs Sampler

At iteration i

- Sample $\theta(i) \sim p\left(\cdot \mid y_{1: T}, X_{1: T}(i-1)\right)$.
- Run a conditional SMC algorithm for $\theta(i)$ consistent with $X_{1: T}(i-1)$ and its ancestral lineage.

Particle Gibbs Sampler

At iteration i

- Sample $\theta(i) \sim p\left(\cdot \mid y_{1: T}, X_{1: T}(i-1)\right)$.
- Run a conditional SMC algorithm for $\theta(i)$ consistent with $X_{1: T}(i-1)$ and its ancestral lineage.
- Sample $X_{1: T}(i) \sim \widehat{p}\left(\cdot \mid y_{1: T}, \theta(i)\right)$ from the resulting approximation (hence its ancestral lineage too).

Particle Gibbs Sampler

At iteration i

- Sample $\theta(i) \sim p\left(\cdot \mid y_{1: T}, X_{1: T}(i-1)\right)$.
- Run a conditional SMC algorithm for $\theta(i)$ consistent with $X_{1: T}(i-1)$ and its ancestral lineage.
- Sample $X_{1: T}(i) \sim \widehat{p}\left(\cdot \mid y_{1: T}, \theta(i)\right)$ from the resulting approximation (hence its ancestral lineage too).
- Proposition. Assume that the 'ideal' Gibbs sampler is irreducible and aperiodic then under very weak assumptions the particle Gibbs sampler generates a sequence $\left\{\theta(i), X_{1: T}(i)\right\}$ such that for any $N \geq 2$

$$
\left\|\mathcal{L}\left(\left(\theta(i), X_{1: T}(i)\right) \in \cdot\right)-p\left(\cdot \mid y_{1: T}\right)\right\| \rightarrow 0 \text { as } i \rightarrow \infty
$$

Conditional SMC Algorithm

At time 1

- For $m \neq b_{1}^{k}$, sample $X_{1}^{m} \sim \mu_{\theta}(\cdot)$ and set $W_{1}^{m} \propto g_{\theta}\left(y_{1} \mid X_{1}^{m},\right)$, $\sum_{m=1}^{N} W_{1}^{m}=1$.

Conditional SMC Algorithm

At time 1

- For $m \neq b_{1}^{k}$, sample $X_{1}^{m} \sim \mu_{\theta}(\cdot)$ and set $W_{1}^{m} \propto g_{\theta}\left(y_{1} \mid X_{1}^{m},\right)$, $\sum_{m=1}^{N} W_{1}^{m}=1$.
- Resample $N-1$ times from $\hat{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\sum_{m=1}^{N} W_{1}^{m} \delta_{X_{1}^{m}}\left(x_{1}\right)$ to obtain $\left\{\bar{X}_{1}^{-b_{1}^{k}}\right\}$ and set $\bar{X}_{1}^{b_{1}^{k}}=X_{1}^{b_{1}^{k}}$.

Conditional SMC Algorithm

At time 1

- For $m \neq b_{1}^{k}$, sample $X_{1}^{m} \sim \mu_{\theta}(\cdot)$ and set $W_{1}^{m} \propto g_{\theta}\left(y_{1} \mid X_{1}^{m},\right)$, $\sum_{m=1}^{N} W_{1}^{m}=1$.
- Resample $N-1$ times from $\hat{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\sum_{m=1}^{N} W_{1}^{m} \delta_{X_{1}^{m}}\left(x_{1}\right)$ to obtain $\left\{\bar{X}_{1}^{-b_{1}^{k}}\right\}$ and set $\bar{X}_{1}^{b_{1}^{k}}=X_{1}^{b_{1}^{k}}$.

Conditional SMC Algorithm

At time 1

- For $m \neq b_{1}^{k}$, sample $X_{1}^{m} \sim \mu_{\theta}(\cdot)$ and set $W_{1}^{m} \propto g_{\theta}\left(y_{1} \mid X_{1}^{m},\right)$, $\sum_{m=1}^{N} W_{1}^{m}=1$.
- Resample $N-1$ times from $\hat{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\sum_{m=1}^{N} W_{1}^{m} \delta_{X_{1}^{m}}\left(x_{1}\right)$ to obtain $\left\{\bar{X}_{1}^{-b_{1}^{k}}\right\}$ and set $\bar{X}_{1}^{b_{1}^{k}}=X_{1}^{b_{1}^{k}}$.
At time $n=2, \ldots, T$
- For $m \neq b_{n}^{k}$, sample $X_{n}^{m} \sim f_{\theta}\left(\cdot \mid \bar{X}_{n-1}^{m}\right)$, set $X_{1: n}^{m}=\left(\bar{X}_{1: n-1}^{m}, X_{n}^{m}\right)$ and $W_{n}^{m} \propto g_{\theta}\left(y_{n} \mid X_{n}^{m}\right), \sum_{m=1}^{N} W_{n}^{m}=1$.

