A Review of Regularized Optimal Transport

Marco Cuturi

Joint work with many people, including: G. Peyré, A. Genevay (ENS), A. Doucet (Oxford) J. Solomon (MIT), J.D. Benamou, N. Bonneel, F. Bach, L. Nenna (INRIA), G. Carlier (Dauphine).

Monge

Kantorovich

Dantzig

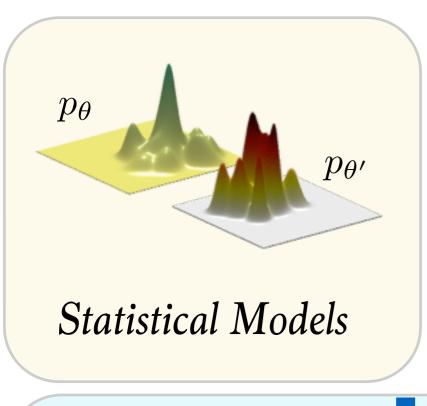
Wasserstein

Brenier

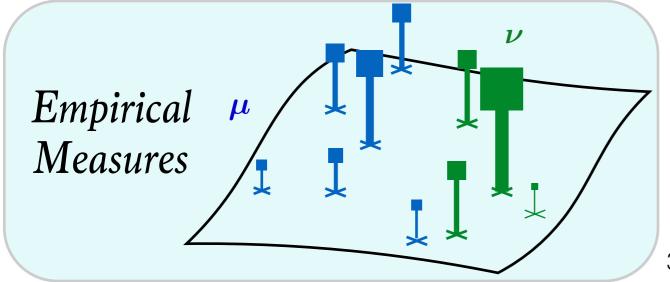
Otto

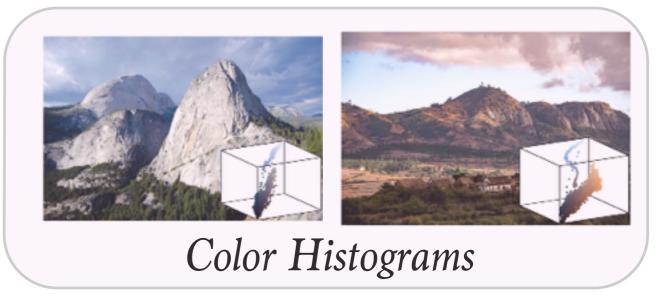
McCann

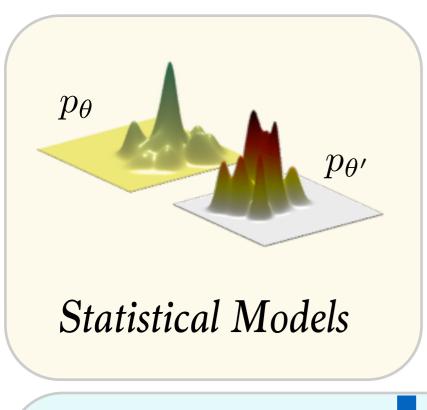
Villani

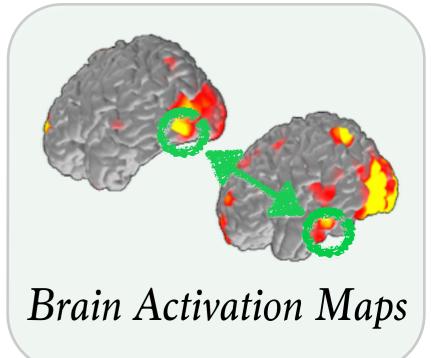


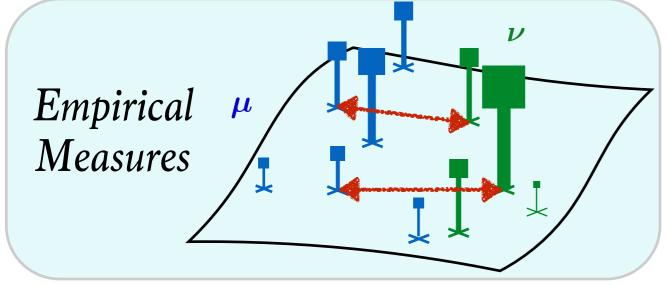


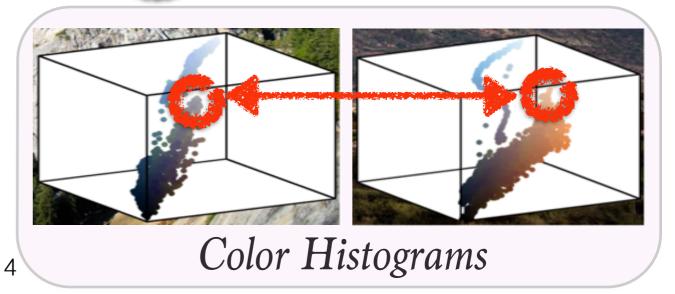


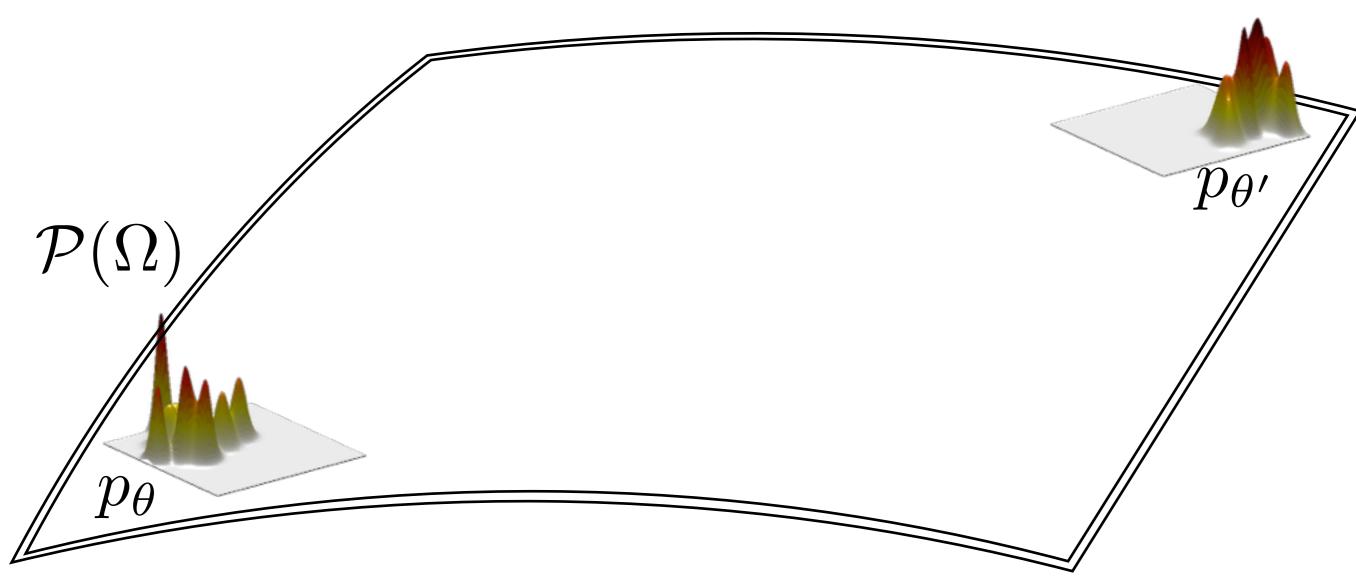


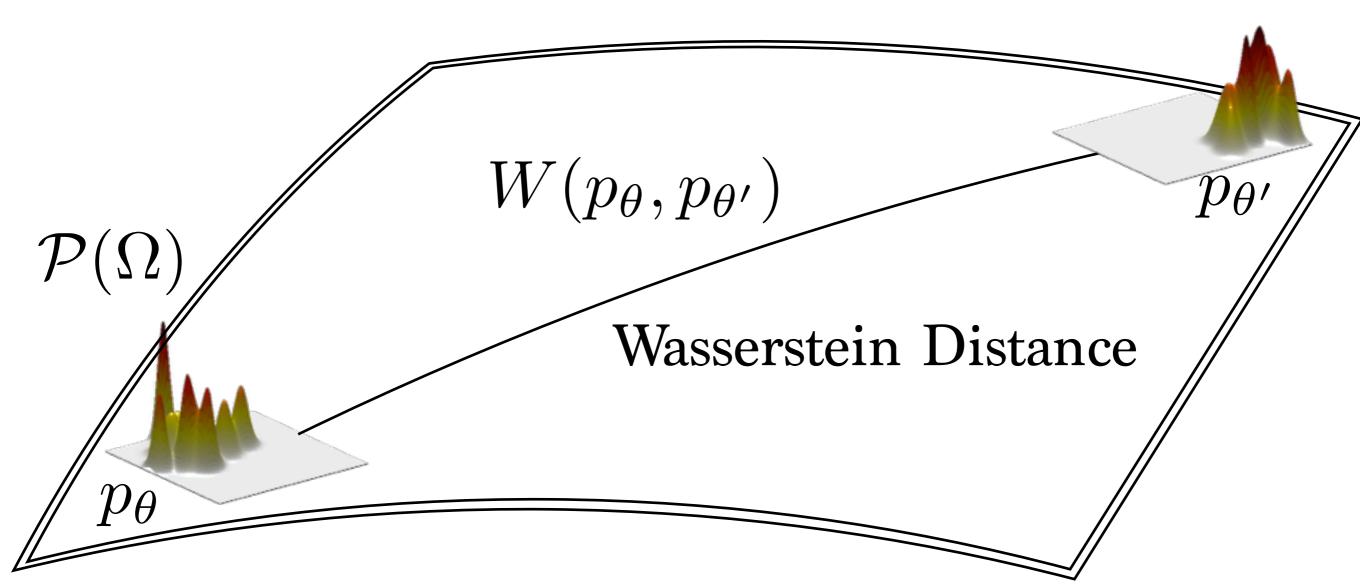


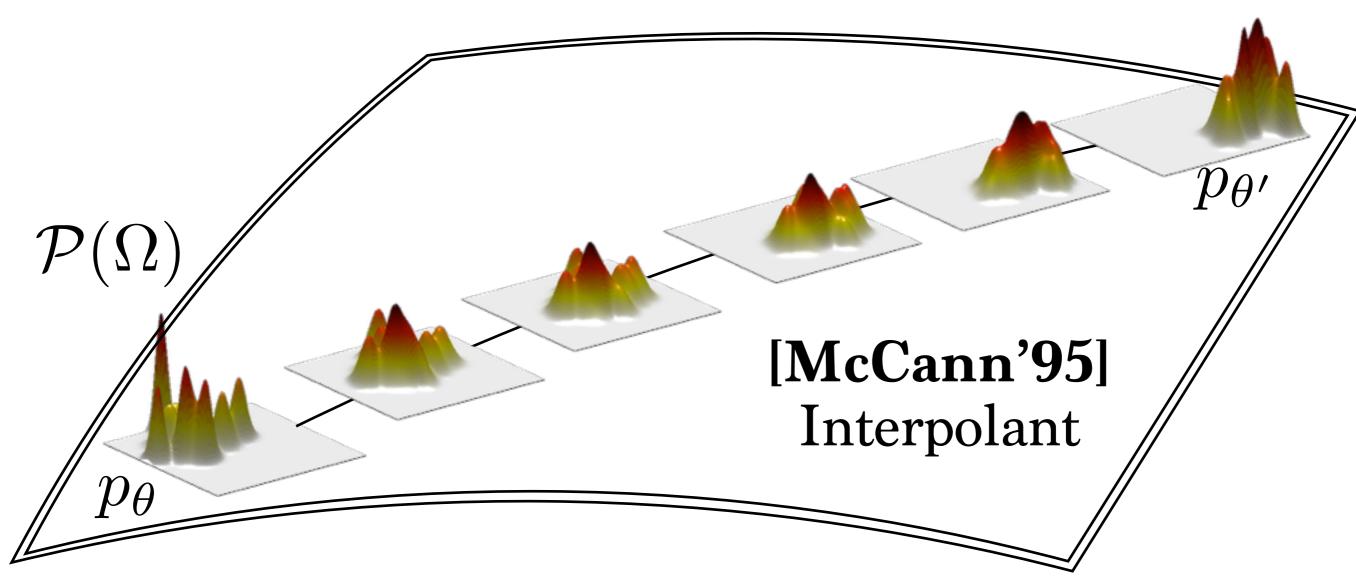


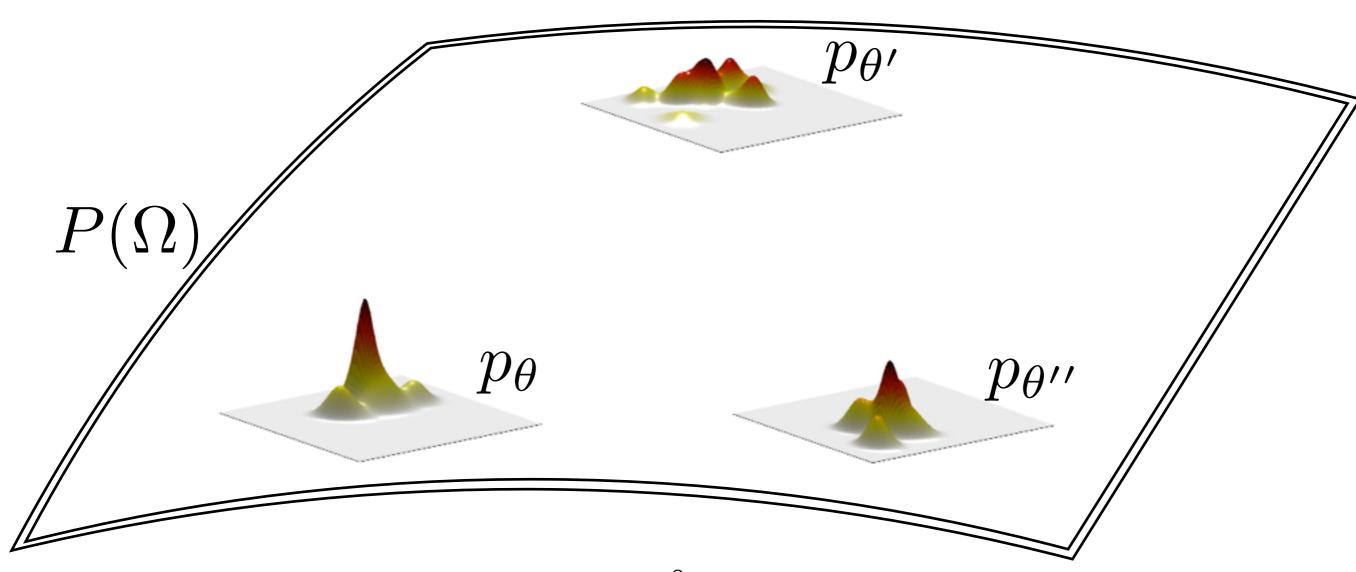


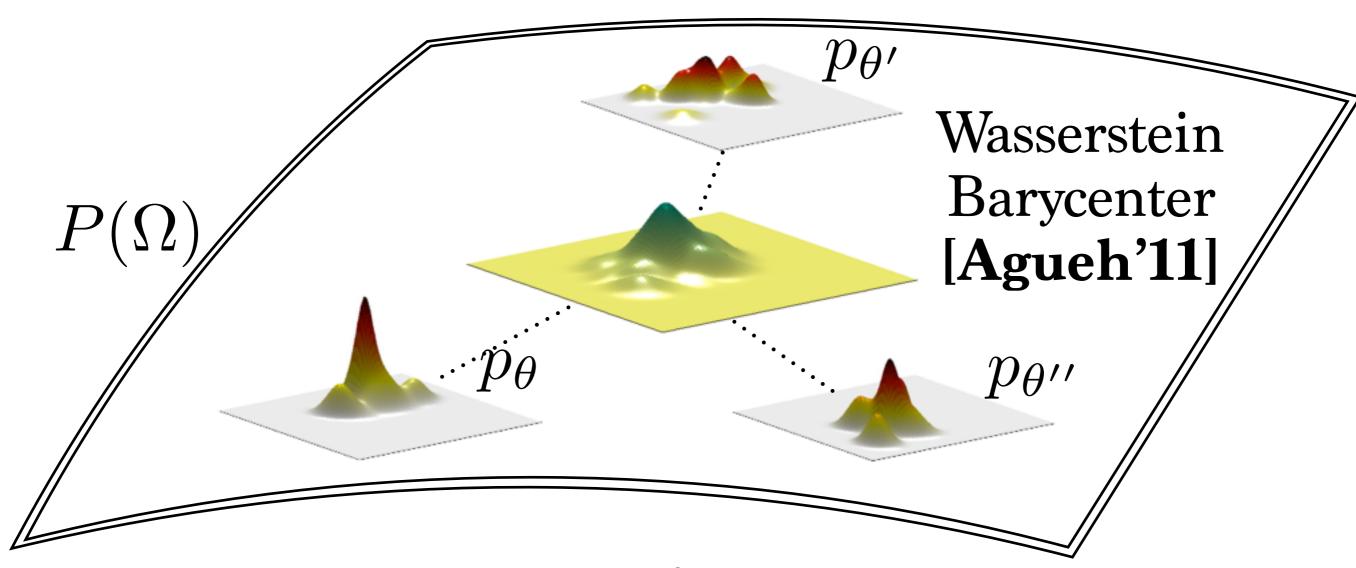












OT and data-analysis

- Key developments in (applied) maths ~'90s [McCann'95], [JKO'98], [Benamou'98], [Gangbo'98], [Ambrosio'06], [Villani'03/'09].
- Key developments in TCS / graphics since '00s [Rubner'98], [Indyk'03], [Naor'07], [Andoni'15].

- Small to no-impact in large-scale data analysis:
 - computationally heavy;
 - **♦** Wasserstein distance is not differentiable

OT and data-analysis

Today's talk: Entropy Regularized OT

- Very fast compared to usual approaches, GPGPU parallel.
- **Differentiable**, important if we want to use OT distances as **loss functions**.
- Can be automatically differentiated, simple iterative process, *DL*-toolboxes compatible.
- OT can become a building block in ML.

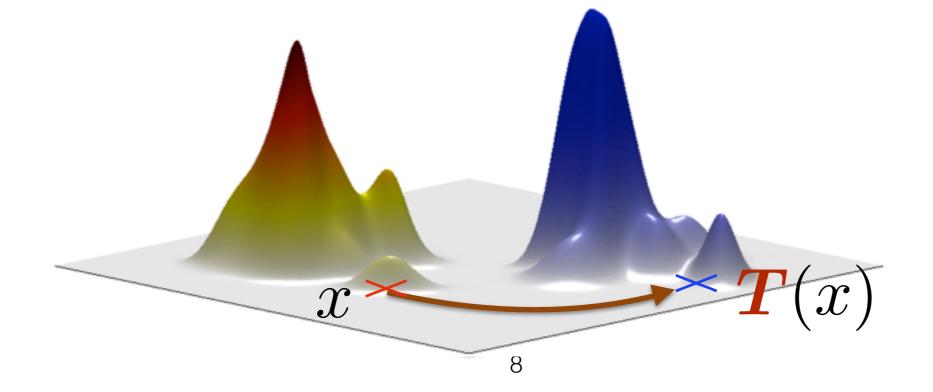
→ Wasserstein distance is not differentiable

Background: OT Geometry

Consider (Ω, D) , a metric probability space. Let μ, ν be probability measures in $\mathcal{P}(\Omega)$.

• [Monge'81] problem: find a map $T: \Omega \to \Omega$

$$\inf_{\boldsymbol{T} \neq \boldsymbol{\mu} = \boldsymbol{\nu}} \int_{\Omega} \boldsymbol{D}(x, \boldsymbol{T}(x)) \boldsymbol{\mu}(dx)$$



Background: OT Geometry

Consider (Ω, D) , a metric probability space. Let μ, ν be probability measures in $\mathcal{P}(\Omega)$.

