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low dim.
[M’11][KMB’16] [L’15]
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W is versatile



13

(⌦,D)

OT on Two Empirical Measures

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj



13

(⌦,D)

OT on Two Empirical Measures

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj



Dual regularization, Discrete

14

◆�C(', ) = �
RR

e('� �Dp)/�dµd⌫

W�(µ,⌫) = sup
', 

Z
'dµ+

Z
 d⌫ � ◆�C(', )

REGULARIZED DUAL

µ =
Pn

i=1 ai

�
xi

⌫ =
Pm

j=1 bj�yj

REGULARIZED DISCRETE DUAL

W�(µ,⌫) = max

↵,�
↵Ta+ �T b� �

X

ij

aibj e
↵

i

+�

j

�D

p(x
i

,y
j

)

�



15

◆�C(', ) = �
RR

e('� �Dp)/�dµd⌫

W�(µ,⌫) = sup
', 

Z
'dµ+

Z
 d⌫ � ◆�C(', )

REGULARIZED DUAL

µ =
Pn

i=1 ai

�
xi

⌫ =
Pm

j=1 bj�yj

where KK =


e�

D

p(x
i

,y
j

)

�

�

ijREGULARIZED DISCRETE DUAL

Dual regularization, Discrete

W�(µ,⌫) = max

↵,�
↵Ta+ �T b� �(a� e↵/�

)

T KK(b� e�/�
)



16

REGULARIZED DISCRETE DUAL

Algorithm: Block Coordinate Ascent

r↵E = a� a� e↵/� � KK(b� e�/�)

r�E = b� b� e�/� � KKT (a� e↵/�)

W�(µ,⌫) = max

↵,�
↵Ta+ �T b� �(a� e↵/�

)

T KK(b� e�/�
)

E(↵,�) = ↵Ta+ �T b� �(a� e↵/�)T KK(b� e�/�)



16

REGULARIZED DISCRETE DUAL

Algorithm: Block Coordinate Ascent

r↵E = a� a� e↵/� � KK(b� e�/�)

r�E = b� b� e�/� � KKT (a� e↵/�)

�  �� log KKT
(a� e↵/�

)

↵ �� log KK(b� e�/�
)

W�(µ,⌫) = max

↵,�
↵Ta+ �T b� �(a� e↵/�

)

T KK(b� e�/�
)

E(↵,�) = ↵Ta+ �T b� �(a� e↵/�)T KK(b� e�/�)



17

Algorithm: Block Coordinate Ascent

REGULARIZED DISCRETE DUAL

W�(µ,⌫) = max

↵,�
↵Ta+ �T b� �(a� e↵/�

)

T KK(b� e�/�
)



17

Algorithm: Block Coordinate Ascent

u a

KKv

v  b

KKTu

REGULARIZED DISCRETE DUAL

W�(µ,⌫) = max

↵,�
↵Ta+ �T b� �(a� e↵/�

)

T KK(b� e�/�
)



17

Algorithm: Block Coordinate Ascent

(u,v)
def
=(a� e↵/� , b� e�/�)

u a

KKv

v  b

KKTu

REGULARIZED DISCRETE DUAL

W�(µ,⌫) = max

↵,�
↵Ta+ �T b� �(a� e↵/�

)

T KK(b� e�/�
)

�  �� log KKT
(a� e↵/�

)

↵ �� log KK(b� e�/�
)



Entropic Regularization [Wilson’62]
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Note: Unique optimal solution because of strong concavity of Entropy
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Entropic Regularization [Wilson’62]
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EMD Entropy

Discrete analog:  Cuturi, NIPS 2013
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Fast & Scalable Algorithm
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• [Sinkhorn’64] fixed-point iterations for           

•               complexity, GPGPU parallel [C’13] . 
•                if                           and       separable.

Prop. If P�
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(u,v)

O(nm)

Dp

[S..C..’15]
⌦ = {1, . . . , n}dO(nd+1)

u a/KKv, v  b/KKTu
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Figure 6: Displacement interpolation without (left) and with (right) entropy limits. The optimization implicitly matches the two peaks at t = 0
and t = 1 and moves mass smoothly from one distribution to the other.