Conditional SMC Algorithm

At time 1

- For $m \neq b_{1}^{k}$, sample $X_{1}^{m} \sim \mu_{\theta}(\cdot)$ and set $W_{1}^{m} \propto g_{\theta}\left(y_{1} \mid X_{1}^{m},\right)$, $\sum_{m=1}^{N} W_{1}^{m}=1$.
- Resample $N-1$ times from $\hat{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\sum_{m=1}^{N} W_{1}^{m} \delta_{X_{1}^{m}}\left(x_{1}\right)$ to obtain $\left\{\bar{X}_{1}^{-b_{1}^{k}}\right\}$ and set $\bar{X}_{1}^{b_{1}^{k}}=X_{1}^{b_{1}^{k}}$.
At time $n=2, \ldots, T$
- For $m \neq b_{n}^{k}$, sample $X_{n}^{m} \sim f_{\theta}\left(\cdot \mid \bar{X}_{n-1}^{m}\right)$, set $X_{1: n}^{m}=\left(\bar{X}_{1: n-1}^{m}, X_{n}^{m}\right)$ and $W_{n}^{m} \propto g_{\theta}\left(y_{n} \mid X_{n}^{m}\right), \sum_{m=1}^{N} W_{n}^{m}=1$.
- Resample $N-1$ times from $\widehat{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\sum_{m=1}^{N} W_{n}^{m} \delta_{X_{1: n}^{m}}\left(x_{1: n}\right)$ to obtain $\left\{\bar{X}_{1: n}^{-b_{n}^{k}}\right\}$ and set $\bar{X}_{1: n}^{b_{n}^{k}}=X_{1: n}^{b_{n}^{k}}$.

Conditional SMC Algorithm

At time 1

- For $m \neq b_{1}^{k}$, sample $X_{1}^{m} \sim \mu_{\theta}(\cdot)$ and set $W_{1}^{m} \propto g_{\theta}\left(y_{1} \mid X_{1}^{m},\right)$, $\sum_{m=1}^{N} W_{1}^{m}=1$.
- Resample $N-1$ times from $\hat{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\sum_{m=1}^{N} W_{1}^{m} \delta_{X_{1}^{m}}\left(x_{1}\right)$ to obtain $\left\{\bar{X}_{1}^{-b_{1}^{k}}\right\}$ and set $\bar{X}_{1}^{b_{1}^{k}}=X_{1}^{b_{1}^{k}}$.
At time $n=2, \ldots, T$
- For $m \neq b_{n}^{k}$, sample $X_{n}^{m} \sim f_{\theta}\left(\cdot \mid \bar{X}_{n-1}^{m}\right)$, set $X_{1: n}^{m}=\left(\bar{X}_{1: n-1}^{m}, X_{n}^{m}\right)$ and $W_{n}^{m} \propto g_{\theta}\left(y_{n} \mid X_{n}^{m}\right), \sum_{m=1}^{N} W_{n}^{m}=1$.
- Resample $N-1$ times from $\widehat{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\sum_{m=1}^{N} W_{n}^{m} \delta_{X_{1: n}^{m}}\left(x_{1: n}\right)$ to obtain $\left\{\bar{X}_{1: n}^{-b_{n}^{k}}\right\}$ and set $\bar{X}_{1: n}^{b_{n}^{k}}=X_{1: n}^{b_{n}^{k}}$.