• [Monge'81] problem: find a map $T: \Omega \to \Omega$

$$\inf_{\boldsymbol{T} \# \boldsymbol{\mu} = \boldsymbol{\nu}} \int_{\Omega} \boldsymbol{D}(x, \boldsymbol{T}(x)) \boldsymbol{\mu}(dx)$$

8

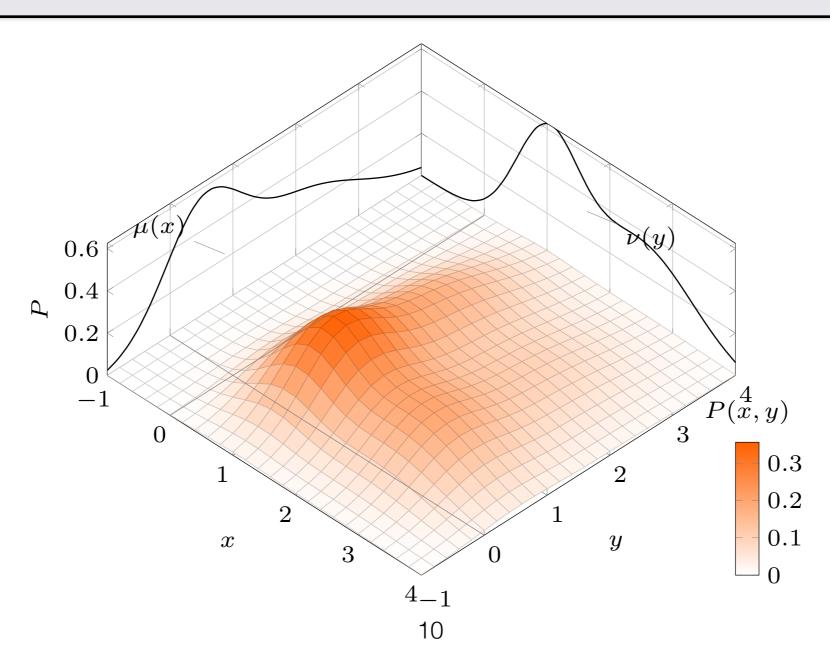
[Kantorovich'42] Relaxation

• Instead of maps $T: \Omega \to \Omega$, consider probabilistic maps, i.e. **couplings** $P \in \mathcal{P}(\Omega \times \Omega)$:

$$\Pi(oldsymbol{\mu},oldsymbol{
u}) \stackrel{ ext{def}}{=} \{oldsymbol{P} \in \mathcal{P}(\Omega imes \Omega) | orall oldsymbol{A}, oldsymbol{B} \subset \Omega, \ oldsymbol{P}(oldsymbol{A} imes oldsymbol{A}) = oldsymbol{\mu}(oldsymbol{A}), \ oldsymbol{P}(\Omega imes oldsymbol{B}) = oldsymbol{
u}(oldsymbol{B}) \}$$

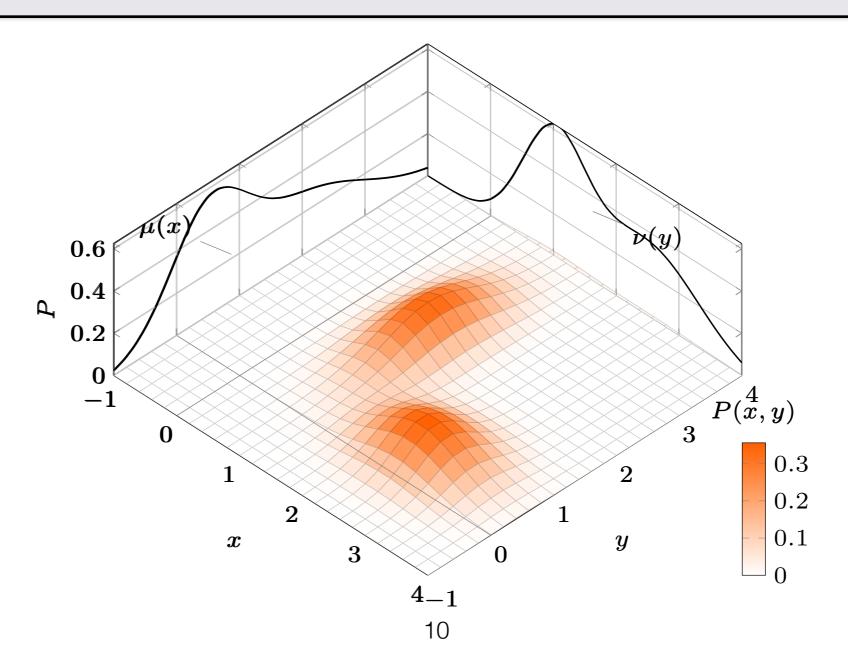
[Kantorovich'42] Relaxation

$$\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \{ \boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) | \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\ \boldsymbol{P}(\boldsymbol{A} \times \Omega) = \boldsymbol{\mu}(\boldsymbol{A}), \boldsymbol{P}(\Omega \times \boldsymbol{B}) = \boldsymbol{\nu}(\boldsymbol{B}) \}$$



[Kantorovich'42] Relaxation

$$\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \{ \boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) | \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\ \boldsymbol{P}(\boldsymbol{A} \times \Omega) = \boldsymbol{\mu}(\boldsymbol{A}), \boldsymbol{P}(\Omega \times \boldsymbol{B}) = \boldsymbol{\nu}(\boldsymbol{B}) \}$$

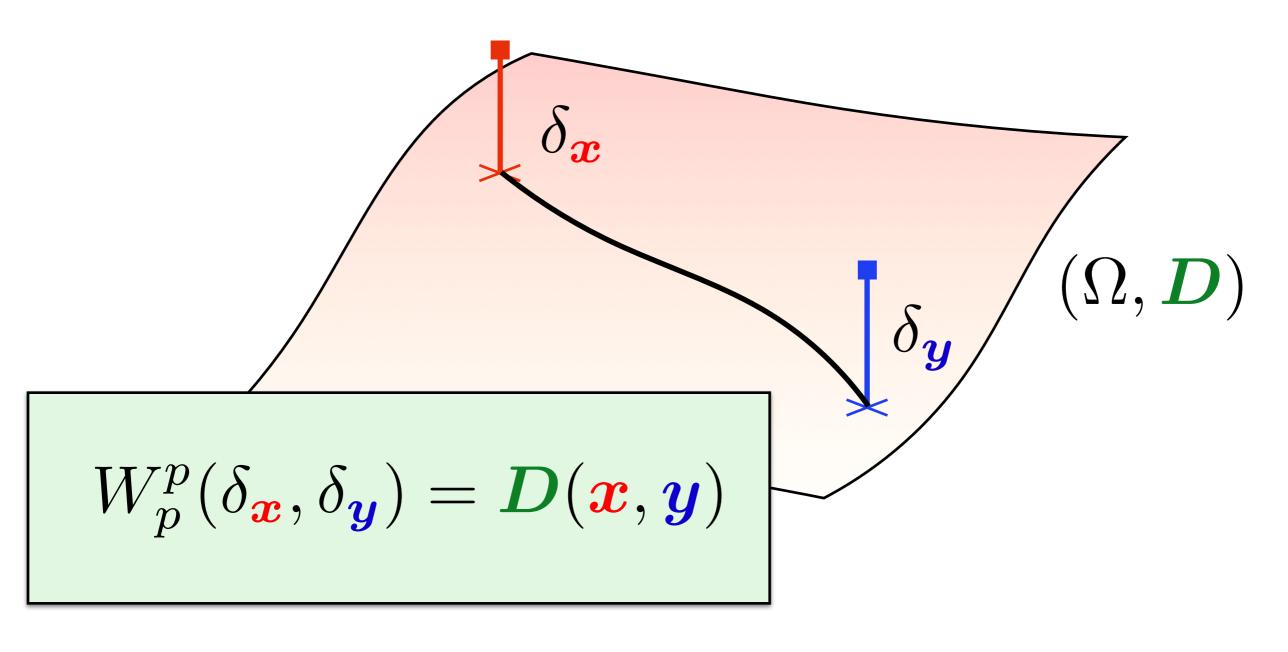


Wasserstein Distance

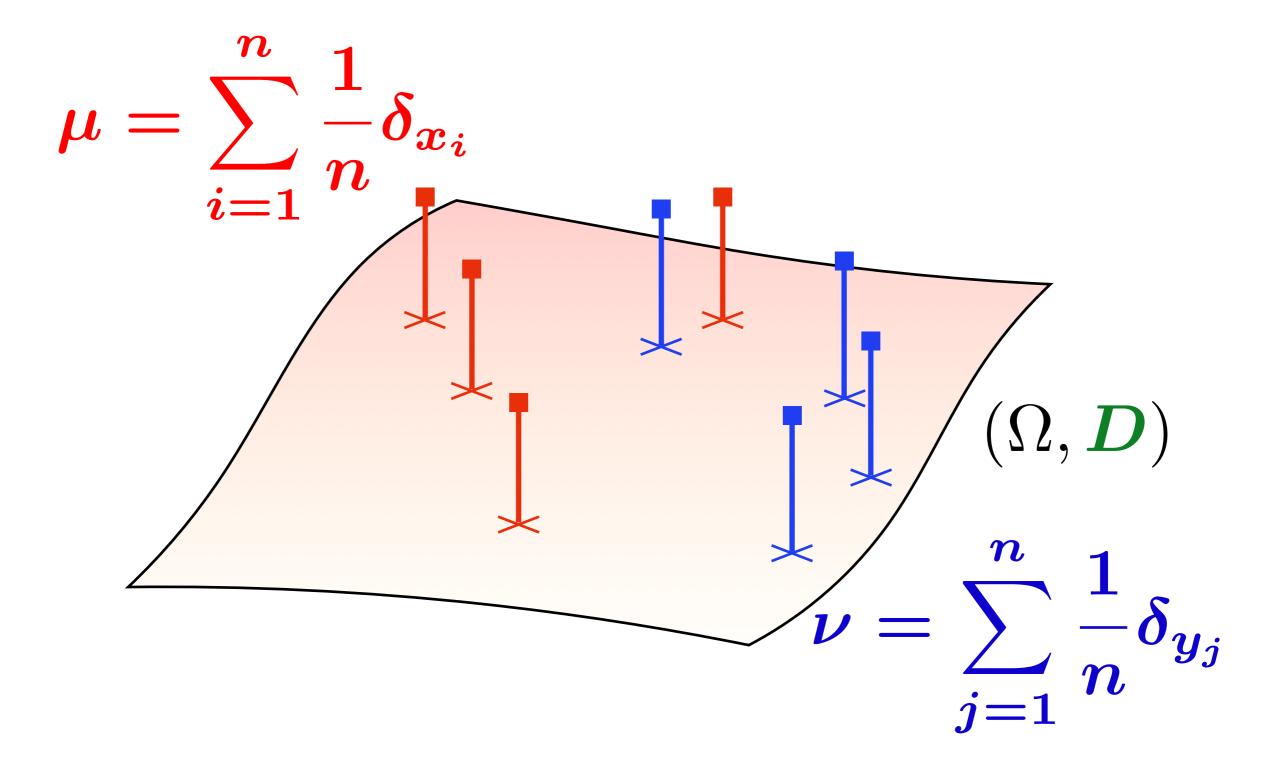
Def. For $p \geq 1$, the p-Wasserstein distance between μ, ν in $\mathcal{P}(\Omega)$ is

$$W_p(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \left(\inf_{\boldsymbol{P} \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})} \mathbb{E}_{\boldsymbol{P}}[D(X, Y)^p] \right)^{1/p}.$$

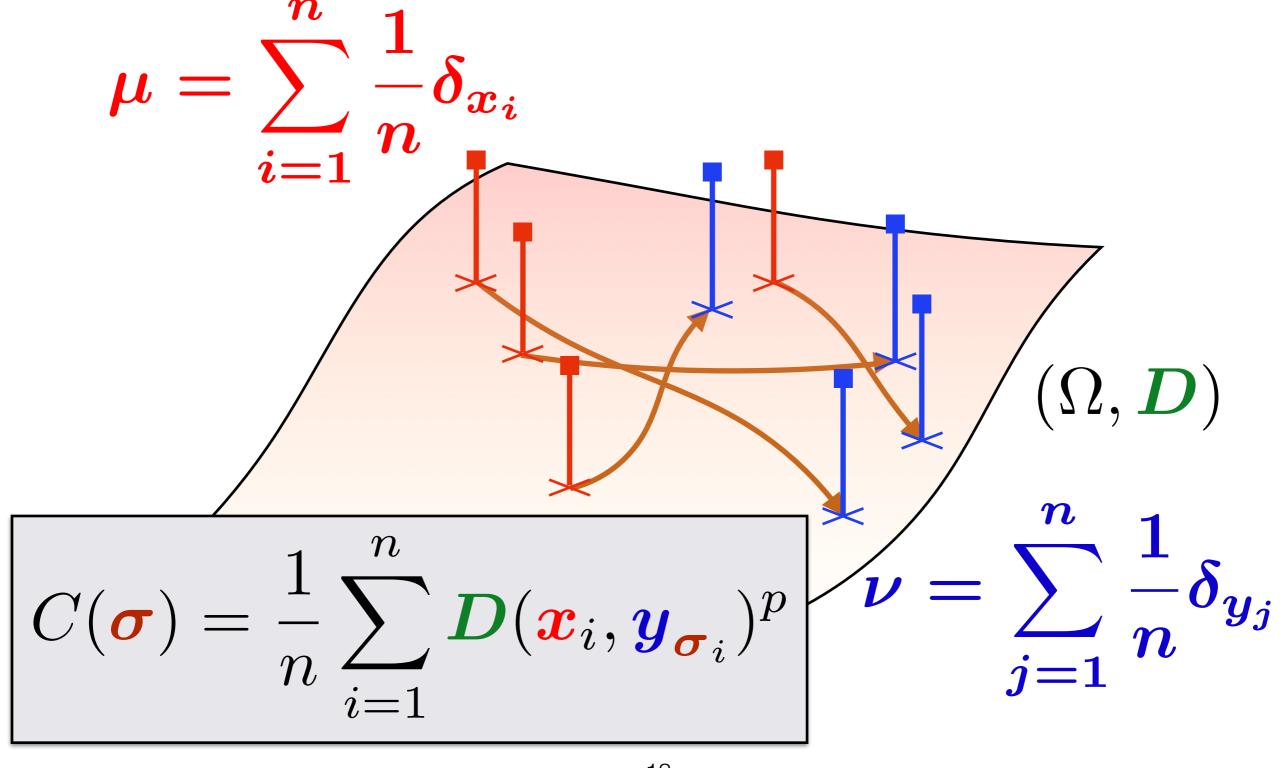
Wasserstein between 2 Diracs



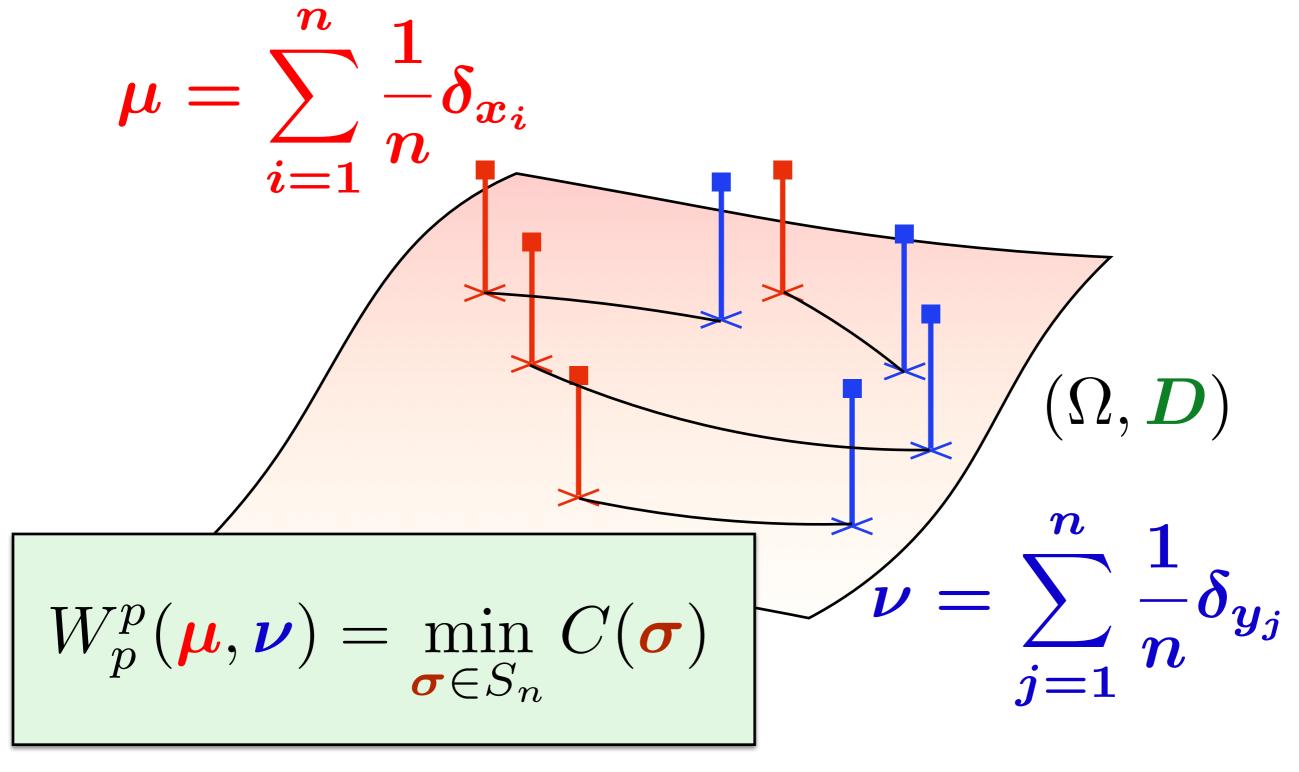
Wasserstein on Uniform Measures

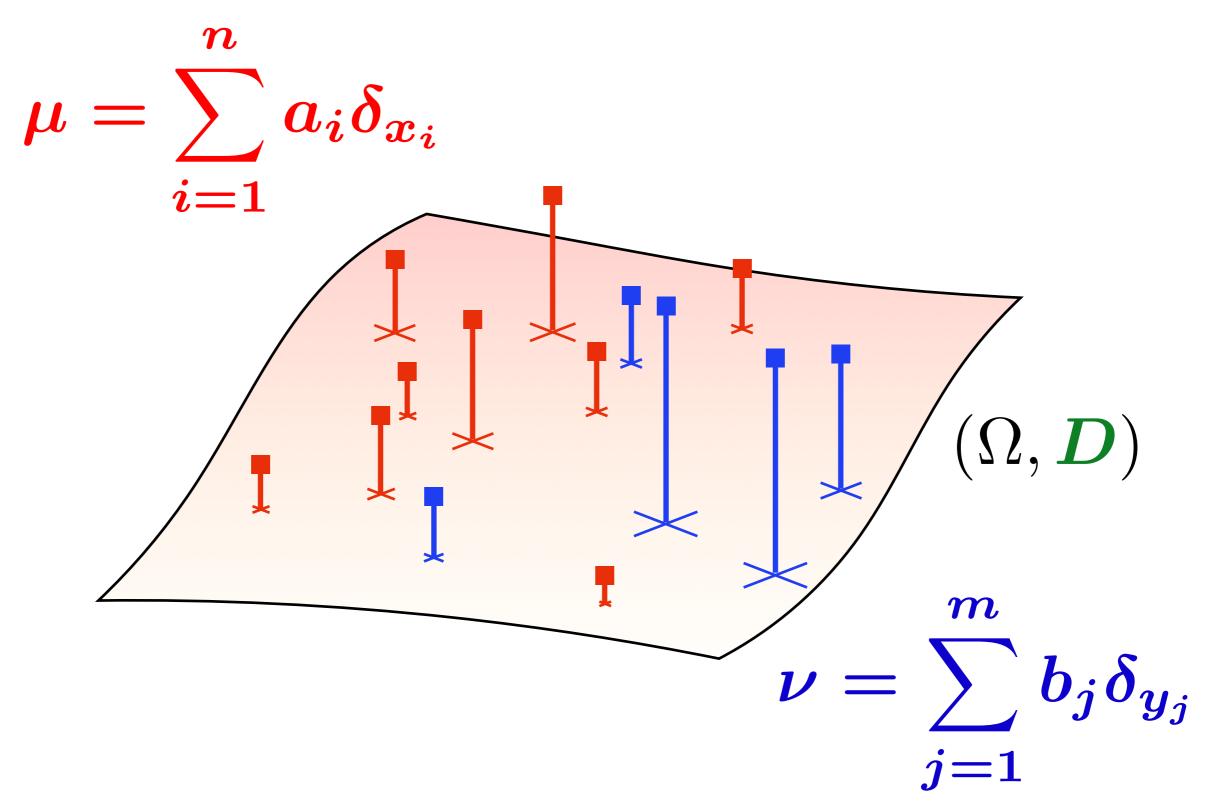


Wasserstein on Uniform Measures



Optimal Assignment C Wasserstein

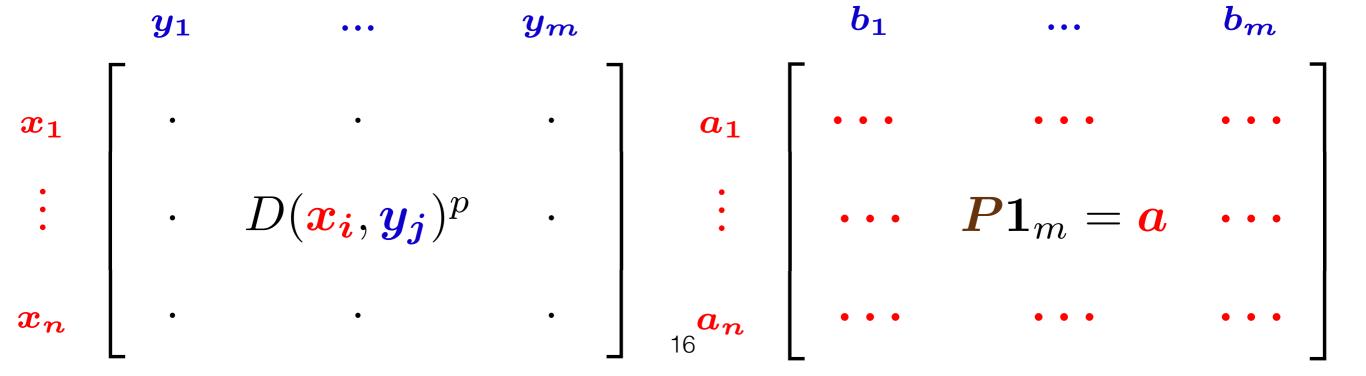




Consider
$$\mu = \sum_{i=1}^{n} a_i \delta_{x_i}$$
 and $\nu = \sum_{j=1}^{m} b_j \delta_{y_j}$.