Linear interpolation Convolutional barycenter

Convolutional barycenter (bounded entropy)

Figure 8: BRDF interpolation: BRDFs for the materials in the
four corners of each image are fixed, and the rest are computed
using bilinear weights. Linearly interpolating BRDFs (left) yields
spurious highlights, the convolutional barycenter (center) moves
highlights continuously but increases diffusion, and the entropy-
bounded barycenter (right) moves highlights in a sharper fashion.

more provides the scaling factors (vi,wi) for each i = 1, . . . , k,
which define the transport maps πi = DviKDwi between each
input histogram µi and the barycenter µ. This discrete coupling πi

should be understood as a discretization of a continuous coupling
πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M → M , defined on the
support of µi (i.e. the set of x ∈M such that µi(x) > 0), by

∀x ∈M, Ti(x) = 1
µi(x)

∫

M
πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where
πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized
coupling πi converges to a measure supported on the graph of the
optimal matching between µi and the barycenter; this phenomenon
is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal
transport map. It can thus be used to define a corrected image

fα
i

def.
= Ti ◦ fi whose chrominance histogram matches µ. Fig. 11

shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R
3

and a skeleton graph G = (V,E) representing the topology of its
interior. For instance, if M is a human body shape, then G might
have “stick figure” topology. To relate G directly to the geometry of

Figure 9: Embeddings of skeletons computed using Wasserstein
propagation; the positions of the blue vertices are computed auto-
matically using the fixed green vertices and topology of the graph.

M , we might wish to find a map V &→ R
3 embedding the vertices

of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation (§6.3).
We take as input the positions of vertices in a small subset V0 ⊆ V .
As suggested by Solomon et al. [2014a], we express the position
of each v ∈ V0 as a distribution µv ∈ Prob(M) using barycen-
tric coordinates computed using the algorithm by Ju et al. [2005].
Distributions µv ∈ Prob(M) can be interpolated along G to the
remaining v ̸∈ V0 via Wasserstein propagation with uniform edge
weights. The computed µv’s serve as barycentric coordinates to
embed the unlabeled vertices. Thanks to displacement interpolation,
the constructed embedding conforms to the geometry of the surface;
Fig. 9 shows sample embeddings generated using this strategy.

Soft maps. A relaxation of the point-to-point correspondence
problem replaces the unknown from a map φ : M0 → M to a
measure-valued map µx : M0 → Prob(M). Solomon et al. [2013]
generalize the Dirichlet energy of a map to the measure-valued case,
but their discussion is limited to analysis rather than computation of
maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel
matrix of M . A regularized discretization of the measure-valued
map Dirichlet energy is provided by the Wasserstein propagation
objective (17) from M0 viewed as a graph M0 = (V,E) to distri-
butions on M , with weights proportional to inverse squared edge
lengths. Coupled with pointwise constraints, Algorithm 4 provides a
way to recover a map minimizing the resulting energy; convergence
can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate conver-
gence, we introduce a compatibility function c(x, y) : M0 ×M →
R+ expressing the geometric compatibility of x ∈M0 and y ∈M ;
small c(x, y) indicates that the geometry of M0 near x is similar to
that of M near y. Discretely, take cv to sample the compatibility
function c(v, ·) on M associated with v ∈ M0. We modify the
objective (17) as follows:

⎡

⎣

∑

(v,w)∈E

1
ℓ2(v,w)

W2
2,Ht(µv,µw)

⎤

⎦+ τ

[

∑

v∈V

ωva
⊤(µv ⊗ cv)

]

.