Conditional SMC Algorithm

At time 1

- For $m \neq b_{1}^{k}$, sample $X_{1}^{m} \sim \mu_{\theta}(\cdot)$ and set $W_{1}^{m} \propto g_{\theta}\left(y_{1} \mid X_{1}^{m},\right)$, $\sum_{m=1}^{N} W_{1}^{m}=1$.
- Resample $N-1$ times from $\hat{p}_{\theta}\left(x_{1} \mid y_{1}\right)=\sum_{m=1}^{N} W_{1}^{m} \delta_{X_{1}^{m}}\left(x_{1}\right)$ to obtain $\left\{\bar{X}_{1}^{-b_{1}^{k}}\right\}$ and set $\bar{X}_{1}^{b_{1}^{k}}=X_{1}^{b_{1}^{k}}$.
At time $n=2, \ldots, T$
- For $m \neq b_{n}^{k}$, sample $X_{n}^{m} \sim f_{\theta}\left(\cdot \mid \bar{X}_{n-1}^{m}\right)$, set $X_{1: n}^{m}=\left(\bar{X}_{1: n-1}^{m}, X_{n}^{m}\right)$ and $W_{n}^{m} \propto g_{\theta}\left(y_{n} \mid X_{n}^{m}\right), \sum_{m=1}^{N} W_{n}^{m}=1$.
- Resample $N-1$ times from $\widehat{p}_{\theta}\left(x_{1: n} \mid y_{1: n}\right)=\sum_{m=1}^{N} W_{n}^{m} \delta_{X_{1: n}^{m}}\left(x_{1: n}\right)$ to obtain $\left\{\bar{X}_{1: n}^{-b_{n}^{k}}\right\}$ and set $\bar{X}_{1: n}^{b_{n}^{k}}=X_{1: n}^{b_{n}^{k}}$.
At time $n=T$
- Sample $X_{1: T} \sim \widehat{p}_{\theta}\left(\cdot \mid y_{1: T}\right)$.

Nonlinear State-Space Model

- Consider the following model

$$
\begin{aligned}
& X_{n}=\frac{1}{2} X_{n-1}+25 \frac{X_{n-1}}{1+X_{n-1}^{2}}+8 \cos 1.2 n+V_{n} \\
& Y_{n}=\frac{X_{n}^{2}}{20}+W_{n}
\end{aligned}
$$

where $V_{n} \sim \mathcal{N}\left(0, \sigma_{v}^{2}\right), W_{n} \sim \mathcal{N}\left(0, \sigma_{w}^{2}\right)$ and $X_{1} \sim \mathcal{N}\left(0,5^{2}\right)$.

Nonlinear State-Space Model

- Consider the following model

$$
\begin{aligned}
& X_{n}=\frac{1}{2} X_{n-1}+25 \frac{X_{n-1}}{1+X_{n-1}^{2}}+8 \cos 1.2 n+V_{n} \\
& Y_{n}=\frac{X_{n}^{2}}{20}+W_{n}
\end{aligned}
$$

where $V_{n} \sim \mathcal{N}\left(0, \sigma_{v}^{2}\right), W_{n} \sim \mathcal{N}\left(0, \sigma_{w}^{2}\right)$ and $X_{1} \sim \mathcal{N}\left(0,5^{2}\right)$.

- Use the prior for $\left\{X_{n}\right\}$ as proposal distribution.

Nonlinear State-Space Model

- Consider the following model

$$
\begin{aligned}
& X_{n}=\frac{1}{2} X_{n-1}+25 \frac{X_{n-1}}{1+X_{n-1}^{2}}+8 \cos 1.2 n+V_{n} \\
& Y_{n}=\frac{X_{n}^{2}}{20}+W_{n}
\end{aligned}
$$

where $V_{n} \sim \mathcal{N}\left(0, \sigma_{v}^{2}\right), W_{n} \sim \mathcal{N}\left(0, \sigma_{w}^{2}\right)$ and $X_{1} \sim \mathcal{N}\left(0,5^{2}\right)$.

- Use the prior for $\left\{X_{n}\right\}$ as proposal distribution.
- For a fixed θ, we evaluate the expected acceptance probability as a function of N.

Average Acceptance Probability

Average acceptance probability when $\sigma_{v}^{2}=\sigma_{w}^{2}=10$

Average Acceptance Probability

Average acceptance probability when $\sigma_{v}^{2}=10, \sigma_{w}^{2}=1$

Inference for Stochastic Kinetic Models

- Two species X_{t}^{1} (prey) and X_{t}^{2} (predator)

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{t+d t}^{1}=x_{t}^{1}+1, X_{t+d t}^{2}=x_{t}^{2} \mid x_{t}^{1}, x_{t}^{2}\right)=\alpha x_{t}^{1} d t+o(d t), \\
& \operatorname{Pr}\left(X_{t+d t}^{1}=x_{t}^{1}-1, X_{t+d t}^{2}=x_{t}^{2}+1 \mid x_{t}^{1}, x_{t}^{2}\right)=\beta x_{t}^{1} x_{t}^{2} d t+o(d t), \\
& \operatorname{Pr}\left(X_{t+d t}^{1}=x_{t}^{1}, X_{t+d t}^{2}=x_{t}^{2}-1 \mid x_{t}^{1}, x_{t}^{2}\right)=\gamma x_{t}^{2} d t+o(d t),
\end{aligned}
$$

observed at discrete times

$$
Y_{n}=X_{n \Delta}^{1}+W_{n} \text { with } W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
$$

Inference for Stochastic Kinetic Models

- Two species X_{t}^{1} (prey) and X_{t}^{2} (predator)