$$M_{XY} \stackrel{\text{def}}{=} [D(\mathbf{x}_i, \mathbf{y}_j)^p]_{ij}$$

$$U(\mathbf{a}, \mathbf{b}) \stackrel{\text{def}}{=} \{ \mathbf{P} \in \mathbb{R}_+^{n \times m} | \mathbf{P} \mathbf{1}_m = \mathbf{a}, \mathbf{P}^T \mathbf{1}_n = \mathbf{b} \}$$



Consider
$$\boldsymbol{\mu} = \sum_{i=1}^{n} \boldsymbol{a}_{i} \boldsymbol{\delta}_{\boldsymbol{x}_{i}}$$
 and $\boldsymbol{\nu} = \sum_{j=1}^{m} \boldsymbol{b}_{j} \boldsymbol{\delta}_{\boldsymbol{y}_{j}}$.

$$M_{\boldsymbol{X}\boldsymbol{Y}} \stackrel{\text{def}}{=} [D(\boldsymbol{x}_{i}, \boldsymbol{y}_{j})^{p}]_{ij}$$

$$U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text{def}}{=} \{\boldsymbol{P} \in \mathbb{R}^{n \times m}_{+} | \boldsymbol{P} \boldsymbol{1}_{m} = \boldsymbol{a}, \boldsymbol{P}^{T} \boldsymbol{1}_{n} = \boldsymbol{b} \}$$

$$y_{1} \qquad \dots \qquad y_{m} \qquad b_{1} \qquad \dots \qquad b_{m}$$

$$x_{1} \left[\begin{array}{cccc} & & & & \\ & & & \\ & & & & \\ \end{array} \right] \begin{array}{cccc} & & & \\ & & & \\ & & & \\ \end{array}$$

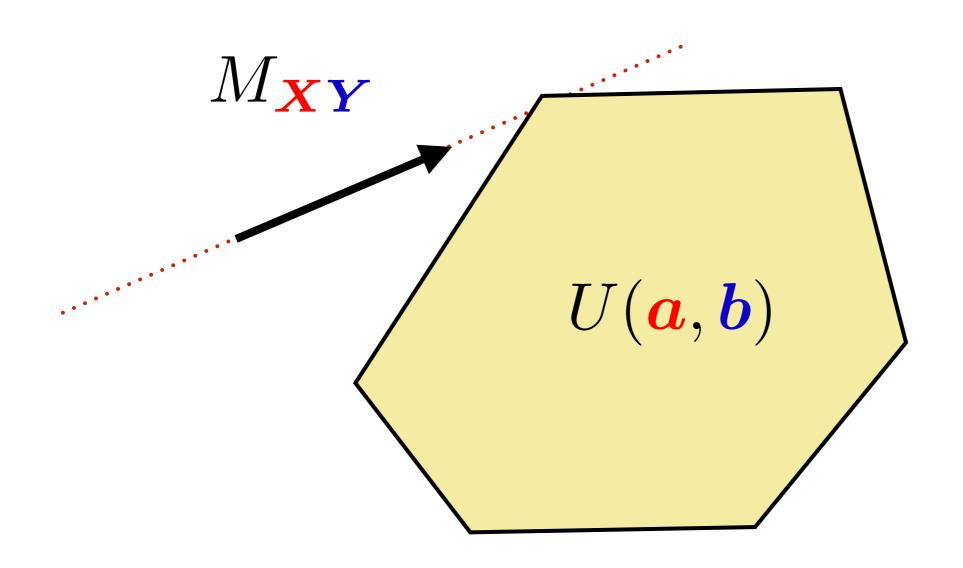
 $egin{aligned} oldsymbol{x_1} & oldsymbol{x_1} & oldsymbol{a_1} & oldsymbol{a_1} & oldsymbol{a_1} & oldsymbol{a_1} & oldsymbol{a_1} & oldsymbol{b_1} & oldsymbol{P^T 1_n} = oldsymbol{b} & oldsymbol{a_1} & oldsymbol{a_1} & oldsymbol{b_1} & oldsymbol{P^T 1_n} = oldsymbol{b} & oldsymbol{a_1} & oldsymbol{a_2} & oldsymbol{a_1} & oldsymbol{a_2} & oldsymbo$

Consider
$$\mu = \sum_{i=1}^{n} a_i \delta_{x_i}$$
 and $\nu = \sum_{j=1}^{m} b_j \delta_{y_j}$.
$$M_{XY} \stackrel{\text{def}}{=} [D(x_i, y_j)^p]_{ij}$$

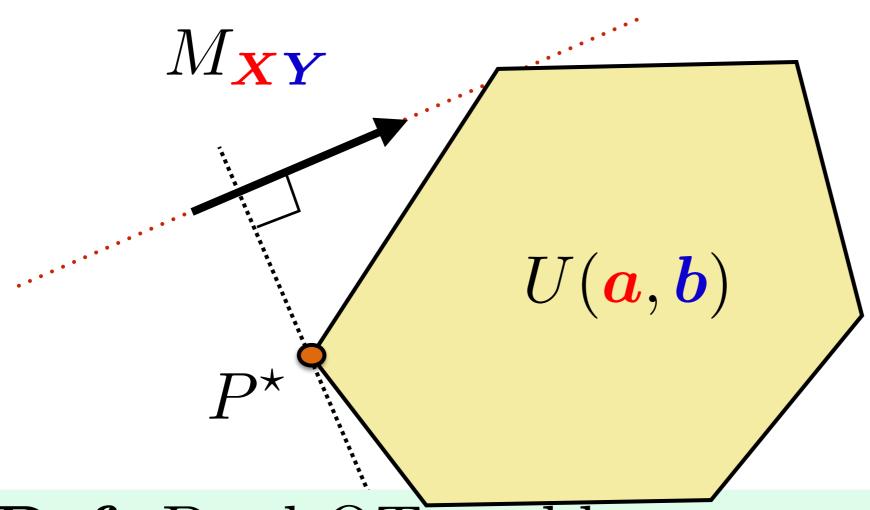
$$U(a, b) \stackrel{\text{def}}{=} \{ P \in \mathbb{R}_+^{n \times m} | P \mathbf{1}_m = a, P^T \mathbf{1}_n = b \}$$

Def. Optimal Transport Problem

$$W_p^p(\boldsymbol{\mu}, \boldsymbol{\nu}) = \min_{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle$$

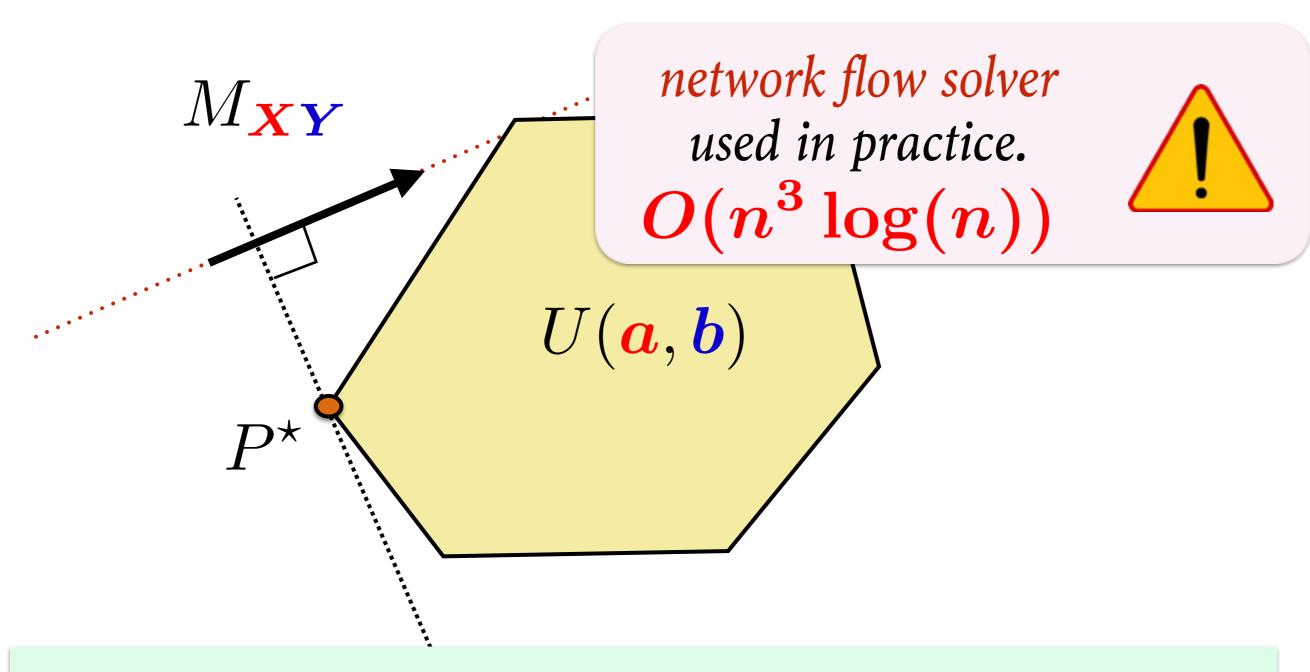




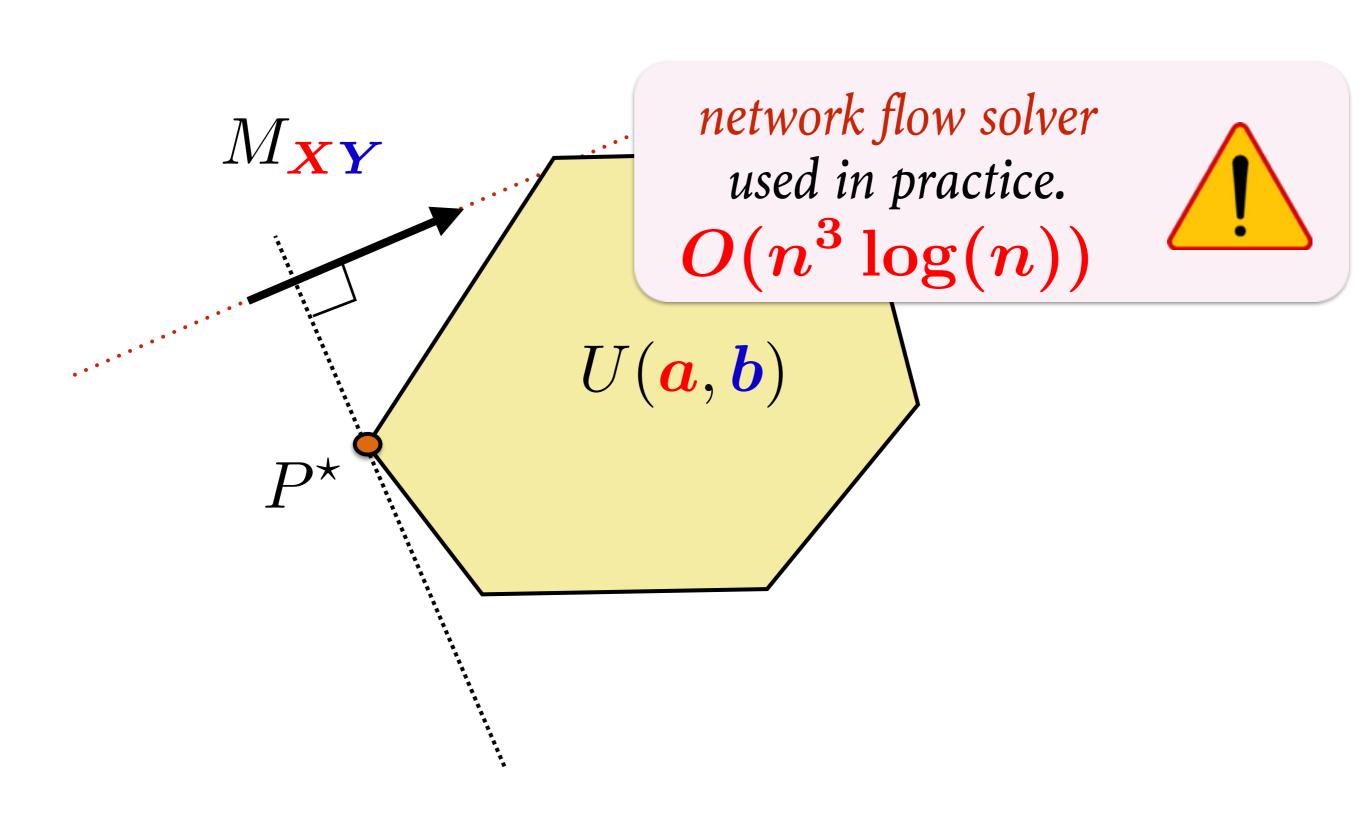


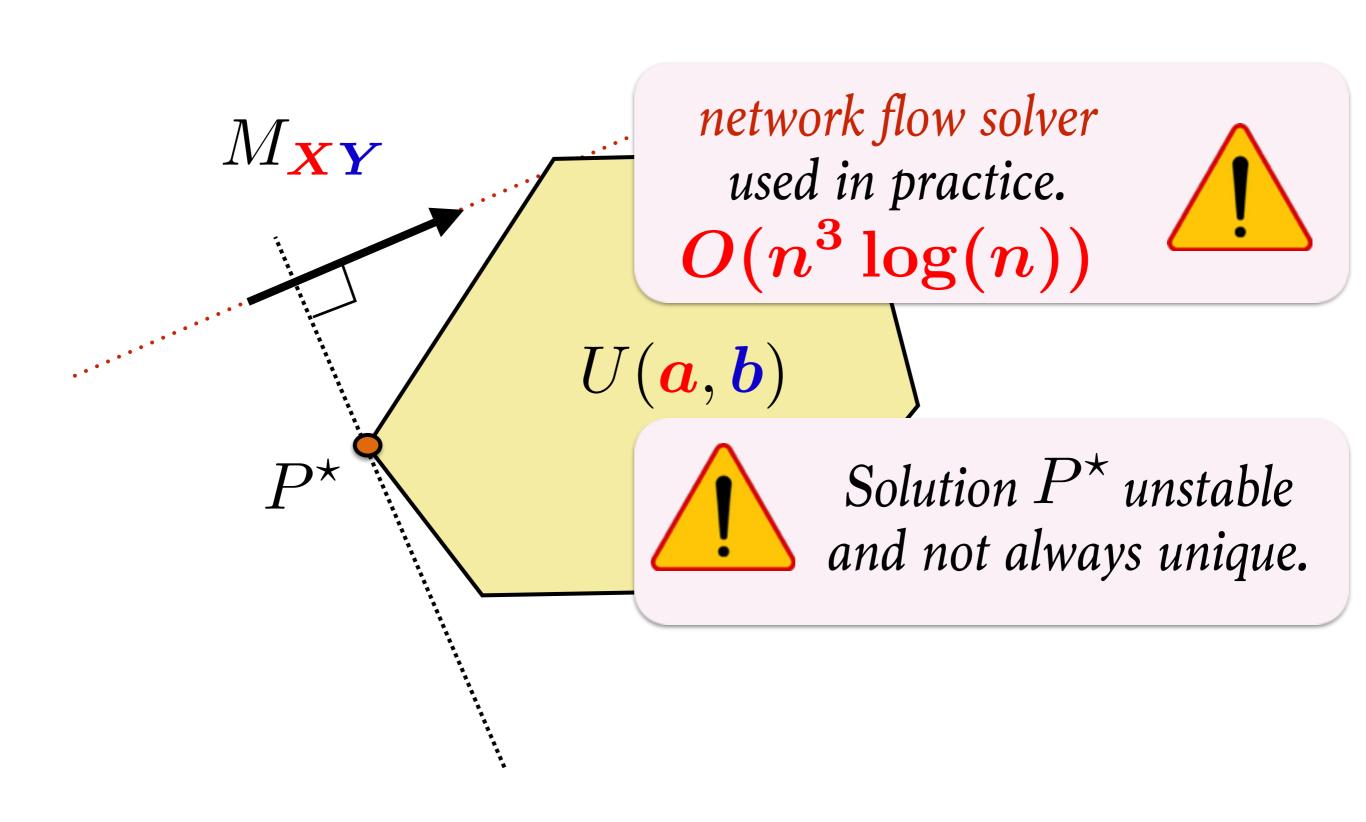
Def. Dual OT problem

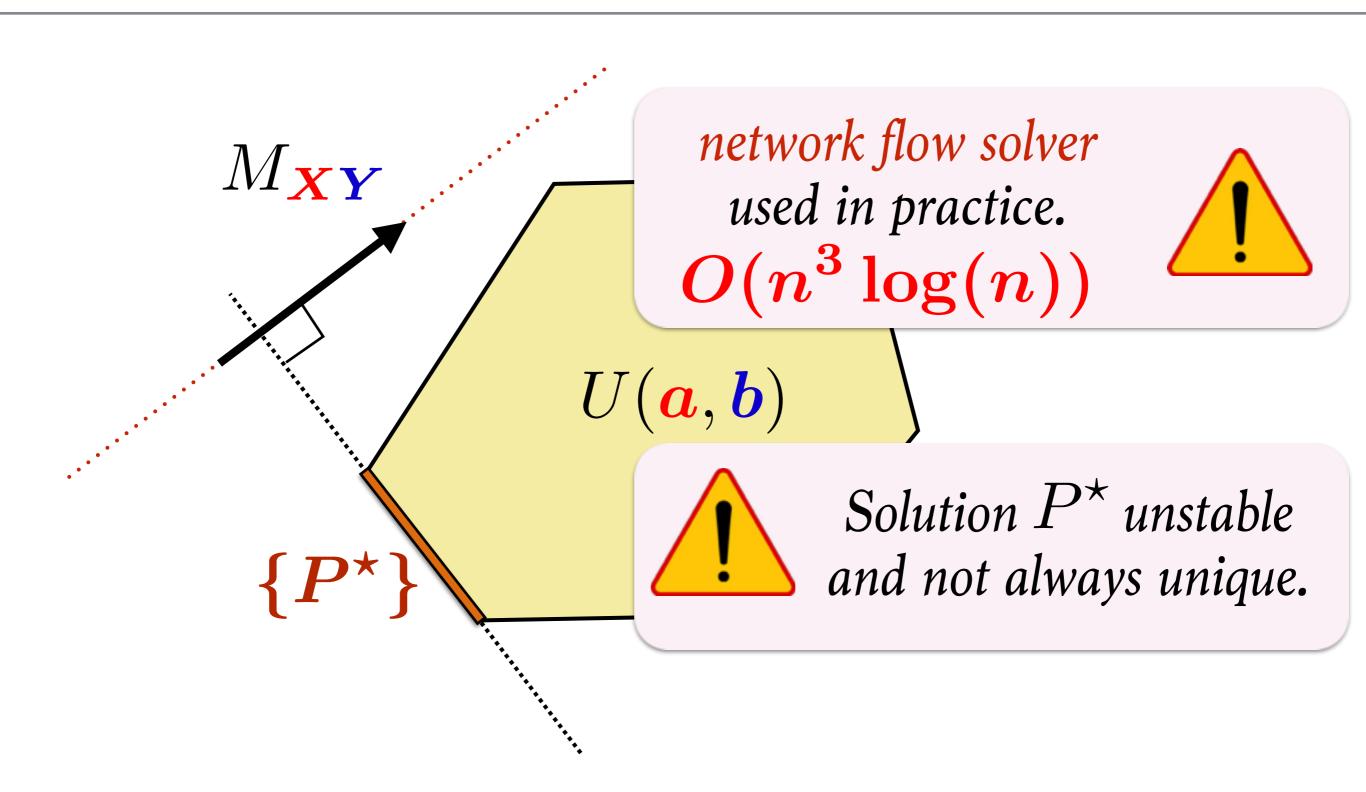
$$W_p^p(\boldsymbol{\mu}, \boldsymbol{\nu}) = \max_{\substack{\boldsymbol{\alpha} \in \mathbb{R}^n, \boldsymbol{\beta} \in \mathbb{R}^m \\ \boldsymbol{\alpha_i} + \boldsymbol{\beta_j} \le D(\boldsymbol{x_i}, \boldsymbol{y_j})^p}} \alpha^T \boldsymbol{a} + \beta^T \boldsymbol{b}$$