(18)

[S..C..’15]
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Figure 8: BRDF interpolation: BRDFs for the materials in the
four corners of each image are fixed, and the rest are computed
using bilinear weights. Linearly interpolating BRDFs (left) yields
spurious highlights, the convolutional barycenter (center) moves
highlights continuously but increases diffusion, and the entropy-
bounded barycenter (right) moves highlights in a sharper fashion.
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bounded barycenter (right) moves highlights in a sharper fashion.

more provides the scaling factors (vi,wi) for each i = 1, . . . , k,
which define the transport maps πi = DviKDwi between each
input histogram µi and the barycenter µ. This discrete coupling πi

should be understood as a discretization of a continuous coupling
πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M → M , defined on the
support of µi (i.e. the set of x ∈M such that µi(x) > 0), by

∀x ∈M, Ti(x) = 1
µi(x)

∫

M
πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where
πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized
coupling πi converges to a measure supported on the graph of the
optimal matching between µi and the barycenter; this phenomenon
is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal
transport map. It can thus be used to define a corrected image

fα
i

def.
= Ti ◦ fi whose chrominance histogram matches µ. Fig. 11

shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R
3

and a skeleton graph G = (V,E) representing the topology of its
interior. For instance, if M is a human body shape, then G might
have “stick figure” topology. To relate G directly to the geometry of

Figure 9: Embeddings of skeletons computed using Wasserstein
propagation; the positions of the blue vertices are computed auto-
matically using the fixed green vertices and topology of the graph.

M , we might wish to find a map V &→ R
3 embedding the vertices

of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation (§6.3).
We take as input the positions of vertices in a small subset V0 ⊆ V .
As suggested by Solomon et al. [2014a], we express the position
of each v ∈ V0 as a distribution µv ∈ Prob(M) using barycen-
tric coordinates computed using the algorithm by Ju et al. [2005].
Distributions µv ∈ Prob(M) can be interpolated along G to the
remaining v ̸∈ V0 via Wasserstein propagation with uniform edge
weights. The computed µv’s serve as barycentric coordinates to
embed the unlabeled vertices. Thanks to displacement interpolation,
the constructed embedding conforms to the geometry of the surface;
Fig. 9 shows sample embeddings generated using this strategy.

Soft maps. A relaxation of the point-to-point correspondence
problem replaces the unknown from a map φ : M0 → M to a
measure-valued map µx : M0 → Prob(M). Solomon et al. [2013]
generalize the Dirichlet energy of a map to the measure-valued case,
but their discussion is limited to analysis rather than computation of
maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel
matrix of M . A regularized discretization of the measure-valued
map Dirichlet energy is provided by the Wasserstein propagation
objective (17) from M0 viewed as a graph M0 = (V,E) to distri-
butions on M , with weights proportional to inverse squared edge
lengths. Coupled with pointwise constraints, Algorithm 4 provides a
way to recover a map minimizing the resulting energy; convergence
can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate conver-
gence, we introduce a compatibility function c(x, y) : M0 ×M →
R+ expressing the geometric compatibility of x ∈M0 and y ∈M ;
small c(x, y) indicates that the geometry of M0 near x is similar to
that of M near y. Discretely, take cv to sample the compatibility
function c(v, ·) on M associated with v ∈ M0. We modify the
objective (17) as follows:

⎡

⎣

∑

(v,w)∈E

1
ℓ2(v,w)

W2
2,Ht(µv,µw)

⎤

⎦+ τ

[

∑

v∈V

ωva
⊤(µv ⊗ cv)

]

.

(18)

[S..C..’15]
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(Application: Wasserstein Regression)

Wasserstein Barycentric Coordinates: Histogram 
Regression using Optimal Transport, SIGGRAPH’16
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(Application: Brain Regression)

Flickr database Input KL (23 min)
�2 = 1

TV (38 min)
�0,2,6 = (0.34, 0.23, 0.42)

Wasserstein (49 min)
�0,8 = (0.37, 0.63)

Quadratic (33min)
�2,4,6,8 =

(0.11, 0.42, 0.24, 0.10)

[Pitié et al. 2007],
�0 = 1

[Pitié et al. 2007],
�2 = 1

[Pitié et al. 2007],
�4 = 1

[Pitié et al. 2007],
�6 = 1

[Pitié et al. 2007],
�8 = 1

Figure 8: Using the image search engine Flickr, we use the top 10 results for the query autumn (here, with Commercial use allowed and
sorted by Interesting) and use them to color grade a summer image. (First row) For different loss functions, we show the non-zero barycentric
coordinates and total computation time using 128

3 voxel RGB color histograms, L = 60 and our CPU implementation. (Second row) We use
the color matching of Pitie et al. [2007] to transfer colors from the most contributing photographs (numbered 0, 2, 4, 6 and 8). As existing
techniques use a single target histogram, this can lead to large color distortion.