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{t+d t}^{1}=x_{t}^{1}+1, X_{t+d t}^{2}=x_{t}^{2} \mid x_{t}^{1}, x_{t}^{2}\right)=\alpha x_{t}^{1} d t+o(d t), \\
& \operatorname{Pr}\left(X_{t+d t}^{1}=x_{t}^{1}-1, X_{t+d t}^{2}=x_{t}^{2}+1 \mid x_{t}^{1}, x_{t}^{2}\right)=\beta x_{t}^{1} x_{t}^{2} d t+o(d t), \\
& \operatorname{Pr}\left(X_{t+d t}^{1}=x_{t}^{1}, X_{t+d t}^{2}=x_{t}^{2}-1 \mid x_{t}^{1}, x_{t}^{2}\right)=\gamma x_{t}^{2} d t+o(d t),
\end{aligned}
$$

observed at discrete times

$$
Y_{n}=X_{n \Delta}^{1}+W_{n} \text { with } W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
$$

- We are interested in the kinetic rate constants $\theta=(\alpha, \beta, \gamma)$ a priori distributed as (Boys et al., 2008; Kunsch, 2011)

$$
\alpha \sim \mathcal{G}(1,10), \quad \beta \sim \mathcal{G}(1,0.25), \quad \gamma \sim \mathcal{G}(1,7.5)
$$

Inference for Stochastic Kinetic Models

- Two species X_{t}^{1} (prey) and X_{t}^{2} (predator)

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{t+d t}^{1}=x_{t}^{1}+1, X_{t+d t}^{2}=x_{t}^{2} \mid x_{t}^{1}, x_{t}^{2}\right)=\alpha x_{t}^{1} d t+o(d t), \\
& \operatorname{Pr}\left(X_{t+d t}^{1}=x_{t}^{1}-1, X_{t+d t}^{2}=x_{t}^{2}+1 \mid x_{t}^{1}, x_{t}^{2}\right)=\beta x_{t}^{1} x_{t}^{2} d t+o(d t), \\
& \operatorname{Pr}\left(X_{t+d t}^{1}=x_{t}^{1}, X_{t+d t}^{2}=x_{t}^{2}-1 \mid x_{t}^{1}, x_{t}^{2}\right)=\gamma x_{t}^{2} d t+o(d t),
\end{aligned}
$$

observed at discrete times

$$
Y_{n}=X_{n \Delta}^{1}+W_{n} \text { with } W_{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
$$

- We are interested in the kinetic rate constants $\theta=(\alpha, \beta, \gamma)$ a priori distributed as (Boys et al., 2008; Kunsch, 2011)

$$
\alpha \sim \mathcal{G}(1,10), \quad \beta \sim \mathcal{G}(1,0.25), \quad \gamma \sim \mathcal{G}(1,7.5)
$$

- MCMC methods require reversible jumps, Particle MCMC requires only forward simulation.

Experimental Results

Estimated posteriors

Autocorrelation Functions

Autocorrelation of α (left) and β (right) for the PMMH sampler for various N.

Discussion

- PMCMC methods allow us to design 'good’ high dimensional proposals based only on low dimensional (and potentially unsophisticated) proposals.

Discussion

- PMCMC methods allow us to design 'good’ high dimensional proposals based only on low dimensional (and potentially unsophisticated) proposals.
- PMCMC allow us to perform Bayesian inference for dynamic models for which only forward simulation is possible.

Discussion

- PMCMC methods allow us to design 'good’ high dimensional proposals based only on low dimensional (and potentially unsophisticated) proposals.
- PMCMC allow us to perform Bayesian inference for dynamic models for which only forward simulation is possible.
- Whenever an unbiased estimate of the likelihood function is available, "exact" Bayesian inference is possible.

Discussion

- PMCMC methods allow us to design 'good’ high dimensional proposals based only on low dimensional (and potentially unsophisticated) proposals.
- PMCMC allow us to perform Bayesian inference for dynamic models for which only forward simulation is possible.
- Whenever an unbiased estimate of the likelihood function is available, "exact" Bayesian inference is possible.
- More precise quantitative convergence results need to be established.

References

- C. Andrieu, A.D. \& R. Holenstein, Particle Markov chain Monte Carlo methods (with discussion), J. Royal Statistical Society B, 2010.

References

- C. Andrieu, A.D. \& R. Holenstein, Particle Markov chain Monte Carlo methods (with discussion), J. Royal Statistical Society B, 2010.
- T. Flury \& N. Shephard, Bayesian inference based only on simulated likelihood, Econometrics Review, 2011.