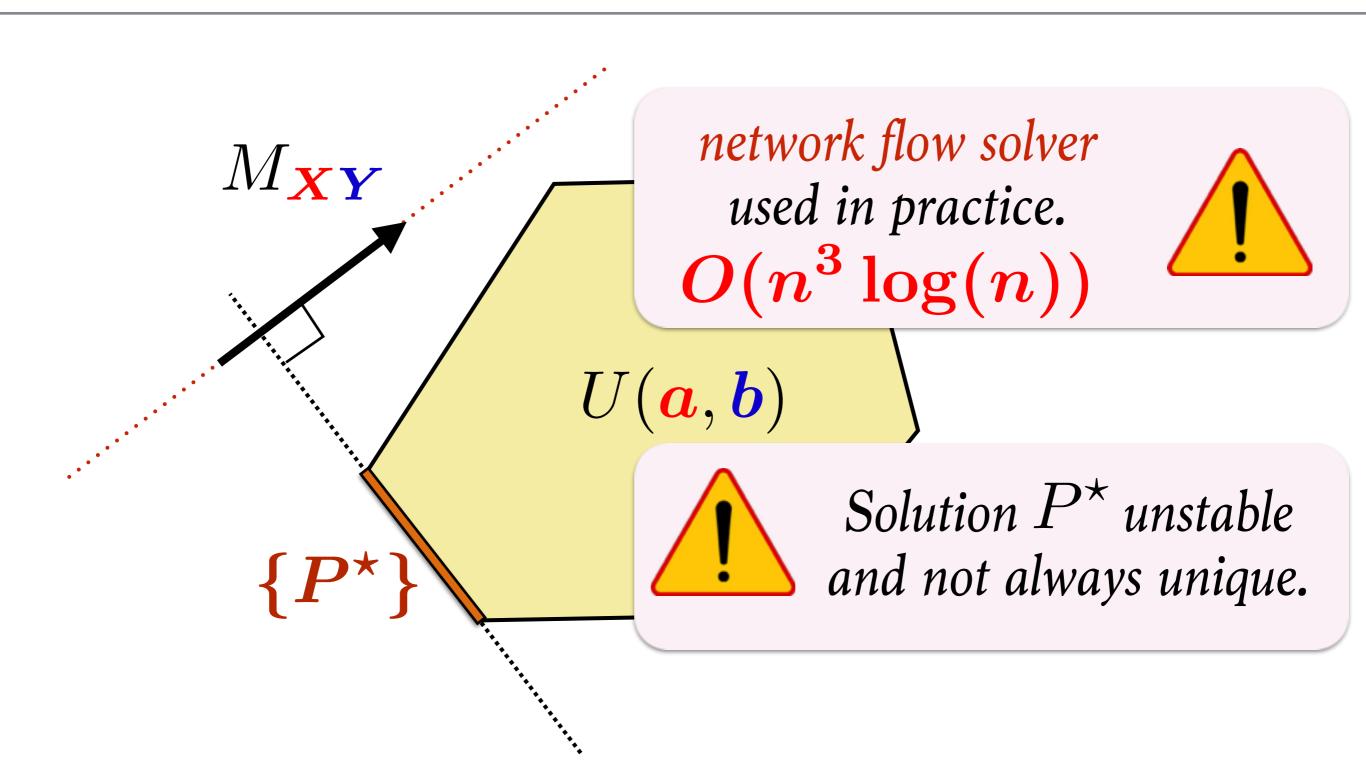


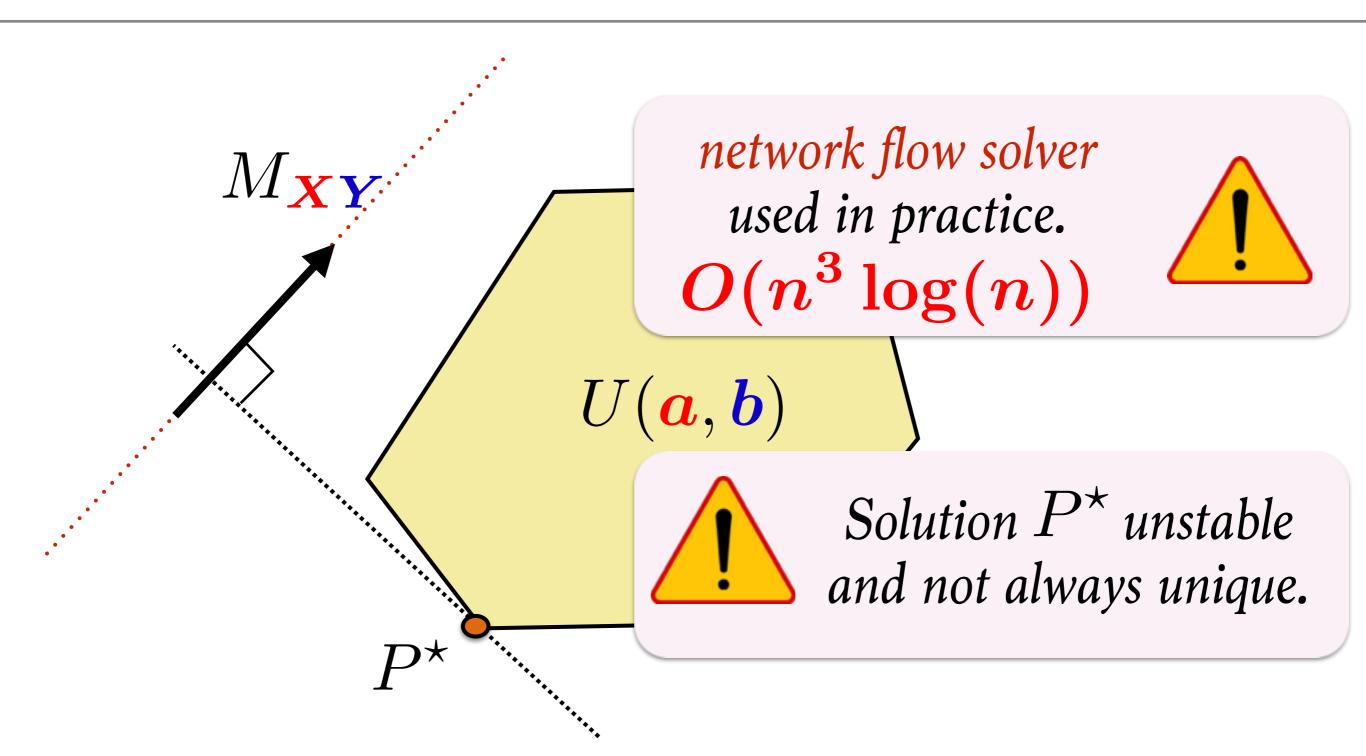
Note: flow/PDE formulations [**Beckman'61**]/[**Benamou'98**] can be used for p=1/p=2 for a sparse-graph metric/Euclidean metric.

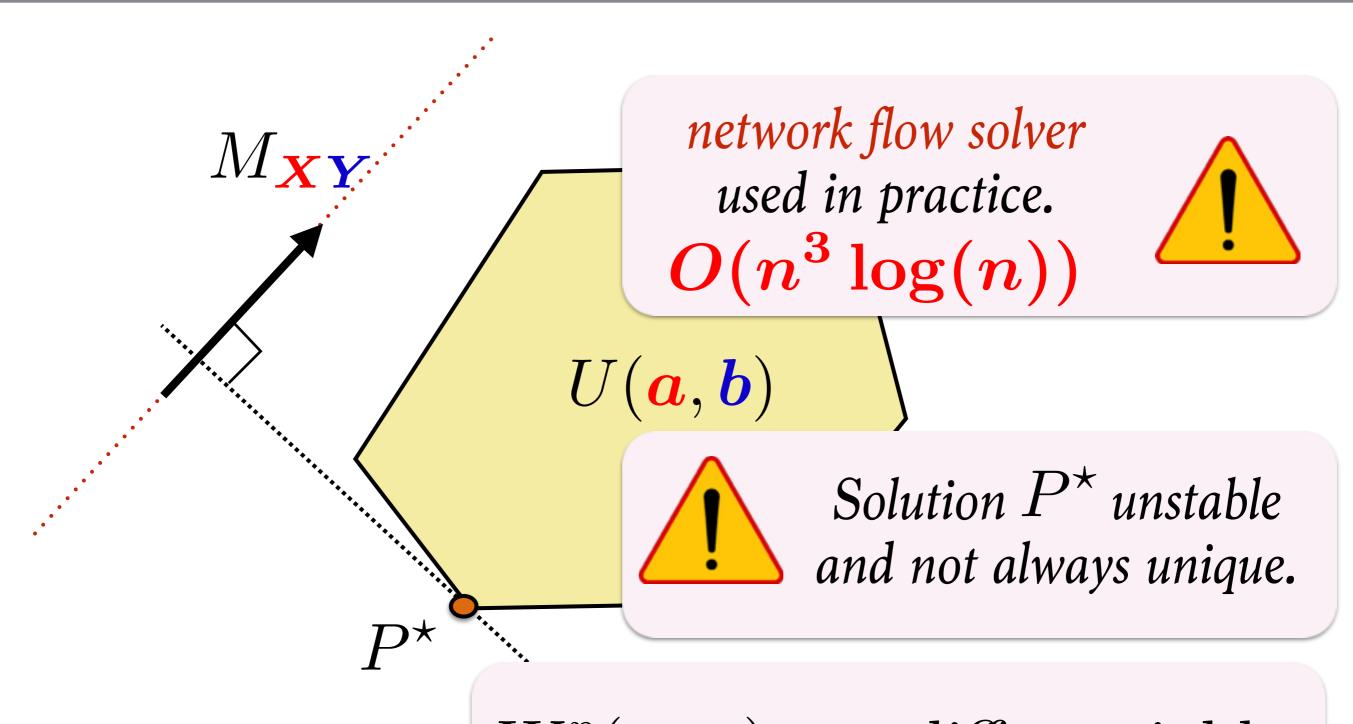












 $W_p^p(\mu, \nu)$ not differentiable.

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

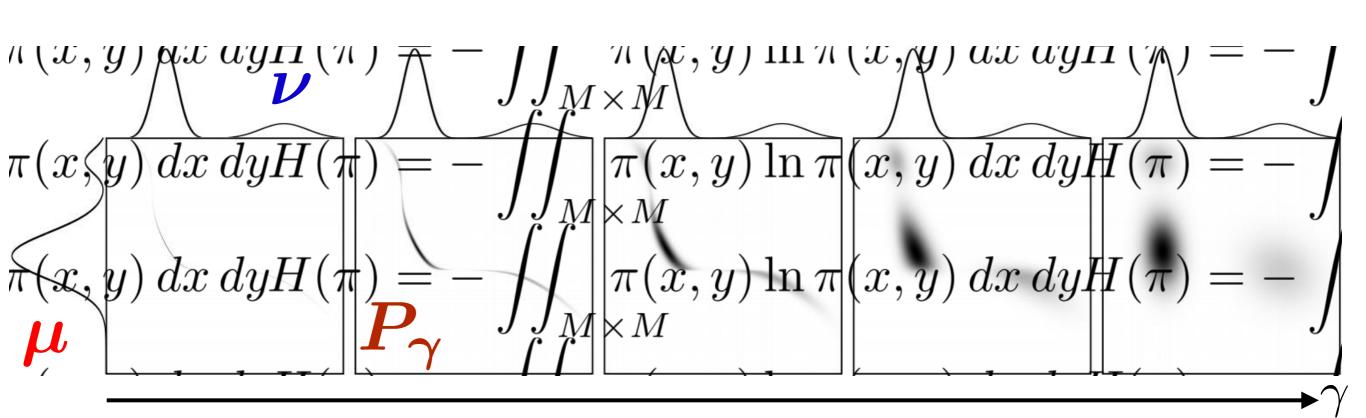
$$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \min_{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$$

$$E(P) \stackrel{\text{def}}{=} -\sum_{i,j=1}^{nm} P_{ij}(\log P_{ij})$$

Note: Unique optimal solution because of strong concavity of Entropy

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$ $W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \min_{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$



Note: Unique optimal solution because of strong concavity of Entropy

Fast & Scalable Algorithm

Prop. If
$$P_{\gamma} \stackrel{\text{def}}{=} \underset{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})}{\operatorname{argmin}} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$$

then $\exists ! \boldsymbol{u} \in \mathbb{R}^n_+, \boldsymbol{v} \in \mathbb{R}^m_+, \text{ such that}$
$$P_{\gamma} = \operatorname{diag}(\boldsymbol{u}) K \operatorname{diag}(\boldsymbol{v}), \quad K \stackrel{\text{def}}{=} e^{-M_{\boldsymbol{X}\boldsymbol{Y}}/\gamma}$$

Fast & Scalable Algorithm

Prop. If
$$P_{\gamma} \stackrel{\text{def}}{=} \operatorname{argmin} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$$

 $P \in U(\boldsymbol{a}, \boldsymbol{b})$
then $\exists ! \boldsymbol{u} \in \mathbb{R}^n_+, \boldsymbol{v} \in \mathbb{R}^m_+$, such that
 $P_{\gamma} = \operatorname{diag}(\boldsymbol{u}) K \operatorname{diag}(\boldsymbol{v}), \quad K \stackrel{\text{def}}{=} e^{-M_{\boldsymbol{X}\boldsymbol{Y}}/\gamma}$

$$L(P, \alpha, \beta) = \sum_{ij} P_{ij} M_{ij} + \gamma P_{ij} \log P_{ij} + \alpha^T (P\mathbf{1} - \mathbf{a}) + \beta^T (P^T\mathbf{1} - \mathbf{b})$$

$$\partial L/\partial P_{ij} = M_{ij} + \gamma(\log P_{ij} + 1) + \alpha_i + \beta_j$$

$$(\partial L/\partial P_{ij} = 0) \Rightarrow P_{ij} = e^{\frac{\alpha_i}{\gamma} + \frac{1}{2}} e^{-\frac{M_{ij}}{\gamma}} e^{\frac{\beta_j}{\gamma} + \frac{1}{2}} = u_i K_{ij}v_j$$

Fast & Scalable Algorithm

Prop. If
$$P_{\gamma} \stackrel{\text{def}}{=} \underset{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})}{\operatorname{argmin}} \langle \boldsymbol{P}, M_{\boldsymbol{X}\boldsymbol{Y}} \rangle - \gamma E(\boldsymbol{P})$$

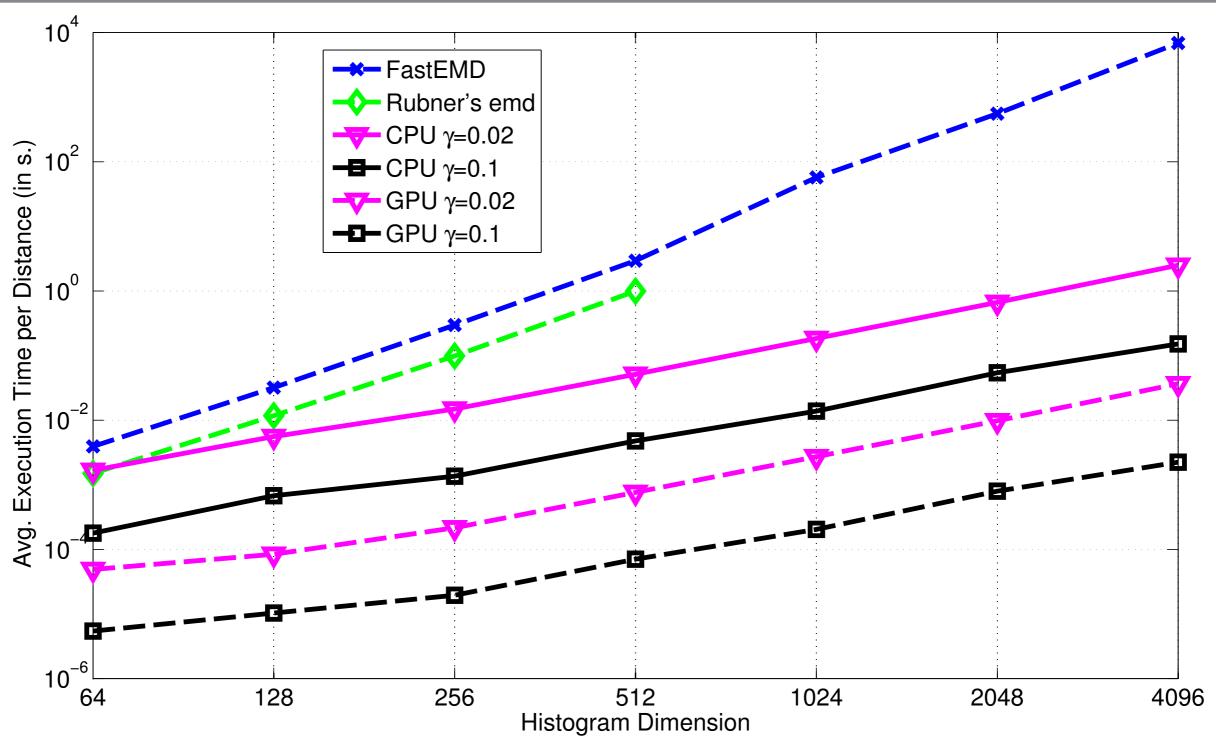
then $\exists ! \boldsymbol{u} \in \mathbb{R}^n_+, \boldsymbol{v} \in \mathbb{R}^m_+$, such that $P_{\gamma} = \operatorname{diag}(\boldsymbol{u}) K \operatorname{diag}(\boldsymbol{v}), \quad K \stackrel{\text{def}}{=} e^{-M_{\boldsymbol{X}\boldsymbol{Y}}/\gamma}$

• [Sinkhorn'64] fixed-point iterations for $(\boldsymbol{u}, \boldsymbol{v})$

$$\boldsymbol{u} \leftarrow \boldsymbol{a}/K\boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b}/K^T\boldsymbol{u}$$

- O(nm) complexity, GPGPU parallel [C'13].
- • $O(n^{d+1})$ if $\Omega = \{1, \dots, n\}^d$ and D^p separable.