Original Euclidean Wasserstein
projection projection

Figure 11: (left) Original MRI, followed by two 208⇥ 276⇥ 225

histogram projections, using the Euclidean simplex (middle) and
the Wasserstein simplex (right), both computed using an `2 loss.
The Euclidean barycentric coordinates consist in 8 non-zero values,
while the Wasserstein barycentric coordinates have 9.

the Wasserstein simplex of the 14 original MRIs, as illustrated in
Figure 11. The test MRI is projected on both simplexes using a `2
loss. The coefficients selected by these two procedures have a sparse
support, with 9 and 8 non-zero weights respectively. These two
projections share 7 of these coefficients, with comparable weights.
Although the Euclidean barycenter looks sharper, close inspection
reveals overlapping boundaries and edges (see insets) while our
Wasserstein projection results in well-defined contours.

6 Discussion

This paper introduces the concept of Wasserstein barycentric coordi-
nates. We illustrate this tool with applications to color manipulation,
reflectance approximation, and shape inference.

Shape database Input shape P (�) Iso-surface

Figure 12: When the database is too far from the input shape, our
method produces poor reconstructions. The computed weight is
� = (0.62, 4.10�4, 0, 0, 0.38).

Performance. While our method scales to large densely sampled
histograms (we experimented with grids of size up to 256

3 and his-
tograms supported on the sphere such as BRDFs), our method is
limited by its memory requirements, and remains slow for databases
exceeding more than 10-20 dense histograms. Memory requirements
increase linearly with the number of iterations L, the number of in-
put histograms S, and the number of bins N . In practice, we used
between L = 50 and 100 iterations. A memory-free implementa-
tion would make the time complexity of the algorithm quadratic in
the number of iterations instead of linear. Regarding speed, for a
regression on a 10-histogram database typically converging within
10 L-BFGS iterations, each consisting of 100 fixed-point iterations,
both our multicore CPU C++ implementation and multi-GPU mat-
lab implementations perform about 40k convolutions. This ranges
from seconds for 1D and 2D histograms to minutes for small 3D
histograms (⇠ 64

3) or hours for denser 3D histograms with the C++
implementation. The latter computations only require a few min-
utes on four K-80 GPUs. We found that initial L-BFGS iterations
can be carried out using coarser gradient approximations, without
impacting convergence.

Quality. When the histogram database is far from the input his-
togram, the input histogram will unlikely be faithfully approximated
by Wasserstein barycenters. For applications such as shape inference,
this can lead to erroneous reconstructions (Fig. 12).

Future work. We observed that our Wasserstein barycentric co-
ordinates are often very sparse. This sparsity might be attributed
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[Pitié et al. 2007],
�6 = 1
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Algorithmic Formulation

Prop.

@WL
@X , @WL

@a can be computed recur-

sively, in O(L) kernelKK⇥vector products.

Def. For L � 1, define

WL(µ,⌫)
def
= hPL,MXY i,

where PL
def
= diag(uL)KKdiag(vL),

v0 = 1m; l � 0,ul
def
= a/KKvl,vl+1

def
= b/KKTul.
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Algorithmic Formulation

Def. For L � 1, define

WL(µ,⌫)
def
= �aT

loguL + �bT log vL,

v0 = 1m; l � 0,ul
def
= a/KKvl,vl+1

def
= b/KKTul.

Prop.

@WL
@X ,

@WL
@a can be computed recur-

sively, in O(L) kernelKK⇥vector products.



25

✓
@v0

@a

◆T

= 0m⇥n,

✓
@ul

@a

◆T

x =
x

KKvl
�
✓
@vl

@a

◆T

KKT x � a
(KKvl)2

,

✓
@vl+1

@a

◆T

y = �
✓
@ul

@a

◆T

KK
y � b

(KKT
ul)2

.

Example: Di↵erentiability w.r.t. a

Algorithmic Formulation
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Example: Di↵erentiability w.r.t. a

NN = KK �MXY

raWL(µ,⌫) =

✓
@uL

@a

◆T

NNvL +

✓
@vL

@a

◆T

NNTuL

4. Algorithmic Formulation
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Algorithmic Formulation of Wasserstein
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Discrete - Continuous 

Continuous - Continuous 

W is versatile
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Discrete - Continuous 

Continuous - Continuous 
Stochastic  

Optimization
[GCPB’16]

low dim.
[M’116][KMB’16] [L’15]

W is versatile



D transforms

32

W p

p

(µ,⌫) = sup
'2L1(µ), 2L1(⌫)
'(x)+ (y)Dp(x,y)

Z
'dµ+

Z
 d⌫.

DUAL



D transforms

32

W p

p

(µ,⌫) = sup
'2L1(µ), 2L1(⌫)
'(x)+ (y)Dp(x,y)

Z
'dµ+

Z
 d⌫.

For given ', cannot get a better  than

W p
p (µ,⌫) = sup

'

Z
'dµ+

Z
'Dd⌫.

SEMI-DUAL

DUAL

'D(y)
def
= inf

x

Dp(x, y)�'(x).



D transforms

33

W p
p (µ,⌫) = sup

'

Z
'dµ+

Z
'Dd⌫.

SEMI-DUAL

'D(y)
def
= inf

x

Dp(x, y)�'(x).

'DD(x) = inf
y
Dp(x, y)�'D(y).

' is D concave if 9� : ' = �D
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'D(y)
def
= inf

x

Dp(x, y)�'(x).

'DD(x) = inf
y
Dp(x, y)�'D(y).

W p
p (µ,⌫) = sup

' is D-concave

Z
'dµ+

Z
'Dd⌫.

SEMI-DUAL

' is D concave if 9� : ' = �D



W p
p (µ,⌫) = sup

', 

Z
'dµ+

Z
 d⌫ � ◆C(', )

Reminder: dual regularization

35

C = {(', )|'�  Dp}

◆�C(', ) = �
RR

e('� �Dp)/�dµd⌫

� > 0

W�(µ,⌫) = sup
', 

Z
'dµ+

Z
 d⌫ � ◆�C(', )

regularizing dual         constraints

REGULARIZED DUAL

DUAL



Smoothed D transforms

36

� > 0

W�(µ,⌫) = sup
'

Z
'dµ+

Z
'D,�d⌫.

REGULARIZED SEMI-DUAL

'

D,�
(y) = �� log

Z
e

'(x)�D(x,y)p

� dµ(x)

◆�C(', ) = �
RR

e('� �Dp)/�dµd⌫

W�(µ,⌫) = sup
', 

Z
'dµ+

Z
 d⌫ � ◆�C(', )

REGULARIZED DUAL

r = 0
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Regularized Semidual Wasserstein

substituting 

W�(µ,⌫) = sup
'

Z
'dµ+

Z
'D,�d⌫.

REGULARIZED SEMI-DUAL

'

D,�
(y) = �� log

Z
e

'(x)�D(x,y)p

� dµ(x)

REGULARIZED  SEMI-DUAL

sup

'

Z

y

Z

x

'(x)dµ(x)� � log

Z

x

e
'(x)�D(x,y)p

� dµ(x)

�
d⌫(y).
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Semi-discrete case: Stochastic Opt.

REGULARIZED  SEMI-DUAL

sup

'

Z

y

Z

x

'(x)dµ(x)� � log

Z

x

e
'(x)�D(x,y)p

� dµ(x)

�
d⌫(y).
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Semi-discrete case: Stochastic Opt.

What if µ is a discrete measure? µ =
Pn

i=1 ai

�
xi

' 2 L1(µ) is now just a vector ↵ 2 Rn
!

REGULARIZED  SEMI-DUAL

sup

'

Z

y

Z

x

'(x)dµ(x)� � log

Z

x

e
'(x)�D(x,y)p

� dµ(x)

�
d⌫(y).
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= sup
↵2Rn

E⌫ [f(↵,y)]

STOCHASTIC REGULARIZED SEMI-DUAL

sup

↵2Rn

Z

y

"
nX

i=1

↵iai � � log
nX

i=1

e
↵

i

�D(x
i

,y)p

� ai

#
d⌫(y)

Semi-discrete case: Stochastic Opt.