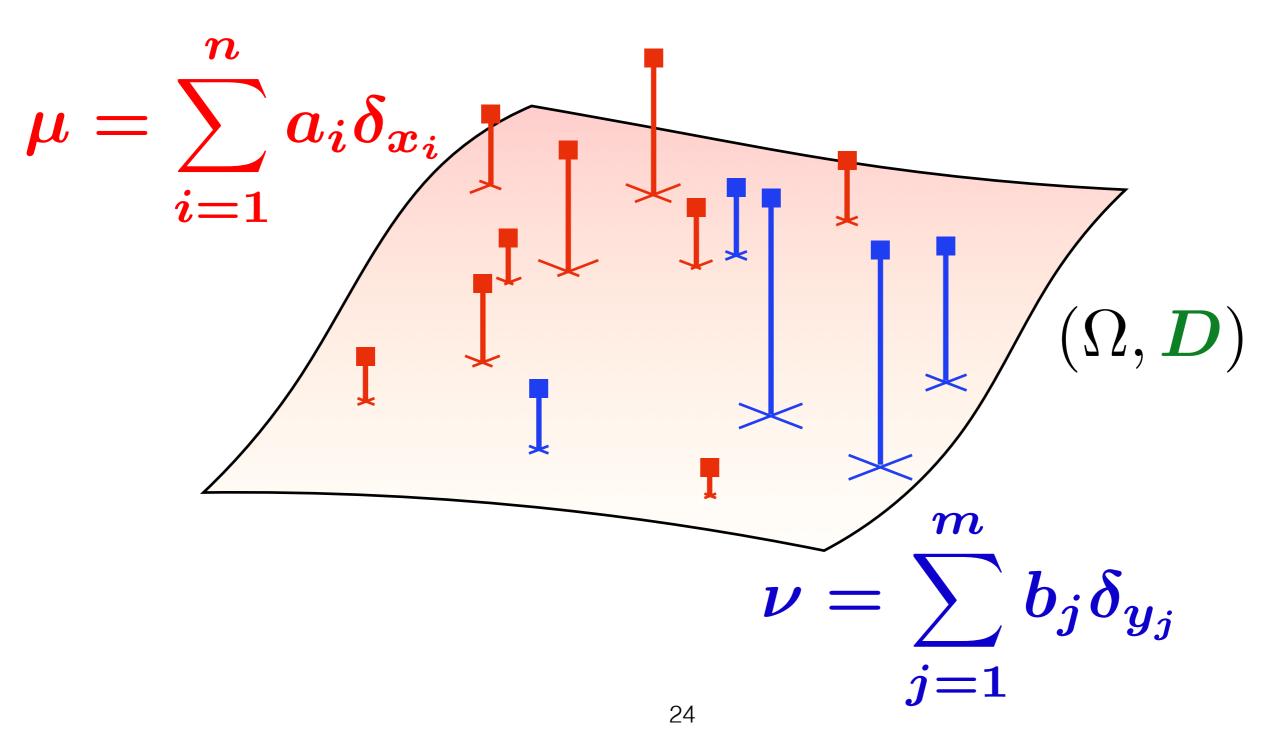
Very Fast EMD Approx. Solver



Note. (Ω, \mathbf{D}) is a random graph with shortest path metric, histograms sampled uniformly on simplex, Sinkhorn tolerance 10^{-2} .

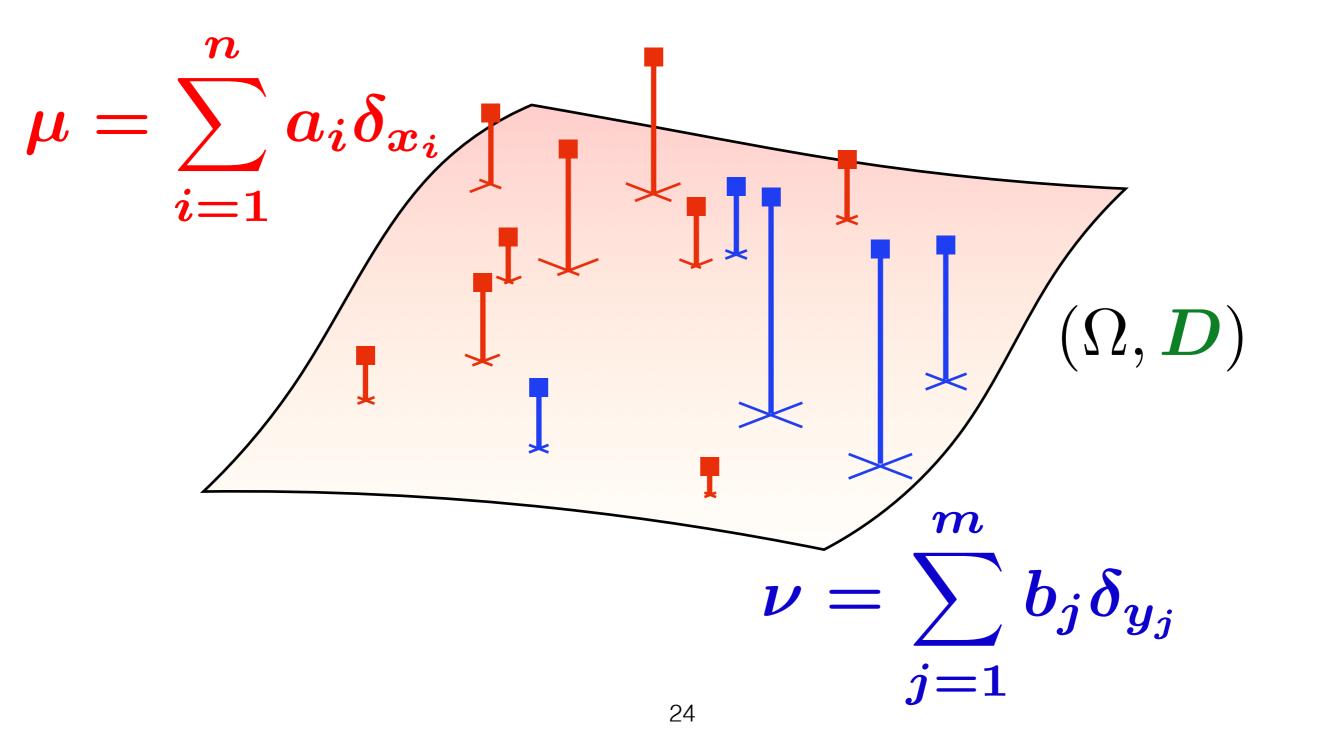
Regularization ----> Differentiability

$$W_{\gamma}((\boldsymbol{a},\boldsymbol{X}),(\boldsymbol{b},\boldsymbol{Y})) = \min_{\boldsymbol{P}\in U(\boldsymbol{a},\boldsymbol{b})} \langle \boldsymbol{P},M_{\boldsymbol{X}\boldsymbol{Y}}\rangle - \gamma E(\boldsymbol{P})$$



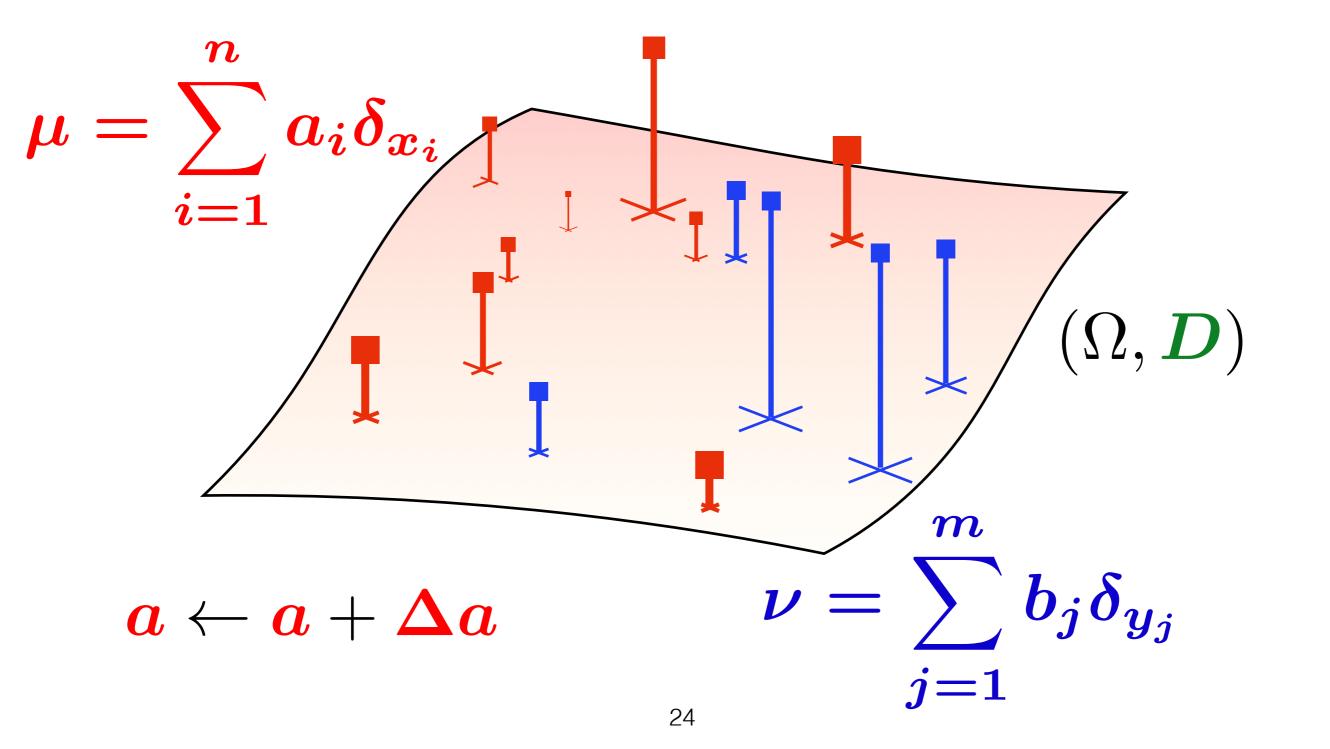
Regularization ----> Differentiability

$$W_{\gamma}((a + \Delta a, X), (b, Y)) = W_{\gamma}((a, X), (b, Y)) + ??$$



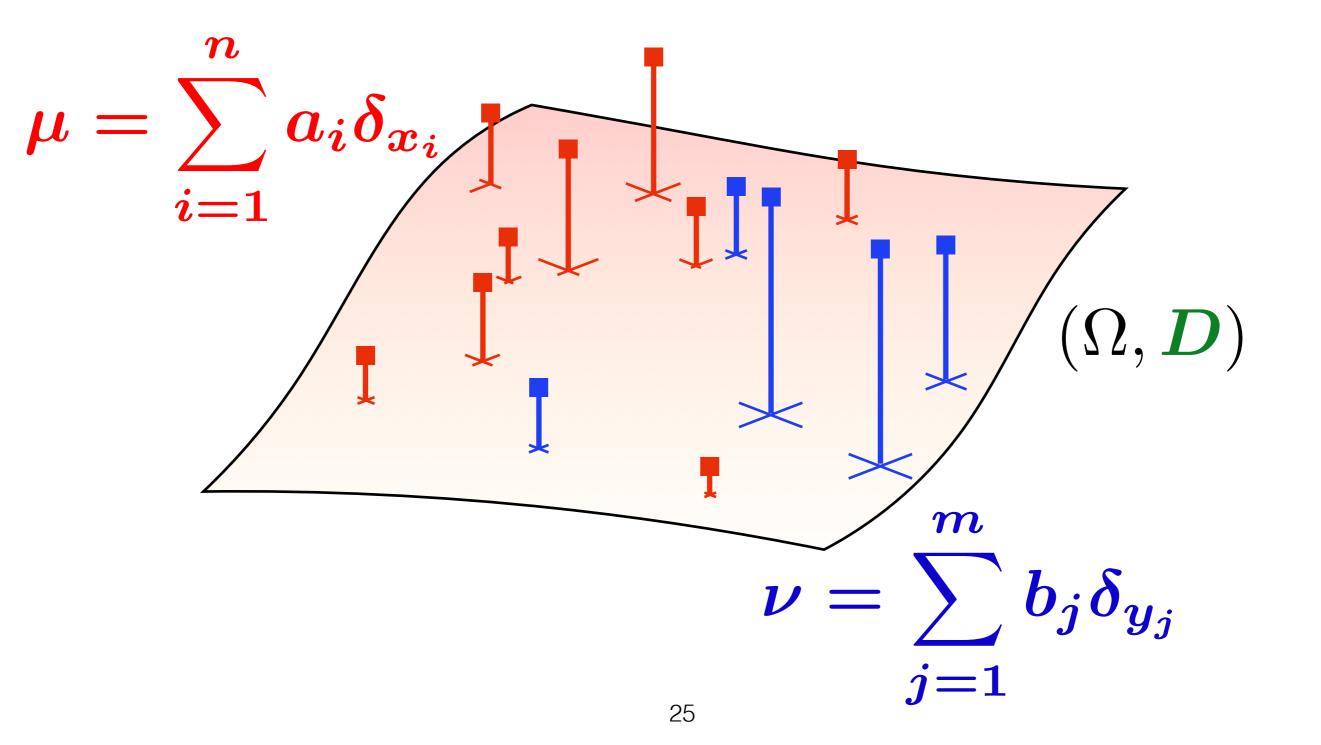
Regularization --- Differentiability

$$W_{\gamma}((a + \Delta a, X), (b, Y)) = W_{\gamma}((a, X), (b, Y)) + ??$$



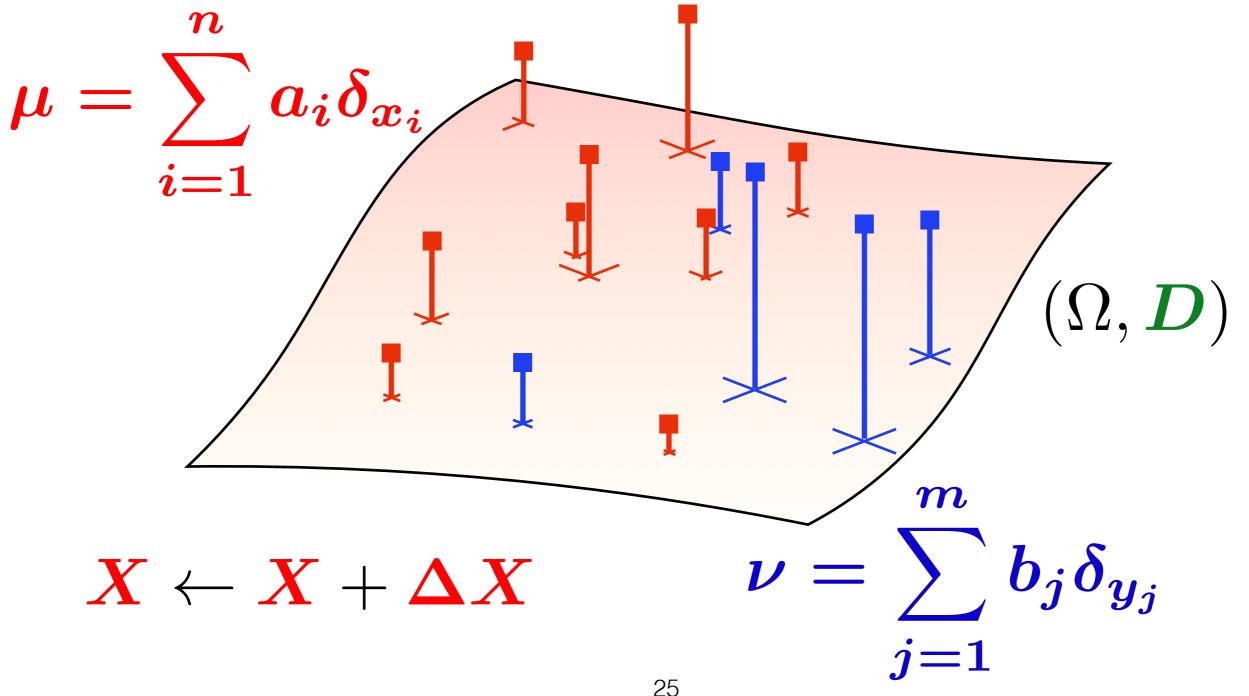
Regularization --- Differentiability

$$W_{\gamma}((a, X + \Delta X), (b, Y)) = W_{\gamma}((a, X), (b, Y)) + ??$$



Regularization --- Differentiability

$$W_{\gamma}((a, X + \Delta X), (b, Y)) = W_{\gamma}((a, X), (b, Y)) + ??$$



Crucial for "min data + W" problems

• Quantization, k-means problem [Lloyd'82]

$$\min_{oldsymbol{\mu} \in \mathcal{P}(\mathbb{R}^d)} W_2^2(oldsymbol{\mu}, oldsymbol{
u}_{ ext{data}}) \ |\sup oldsymbol{\mu}| = k$$

• [McCann'95] Interpolant

$$\min_{\boldsymbol{\mu} \in \mathcal{P}(\Omega)} (1 - t) W_2^2(\boldsymbol{\mu}, \boldsymbol{\nu_1}) + t W_2^2(\boldsymbol{\mu}, \boldsymbol{\nu_2})$$

• [JKO'98] PDE's as gradient flows in $(\mathcal{P}(\Omega), W)$.

$$\mu_{t+1} = \underset{\boldsymbol{\mu} \in \mathcal{P}(\Omega)}{\operatorname{argmin}} J(\boldsymbol{\mu}) + \lambda_t W_p^p(\boldsymbol{\mu}, \mu_t)$$

Crucial for "min data + W" problems

Any (ML) problem involving a **KL** or **L2** loss between (parameterized) histograms or probability measures can be easily *Wasserstein-ized* if we can differentiate *W* efficiently.

1. Differentiability of Regularized OT

Def. Dual regularized OT Problem

$$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \max_{\alpha, \beta} \alpha^{T} \boldsymbol{a} + \beta^{T} \boldsymbol{b} - \frac{1}{\gamma} (e^{\alpha/\gamma})^{T} K e^{\beta/\gamma}$$

Prop. $W_{\gamma}(\mu, \nu)$ is

[CP'16]

- 1. convex w.r.t. \boldsymbol{a} (Danskin), $\nabla_{\boldsymbol{a}} W_{\gamma} = \alpha^{\star} = \gamma \log(\boldsymbol{u}).$
- 2. decreased, when $p = 2, \Omega = \mathbb{R}^d$, using $X \leftarrow Y P_{\gamma}^T \mathbf{D}(\boldsymbol{a}^{-1})$.

2. Duality for Regularized OT's

Prop. Writing $H_{\nu}: \boldsymbol{a} \mapsto W_{\gamma}(\mu, \nu)$, [CP'16]

1. H_{ν} has simple Legendre transform:

$$H_{\boldsymbol{\nu}}^*: \boldsymbol{g} \in \mathbb{R}^n \mapsto \gamma \left(E(\boldsymbol{b}) + \boldsymbol{b}^T \log(Ke^{\boldsymbol{g}/\gamma}) \right)$$

2. If $A \in \mathbb{R}^{n \times d}$, f convex on \mathbb{R}^d ,

$$\min_{\boldsymbol{a}\in\Sigma_n} H_{\boldsymbol{\nu}}(\boldsymbol{a}) + f(A\boldsymbol{a}) = \max_{\boldsymbol{g}\in\mathbb{R}^d} -H_{\boldsymbol{\nu}}^*(A^T\boldsymbol{g}) - f^*(-\boldsymbol{g})$$

3. Stochastic Formulation

$$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \max_{\alpha, \beta} \alpha^{T} \boldsymbol{a} + \beta^{T} \boldsymbol{b} - \frac{1}{\gamma} (e^{\alpha/\gamma})^{T} K e^{\beta/\gamma}$$

$$= \max_{\alpha} \boldsymbol{\alpha}^{T} \boldsymbol{a} - \gamma (\log K e^{\alpha/\gamma})^{T} \boldsymbol{b}$$

$$= \max_{\alpha} \sum_{j=1}^{m} \boldsymbol{b_{j}} \left(\boldsymbol{\alpha}^{T} \boldsymbol{a} - \gamma \log K^{T} e^{\alpha/\gamma} \right)$$

$$= \max_{\alpha} \sum_{j=1}^{m} f_{j}(\alpha)$$

• [GCPB'16] shows how incremental gradient methods can be used to scale this further.

4. Algorithmic Formulation

Def. For $L \geq 1$, define

$$W_L(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} \langle \boldsymbol{P_L}, M_{\boldsymbol{XY}} \rangle,$$

where $P_L \stackrel{\text{def}}{=} \operatorname{diag}(u_L) K \operatorname{diag}(v_L)$,

$$\mathbf{v_0} = \mathbf{1}_m; l \geq 0, \mathbf{u_l} \stackrel{\text{def}}{=} \mathbf{a} / K \mathbf{v_l}, \mathbf{v_{l+1}} \stackrel{\text{def}}{=} \mathbf{b} / K^T \mathbf{u_l}.$$

Prop. $\frac{\partial W_L}{\partial \mathbf{X}}$, $\frac{\partial W_L}{\partial \mathbf{a}}$ can be computed recursively, in O(L) kernel $K \times \text{vector products}$.

Algorithmic Formulation of Reg. OT

Example: Differentiability w.r.t. a

$$\left(\frac{\partial \boldsymbol{v_0}}{\partial a}\right)^T = \mathbf{0}_{m \times n},$$

$$\left(\frac{\partial \boldsymbol{u_l}}{\partial a}\right)^T \boldsymbol{x} = \frac{\boldsymbol{x}}{K\boldsymbol{v_l}} - \left(\frac{\partial \boldsymbol{v_l}}{\partial a}\right)^T K^T \frac{\boldsymbol{x} \circ a}{(K\boldsymbol{v_l})^2},$$

$$\left(\frac{\partial \boldsymbol{v_{l+1}}}{\partial a}\right)^T \boldsymbol{y} = -\left(\frac{\partial \boldsymbol{u_l}}{\partial a}\right)^T K \frac{\boldsymbol{y} \circ b}{(K^T \boldsymbol{u_l})^2}.$$

Algorithmic Formulation of Reg. OT

Example: Differentiability w.r.t. a

$$N = K \circ M_{XY}$$

$$\nabla_{\boldsymbol{a}} W_L(\boldsymbol{\mu}, \boldsymbol{\nu}) = \left(\frac{\partial \boldsymbol{u_L}}{\partial a}\right)^T N \boldsymbol{v_L} + \left(\frac{\partial \boldsymbol{v_L}}{\partial a}\right)^T N^T \boldsymbol{u_L}$$

```
function [d,grad_a,grad_b,hess_a,hess_b] = sinkhornObjGradHess(a,b,K,M,niter)
u update = @(v,a) a./(K*v);
v update = @(u,b) b./(K'*u);
% DuDa = 0(eps,dvda,a,v) (eps./(K*v))- (a./((K*v).^2)).*(K*dvda(eps));
용
% DvDa = (eps,duda,b,u) - (b./((K'*u).^2)).*(K'*duda(eps));
% DuDb = @(eps,dvdb,a,v) -(a./((K*v).^2)).*(K*dvdb(eps));
용
% DvDb = (eps,dudb,b,u) (eps./(K'*u))-(b./((K'*u).^2)).*(K'*dudb(eps));
DuDat = @(x,dvdat,a,v) bsxfun(@rdivide,x,K*v)... (x./(K*v))
    -dvdat(K'*( bsxfun(@times,x,(a./((K*v).^2)))));...-dvdat(K'*( (a./((K*v).^2)).*x));
DvDat = (x,dudat,b,u) -dudat(K*(bsxfun(times,x,(b./((K'*u).^2))))); ...(b./((K'*u).^2)).*x))
JDuDat = ((x, Jdvdat, dvdat, a, v) - diag((x'*dvdat(K'))'./((K*v).^2)) ... (K*dvda(x))
    - Jdvdat(x)*K'*diag(a./((K*v).^2))...
    - dvdat(K'* ...
    ( diag(a.*( (-2*(x'*dvdat(K'))')./((K*v).^3)))+...
    diag(x./((K*v).^2))); %1
JDvDat = @(x, Jdudat, dudat, b, u) ...
    -Jdudat(x)*K*diag(b./((K'*u).^2))...
    - dudat(K)* ( ...
    diag(b.*((-2*(x'*dudat(K))')./((K'*u).^3))));...
```

```
DuDbt = @(x,dvdbt,a,v) -dvdbt(K'*(bsxfun(@times,x,(a./((K*v).^2))))); ...(a./((K*v).^2)).*x));
DvDbt = @(x,dudbt,b,u) bsxfun(@rdivide,x,K'*u) ... (x./(K'*u))...
    -dudbt(K*(bsxfun(@times,x,(b./((K'*u).^2)))));...(b./((K'*u).^2)) .*x));
JDvDbt = @(x,Jdudbt,dudbt,b,u) -diag((x'*dudbt(K))'./((K'*u).^2)) ... (K'*dudb(x))
    - Jdudbt(x)*K*diag(b./((K'*u).^2))...
    - dudbt(K)* ( ...
    diag(b.*((-2*(x'*dudbt(K))')./((K'*u).^3)))+...
    diag(x./((K'*u).^2)));
JDuDbt = @(x, Jdvdbt, dvdbt, a, v) \dots
    -Jdvdbt(x)*K'*diag(a./((K*v).^2))...
    - dvdbt(K')* ( ...
    diag(a.*((-2*(x'*dvdbt(K'))')./((K*v).^3))));
```

```
n=size(a,1);
m=size(b,1);
DVDAT= @(eps) zeros(n,size(eps,2));
DVDBT= @(eps) zeros(m,size(eps,2));
JDVDAT= @(eps) zeros(n,m);
JDVDBT= @(eps) zeros(m,m);
v=ones(m,size(b,2));
for j=1:niter,
    u=u_update(v,a);
    DUDAT = @(x) DuDat(x,DVDAT,a,v);
    DUDBT = @(x) DuDbt(x,DVDBT,a,v);
    if nargout>3
        JDUDAT = @(x) JDuDat(x, JDVDAT, DVDAT, a, v);
        JDUDBT = @(x) JDuDbt(x, JDVDBT, DVDBT, a, v);
    end
    v=v update(u,b);
    DVDAT = @(x) DvDat(x,DUDAT,b,u);
    DVDBT = @(x) DvDbt(x,DUDBT,b,u);
    if nargout>3
        JDVDAT = @(x) JDvDat(x, JDUDAT, DUDAT, b, u);
        JDVDBT = @(x) JDvDbt(x, JDUDBT, DUDBT, b, u);
    end
end
```

```
U=K.*M;
d=diag(u'*U*v);

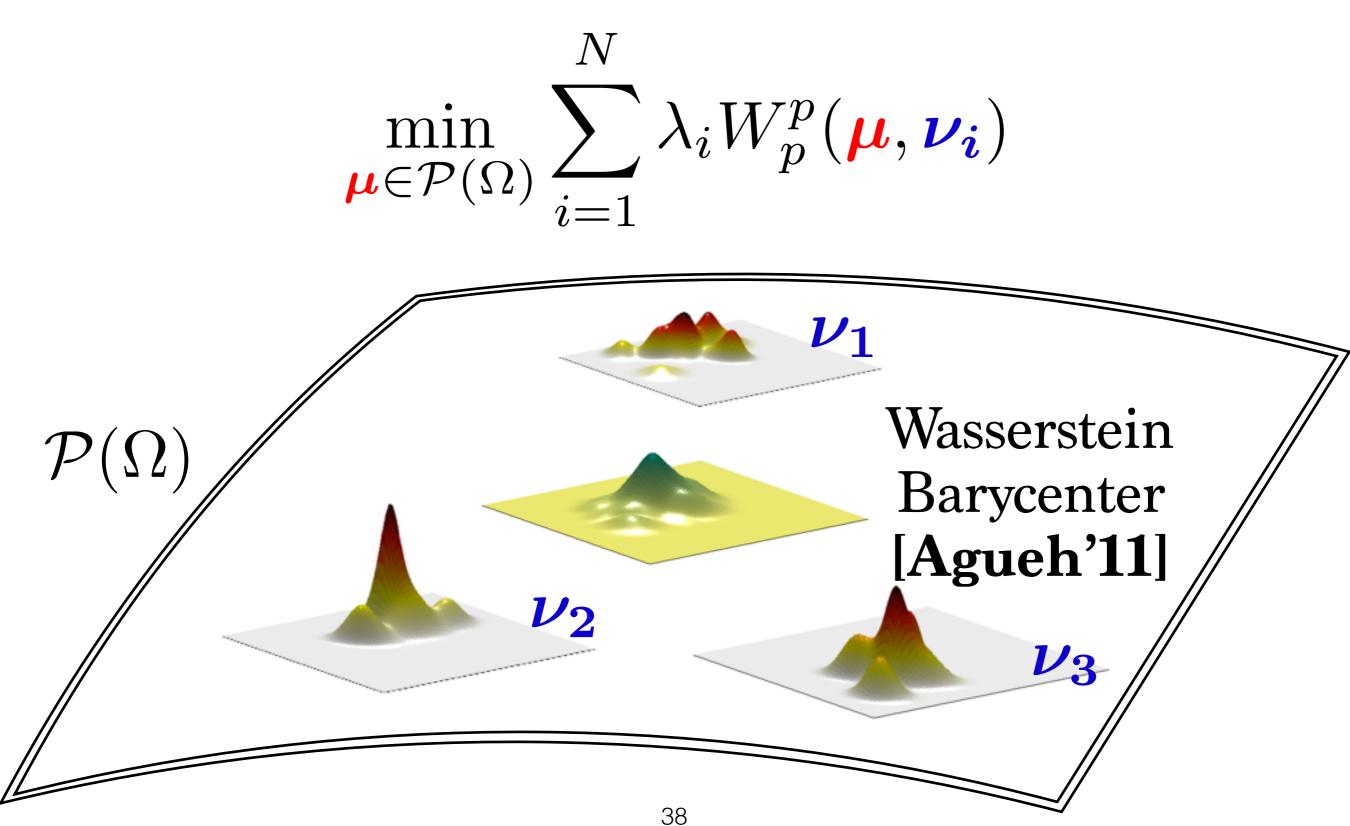
grad_a=(DUDAT(U*v)+DVDAT(U'*u));
grad_b=(DUDBT(U*v)+DVDBT(U'*u));

if nargout>3
   hess_a= @(eps) JDUDAT(eps)*(U*v)+DUDAT((eps'*DVDAT(U'))')+...
   JDVDAT(eps)*(U'*u)+DVDAT((eps'*DUDAT(U))');
end
```

Thanks to these tricks...

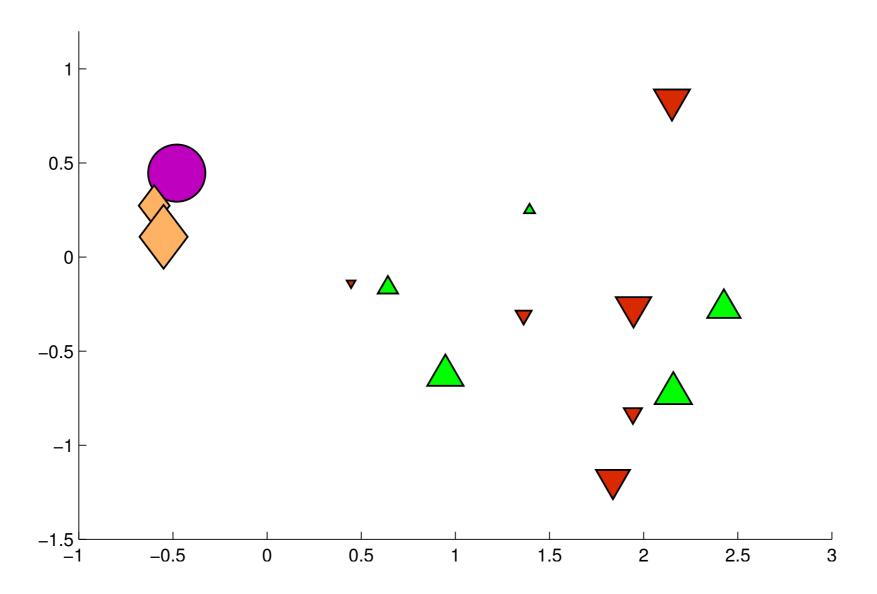
- [Agueh'11] Barycenters [CD'14][BCCNP'15] [GCP'15][S..C..'15]
- [Burger'12] TV gradient flow using duality [CP'16]
- Dictionary Learning / Latent Factors [RCP'16]
- [Bigot'15] W-PCA [SC'15]
- Density fitting / parameter estimation [MMC'16]
- Inverse problems / Wasserstein regression [BPC'16]

Wasserstein Barycenters



Multimarginal Formulation

• Exact solution (W_2) using MM-OT. [Agueh'11]



Multimarginal Formulation

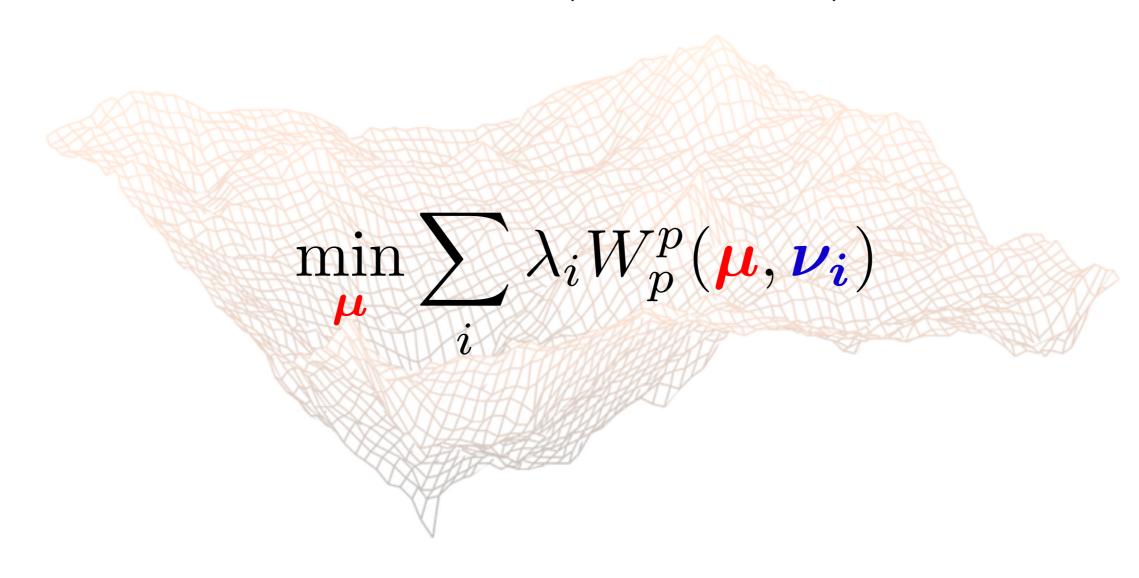
• Exact solution (W_2) using MM-OT. [Agueh'11]



If $|\operatorname{supp} \nu_i| = n_i$, LP of size $(\prod_i n_i, \sum_i n_i)$

Finite Case, LP Formulation

• When Ω is a finite set, metric M, another LP.



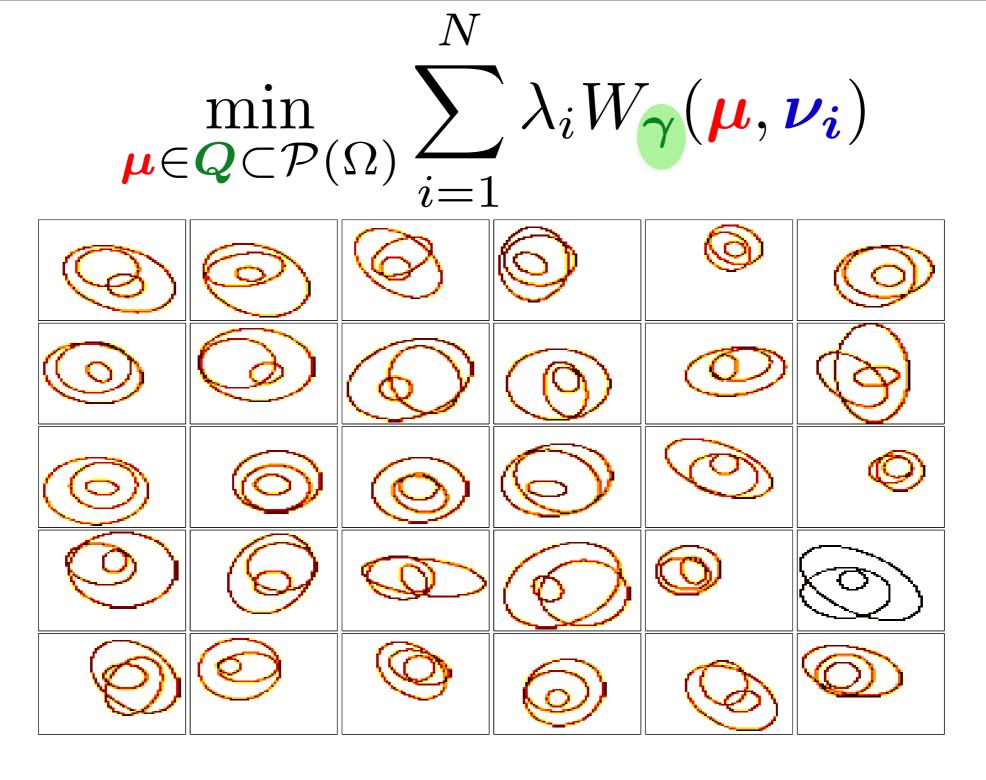
Finite Case, LP Formulation

• When Ω is a finite set, metric M, another LP.

$$egin{aligned} \min_{oldsymbol{P_1},\cdots,oldsymbol{P_N},oldsymbol{a}} \sum_{i=1}^N \lambda_i \langle oldsymbol{P_i}, M
angle \\ ext{s.t. } oldsymbol{P_i}^T \mathbf{1}_n = oldsymbol{b_i}, orall i \leq N, \\ oldsymbol{P_1} \mathbf{1}_n = \cdots = oldsymbol{P_N} \mathbf{1}_d = oldsymbol{a}. \end{aligned}$$

If
$$|\Omega| = n$$
, LP of size $(Nn^2, (2N-1)n)$; unstable

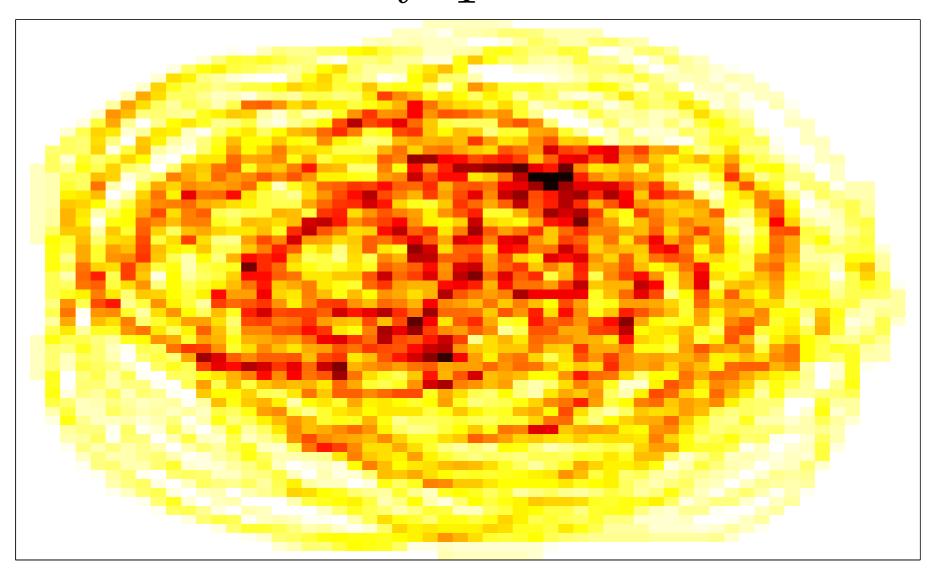
Primal Descent on Regularized W



Fast Computation of Wasserstein Barycenters
International Conference on Machine Learning 2014