What if µ is a discrete measure? µ =
Pn

i=1 ai

�
xi

' 2 L1(µ) is now just a vector ↵ 2 Rn
!

REGULARIZED  SEMI-DUAL

sup

'

Z

y

Z

x

'(x)dµ(x)� � log

Z

x

e
'(x)�D(x,y)p

� dµ(x)

�
d⌫(y).
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(in Discrete Setting)

REGULARIZED  SEMI-DUAL

sup

'

Z

y

Z

x

'(x)dµ(x)� � log

Z

x

e
'(x)�D(x,y)p

� dµ(x)

�
d⌫(y).
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(in Discrete Setting)

µ =
Pn

i=1 ai

�
xi

What if ⌫ is also a discrete measure?
⌫ =

Pm
j=1 bj�yj

REGULARIZED  SEMI-DUAL

sup

'

Z

y

Z

x

'(x)dµ(x)� � log

Z

x

e
'(x)�D(x,y)p

� dµ(x)

�
d⌫(y).



39

(in Discrete Setting)

µ =
Pn

i=1 ai

�
xi

What if ⌫ is also a discrete measure?
⌫ =

Pm
j=1 bj�yj

sup

↵2Rn

Z

y

"
nX

i=1

↵iai � � log
nX

i=1

e
↵

i

�D(x
i

,y)p

� ai

#
d⌫(y)

REGULARIZED SEMI-DUAL

sup

↵2Rn
↵Ta� �bT log KKT

(a� e
↵
�
)

REGULARIZED  SEMI-DUAL

sup

'

Z

y

Z

x

'(x)dµ(x)� � log

Z

x

e
'(x)�D(x,y)p

� dµ(x)

�
d⌫(y).
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⌫data

{p✓, ✓ 2 ⇥}

p✓?

Minimum Kantorovich Estimators

P(⌦)
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⌫data

{p✓, ✓ 2 ⇥}

p✓?

Minimum Kantorovich Estimators

[Bassetti’06]

MLE

MKEmin
✓2⇥

W (⌫data,p✓)

min
✓2⇥

KL(⌫datakp✓k)

P(⌦)
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W�(p✓,⌫data) = max

↵,�
h↵, p✓ i+ h�,⌫data i � �he↵/� , KKe�/� i

r✓W� = (@p✓

@✓ )T↵?

• Used for discrete models with very large state 
spaces in [MMC’16].  

• Considered for restricted Boltzmann machines, 
using stochastic approximation & regularization.

In a discrete setting

• Suppose    is a discrete, finite space. ⌦
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In a continuous observation setting

⌫data



p✓
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In a continuous observation setting

⌫data
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In a continuous observation setting

⌫data

W�(p✓,⌫data) = max

f ,b

Z

⌦
fdp✓ + bT1m � �hef/� , KKeb/� ip✓
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In a continuous observation setting

⌫data

W�(p✓,⌫data) = max

f ,b

Z

⌦
fdp✓ + bT1m � �hef/� , KKeb/� ip✓

sup

�2Rm

Z

x

2

4
mX

i=1

�

j

/m� � log
1

m

mX

j=1

e
�

j

�D

p(x,y
j

)

�

3

5 p
✓

(x)

sup
�2Rm

Ep✓ [h(�,x)]
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In a continuous observation setting

⌫data
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⌦
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?
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In a continuous observation setting

⌫data

[GCPB’16]
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In a generative model setting
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In a generative model setting

⌫data

f✓]µ

f✓ : latent space ! data space

min
✓2⇥

W (⌫data, f✓]µ) GM-MKE 
W-GAN

[ACB’17] 
[BGTSS’17]

µ

latent  
space

data 
spaceMLE
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Our algorithmic proposal

Approximate regularized W loss by WL.
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Example: Fitting Ellipses

• k-means problem can be seen as a MKE when 
the model = atomic measures with k atoms. 

• We generalize by estimating uniform ellipsoid 
measures that approximate clouds of points.
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Example: MNIST, Learning f✓