Primal Descent on Regularized W

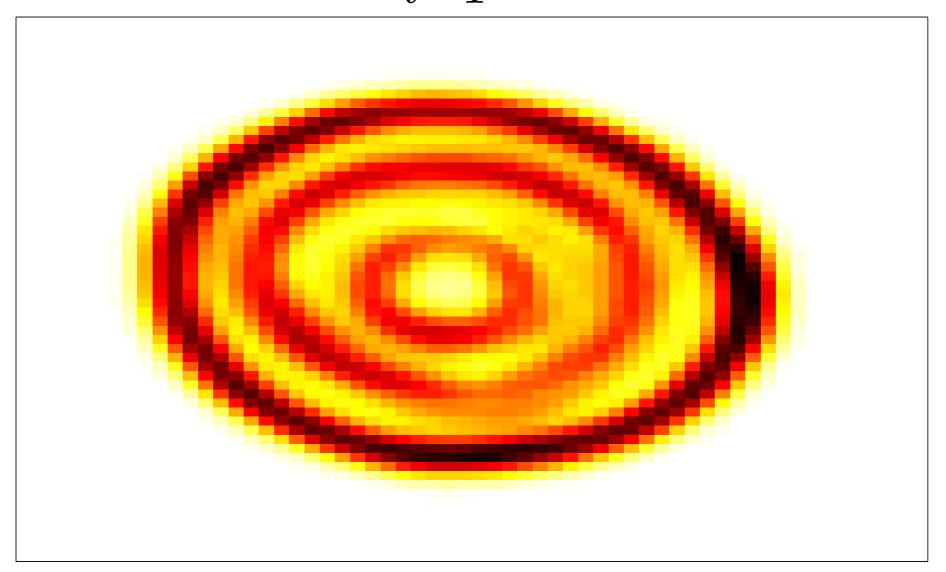
$$\min_{\boldsymbol{\mu} \in \boldsymbol{Q} \subset \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_i W_{\boldsymbol{\gamma}}(\boldsymbol{\mu}, \boldsymbol{\nu_i})$$



Fast Computation of Wasserstein Barycenters
International Conference on Machine Learning 2014

Primal Descent on Regularized W

$$\min_{\boldsymbol{\mu} \in \boldsymbol{Q} \subset \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_i W_{\boldsymbol{\gamma}}(\boldsymbol{\mu}, \boldsymbol{\nu_i})$$



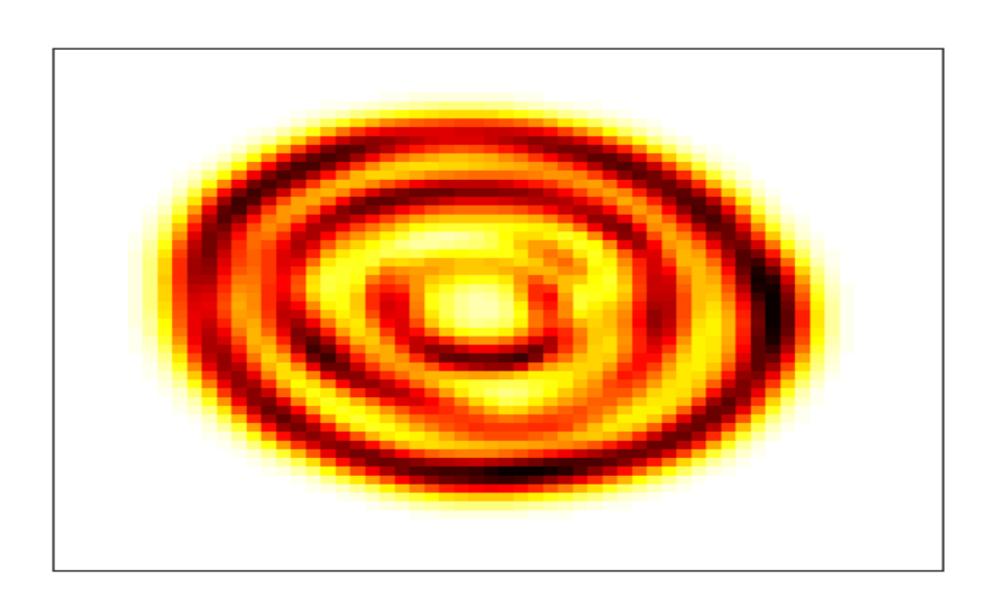
Fast Computation of Wasserstein Barycenters
International Conference on Machine Learning 2014

Primal Descent on Algorithmic W

$$\min_{\boldsymbol{\mu} \in \boldsymbol{Q} \subset \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_i W_{\boldsymbol{L}}(\boldsymbol{\mu}, \boldsymbol{\nu_i})$$

Primal Descent on Algorithmic W

$$\min_{\boldsymbol{\mu} \in \boldsymbol{Q} \subset \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_i W_{\boldsymbol{L}}(\boldsymbol{\mu}, \boldsymbol{\nu_i})$$



Wasserstein Barycenter = KL Projections

$$\langle P, M_{\mathbf{XY}} \rangle - \gamma E(P) = \gamma \mathbf{KL}(P|\mathbf{K})$$

$$\min_{\boldsymbol{a}} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}(\boldsymbol{a}, \boldsymbol{b_{i}}) = \min_{\substack{\mathbf{P} = [\boldsymbol{P_{1}}, \dots, \boldsymbol{P_{N}}] \\ \mathbf{P} \in \boldsymbol{C_{1}} \cap \boldsymbol{C_{2}}}} \sum_{i=1}^{N} \lambda_{i} \mathbf{KL}(\boldsymbol{P_{i}} | \boldsymbol{K})$$

$$\boldsymbol{C_{1}} = \{\mathbf{P} | \exists \boldsymbol{a}, \forall i, P_{i} \mathbf{1}_{m} = \boldsymbol{a} \}$$

$$\boldsymbol{C_{2}} = \{\mathbf{P} | \forall i, P_{i}^{T} \mathbf{1}_{n} = \boldsymbol{b_{i}} \}$$

Wasserstein Barycenter = KL Projections

$$\min_{\boldsymbol{a}} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}(\boldsymbol{a}, \boldsymbol{b_{i}}) = \min_{\substack{\mathbf{P} = [\boldsymbol{P_{1}}, \dots, \boldsymbol{P_{N}}] \\ \mathbf{P} \in \boldsymbol{C_{1}} \cap \boldsymbol{C_{2}}}} \sum_{i=1}^{N} \lambda_{i} \mathbf{KL}(\boldsymbol{P_{i}} | \boldsymbol{K})$$

$$\boldsymbol{C_{1}} = \{\mathbf{P} | \exists \boldsymbol{a}, \forall i, P_{i} \mathbf{1}_{m} = \boldsymbol{a} \}$$

$$\boldsymbol{C_{2}} = \{\mathbf{P} | \forall i, P_{i}^{T} \mathbf{1}_{n} = \boldsymbol{b_{i}} \}$$

[BCCNP'15]

$$[K\cdots K]$$

Wasserstein Barycenter = KL Projections

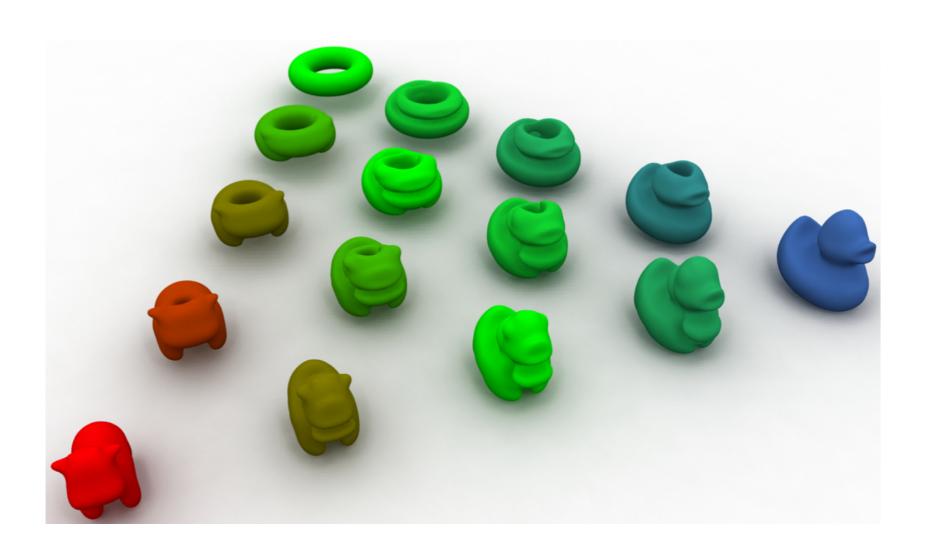
$$\min_{\boldsymbol{a}} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}(\boldsymbol{a}, \boldsymbol{b_{i}}) = \min_{\substack{\mathbf{P} = [\boldsymbol{P_{1}}, \dots, \boldsymbol{P_{N}}] \\ \mathbf{P} \in \boldsymbol{C_{1}} \cap \boldsymbol{C_{2}}}} \sum_{i=1}^{N} \lambda_{i} \mathbf{KL}(\boldsymbol{P_{i}} | \boldsymbol{K})$$

$$\boldsymbol{C_{1}} = \{\mathbf{P} | \exists \boldsymbol{a}, \forall i, P_{i} \mathbf{1}_{m} = \boldsymbol{a} \}$$

$$\boldsymbol{C_{2}} = \{\mathbf{P} | \forall i, P_{i}^{T} \mathbf{1}_{n} = \boldsymbol{b_{i}} \}$$

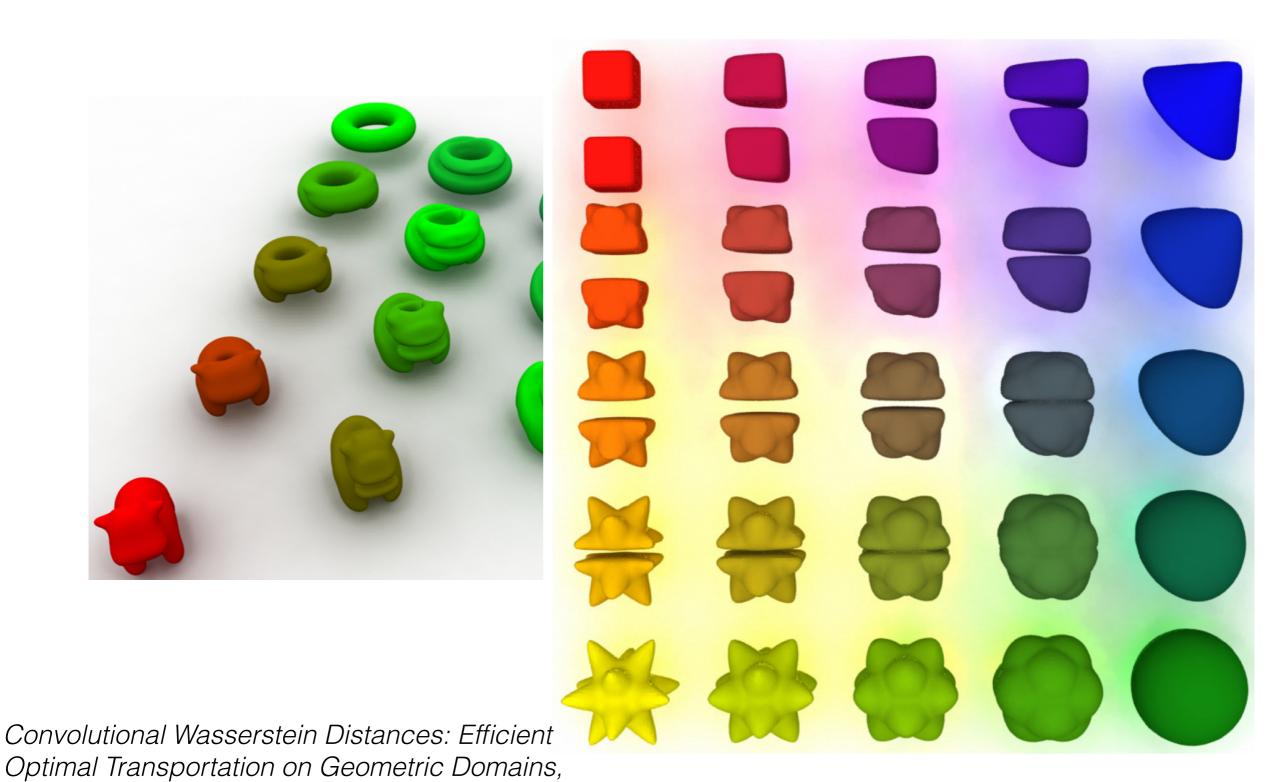
Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains,

SIGGRAPH'15

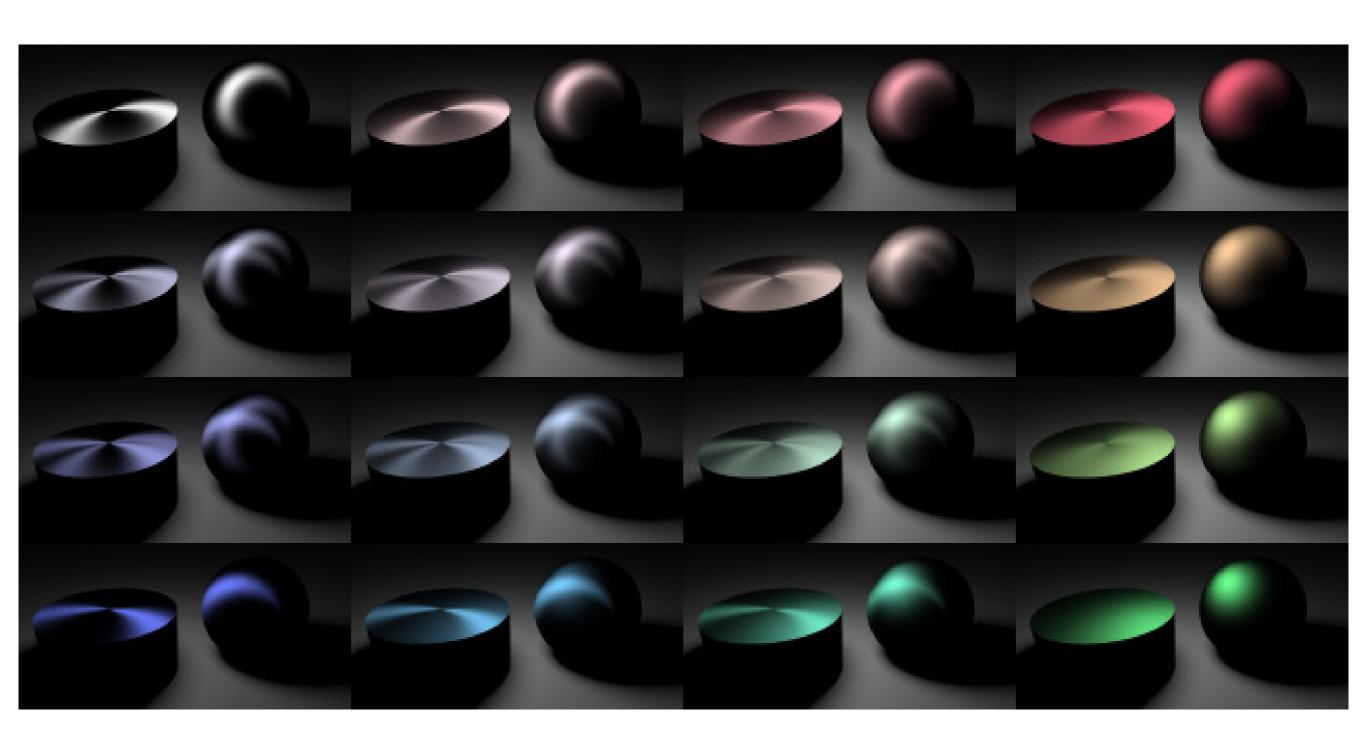


Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains,

SIGGRAPH'15

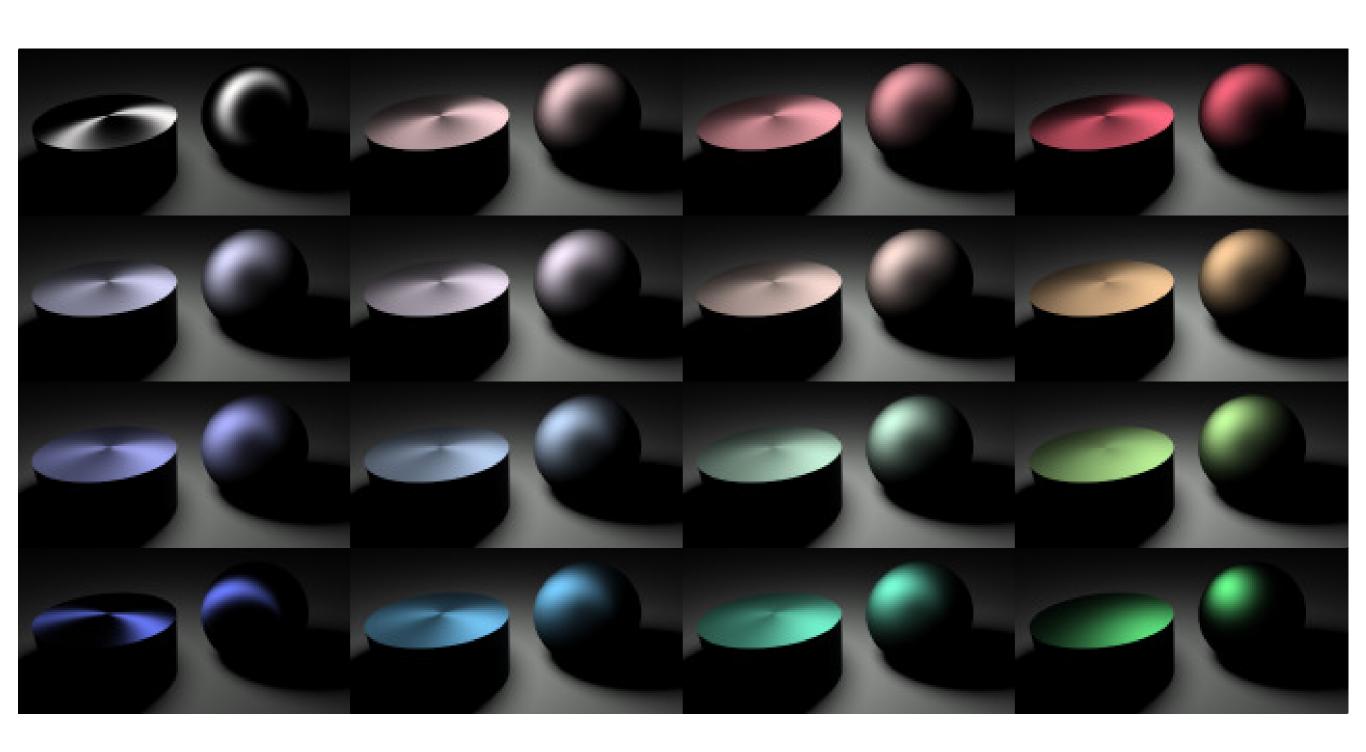


SIGGRAPH'15



Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains,

SIGGRAPH'15



Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains,

SIGGRAPH'15

Inverse Wasserstein Problems

• consider Barycenter operator:

$$m{b}(\lambda) \stackrel{\text{def}}{=} \operatorname*{argmin} \sum_{i=1}^{N} \lambda_i W_{\gamma}(m{a}, m{b_i})$$

address now Wasserstein inverse problems:

Given
$$\boldsymbol{a}$$
, find $\underset{\lambda \in \Sigma_N}{\operatorname{argmin}} \mathcal{E}(\lambda) \stackrel{\text{def}}{=} \operatorname{Loss}(\boldsymbol{a}, \boldsymbol{b}(\lambda))$

The Wasserstein Simplex



Barycenters = Fixed Points

Prop. [BCCNP'15] Consider $\boldsymbol{B} \in \Sigma_d^N$ and let $\boldsymbol{U_0} = \mathbf{1_{d \times N}}$, and then for $l \geq 0$:

$$\boldsymbol{b}^{l} \stackrel{\text{def}}{=} \exp\left(\log\left(K^{T}\boldsymbol{U_{l}}\right)\lambda\right); \begin{cases} \boldsymbol{V_{l+1}} \stackrel{\text{def}}{=} \frac{\boldsymbol{b}^{l}\boldsymbol{1}_{N}^{T}}{K^{T}\boldsymbol{U_{l}}}, \\ \boldsymbol{U_{l+1}} \stackrel{\text{def}}{=} \frac{\boldsymbol{B}}{K\boldsymbol{V_{l+1}}}. \end{cases}$$

Using Truncated Barycenters

instead of using the exact barycenter

$$\underset{\lambda \in \Sigma_N}{\operatorname{argmin}} \, \mathcal{E}(\lambda) \stackrel{\text{def}}{=} \operatorname{Loss}(\boldsymbol{a}, \boldsymbol{b}(\lambda))$$

• use instead the L-iterate barycenter

$$\underset{\lambda \in \Sigma_N}{\operatorname{argmin}} \, \mathcal{E}^{(L)}(\lambda) \stackrel{\text{def}}{=} \operatorname{Loss}(\boldsymbol{a}, \boldsymbol{b}^{(L)}(\lambda))$$

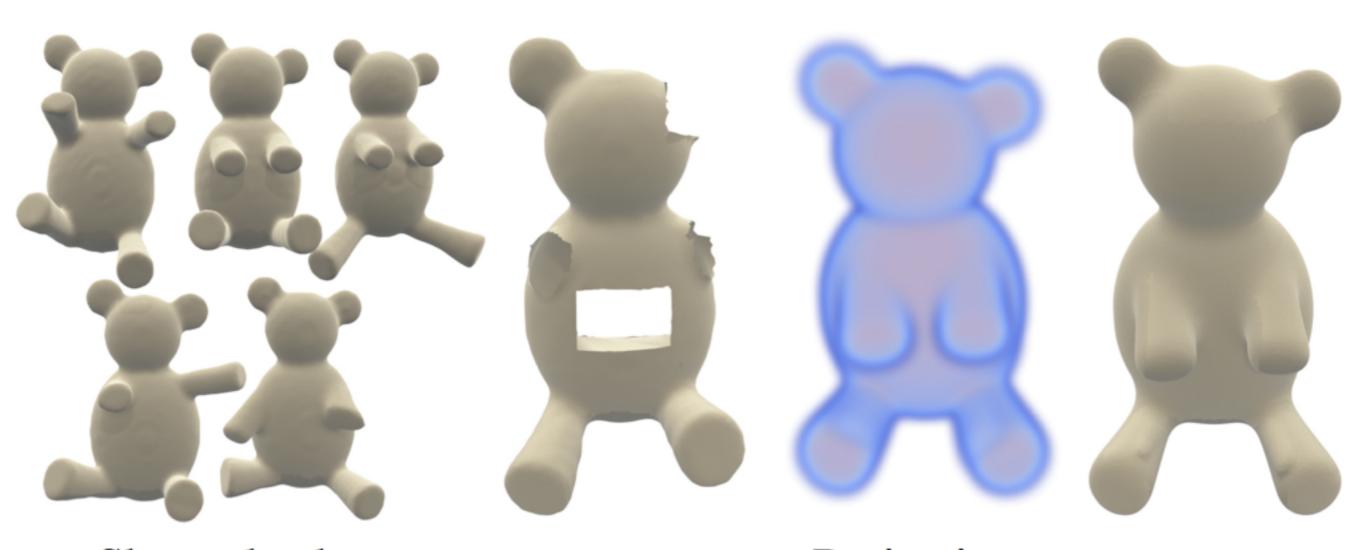
Differente using the chain rule.

$$\nabla \mathcal{E}^{(L)}(\lambda) = [\partial \boldsymbol{b}^{(L)}]^T(\boldsymbol{g}), \ \boldsymbol{g} \stackrel{\text{def}}{=} \nabla \operatorname{Loss}(\boldsymbol{a}, \cdot)|_{\boldsymbol{b}^{(L)}(\lambda)}.$$

Gradient / Barycenter Computation

```
function SINKHORN-DIFFERENTIATE((p_s)_{s=1}^S, q, \lambda)
       \forall s, b_s^{(0)} \leftarrow 1
       (w,r) \leftarrow (0^S, 0^{S \times N})
       for \ell = 1, 2, \dots, L // Sinkhorn loop
               \forall s, \varphi_s^{(\ell)} \leftarrow K^{\top} \frac{p_s}{Kb_s^{(\ell-1)}}
              p \leftarrow \prod_{s} \left( \varphi_s^{(\ell)} \right)^{\lambda_s}
               \forall s, b_s^{(\ell)} \leftarrow \frac{p}{c^{(\ell)}}
       g \leftarrow \nabla \mathcal{L}(p,q) \odot p
       for \ell = L, L - 1, \dots, 1 // Reverse loop
               \forall s, w_s \leftarrow w_s + \langle \log \varphi_s^{(\ell)}, q \rangle
               \forall s, r_s \leftarrow -K^{\top}(K(\frac{\lambda_s g - r_s}{\sigma^{(\ell)}}) \odot \frac{p_s}{(Kh^{(\ell-1)})^2}) \odot b_s^{(\ell-1)}
               g \leftarrow \sum_{s} r_s
       return P^{(L)}(\lambda) \leftarrow p, \nabla \mathcal{E}_L(\lambda) \leftarrow w
```

Application: Volume Reconstruction



Shape database (p_1, \ldots, p_5)

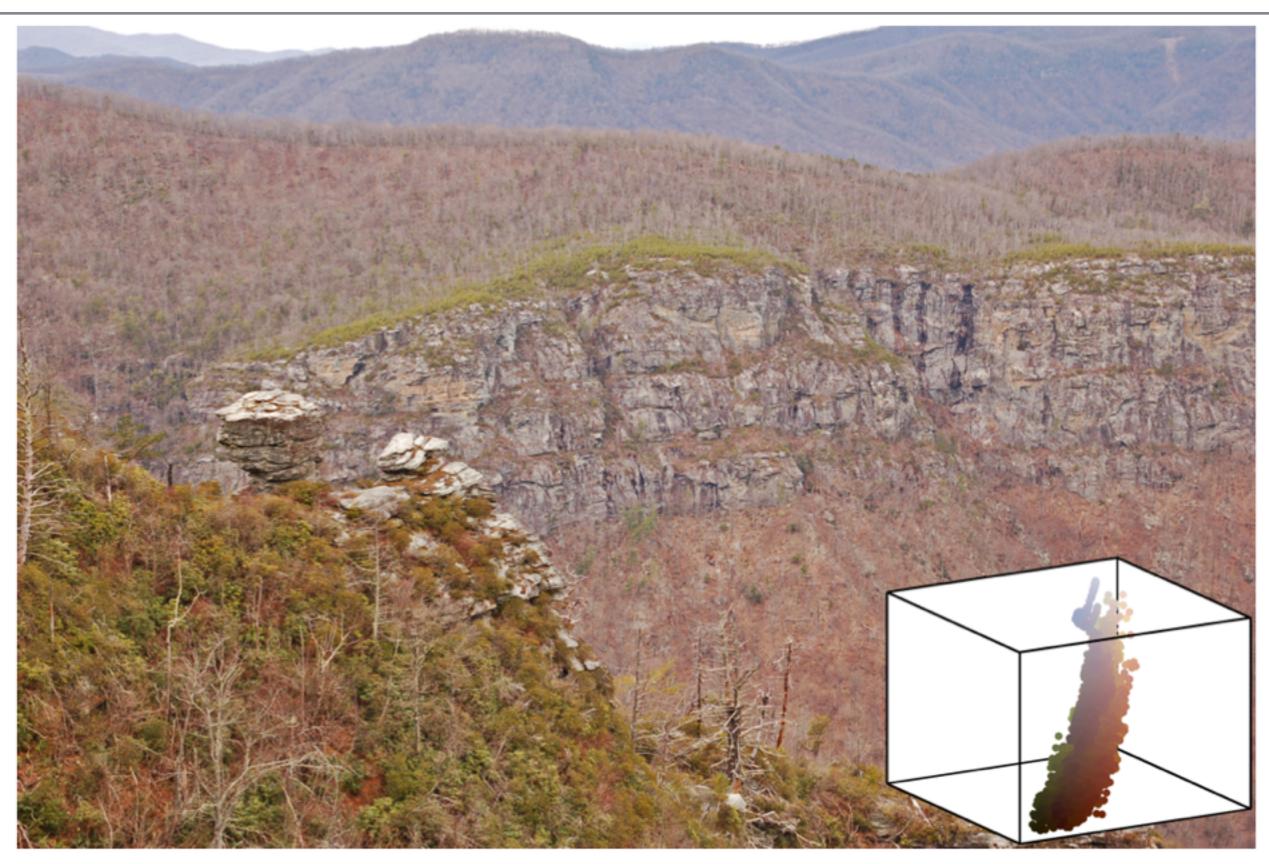
Input shape q

Projection $P(\lambda)$

Iso-surface

Wasserstein Barycentric Coordinates: Histogram Regression using Optimal Transport, **SIGGRAPH'16**

[BPC'16]

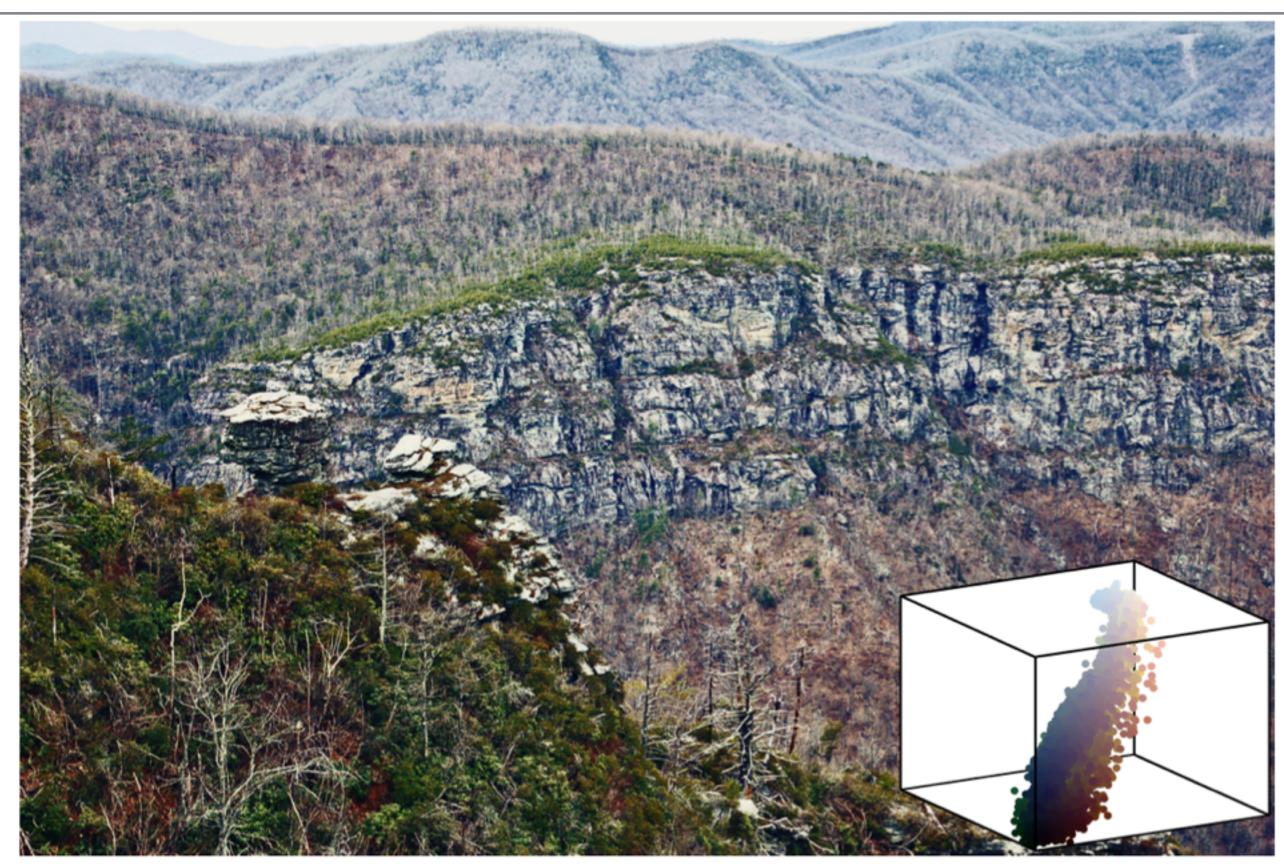


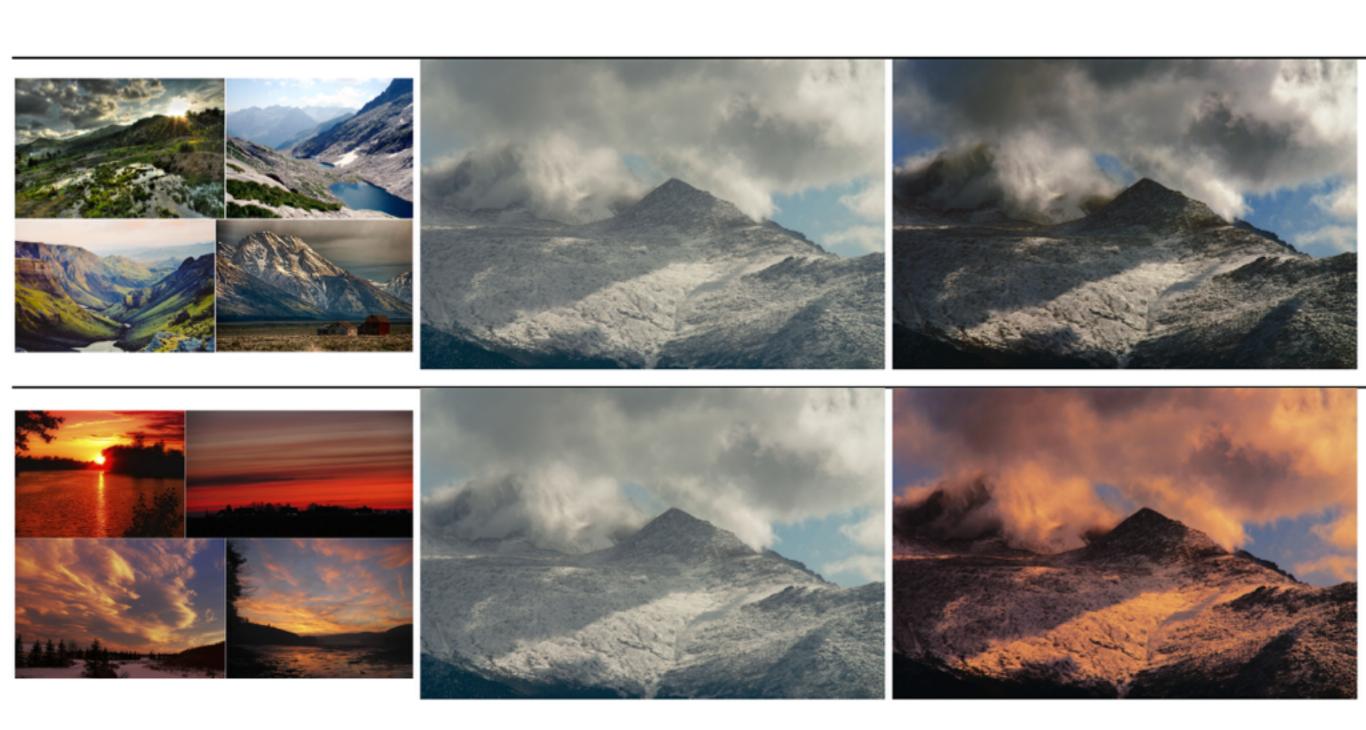
$$\lambda_0 = 0.03$$

$$\lambda_2 = 0.40$$

$$\lambda_1 = 0.12$$

$$\lambda_3 = 0.43$$

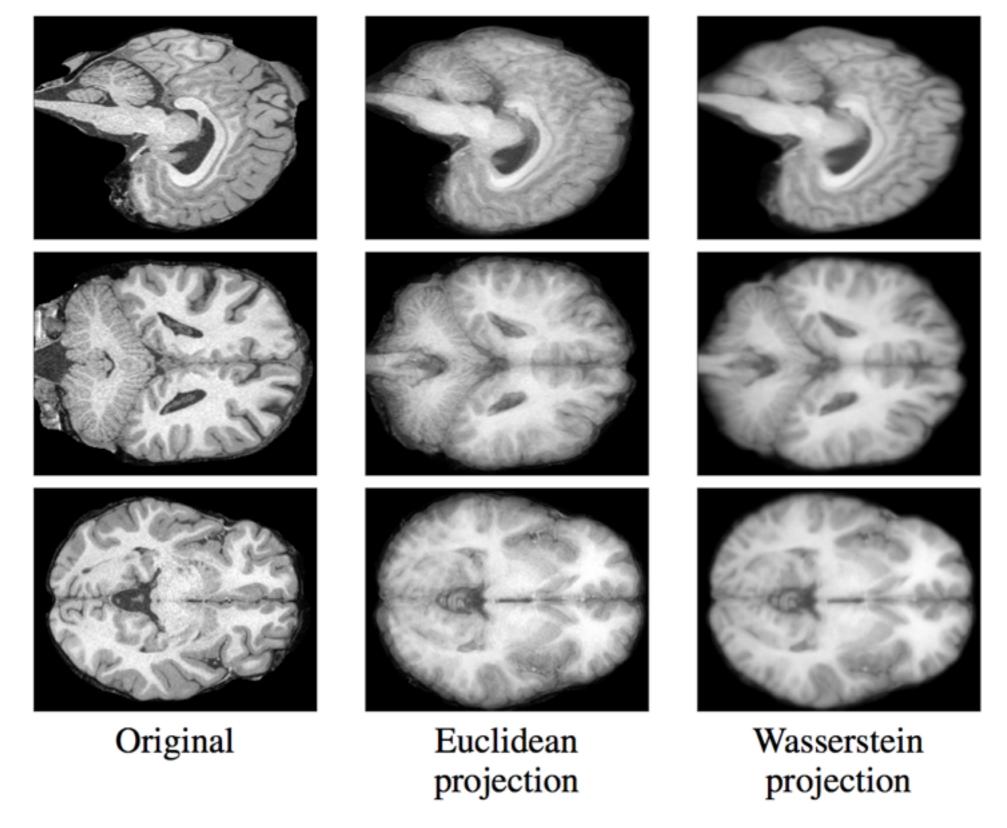




Wasserstein Barycentric Coordinates: Histogram Regression using Optimal Transport, SIGGRAPH'16

[BPC'16]

Application: Brain Mapping



To conclude

- *Entropy* regularization is a very effective way to get OT to work as a generic loss.
- Many recent extensions:
 - [Schmitzer'16]: fast multiscale approaches
 - [ZFMAP'15] [CSPV'16]: Unbalanced transport
 - [SPKS'16] [PCS'16] extensions to Gromov-W.
 - [FCTR'15] Domain adaptation in ML