Fitting Generative Models with Optimal Transport

Marco Cuturi

Joint work / work in progress with
G. Peyré, A. Genevay (ENS), F. Bach (INRIA),
G. Montavon, K-R Müller (TU Berlin)

Maximum Likelihood Estimation

MLE

$\min _{\boldsymbol{\theta} \in \Theta} \operatorname{KL}\left(\boldsymbol{\nu}_{\text {data }} \| \boldsymbol{p}_{\theta}\right)$
ON AN ABSOLUTE CRITERION FOR FITTING FREQUENCY CURVES.
$\min _{\theta \in \Theta}-\frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$
By R. A. Fisher, Gonville and Caius College, Cambridge.

1. If we set ourselves the problem, in its essence one of frequent occurrence, of finding the arbitrary elements in a function of known form, which best suit a set of actual observations, we are met at the outset by an arbitrariness which appears to invalidate any results we may obtain. In

Maximum Likelihood Estimation

$\min _{\boldsymbol{\theta} \in \Theta} \mathrm{KL}\left(\boldsymbol{\nu}_{\text {data }} \| \boldsymbol{p}_{\theta}\right)$ $\theta \in \Theta$
$\min _{\theta \in \Theta}-\frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}\left(x_{i}\right)$

Minimum * Estimation

By Joseph Berkson
Mayo Clinic, Rochester, Minnesota

Minimum Hellinger distance estimation for Poisson mixtures

Dimitris Karlis, Evdokia Xekalaki*
Department of Statistics, Athens University of Economics and Business, 76 Patission Str., 10434 Athens, Greece

Available online at www.sciencedirect.com
science(d)IREct.

Statistics \& Probability Letters 76 (2006) 1298-1302

STATISTICS \& PROBABILITY LETTERS

On minimum Kantorovich distance estimators
Federico Bassettia ${ }^{\text {a }}$, Antonella Bodini ${ }^{\mathrm{b}}$, Eugenio Regazzini ${ }^{\text {a,* }}$

Statistical Estimation

Statistical Estimation

$\min _{\theta \in \Theta} \operatorname{KL}\left(\boldsymbol{\nu}_{\text {data }}\left\|p_{\theta}\right\|\right)$

MKE

[Bassetti'06]

Model = positive densities

$$
\min _{\theta \in \Theta}-\sum_{i=1}^{N} \log \boldsymbol{p}_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)
$$

Model = positive densities

Model = positive densities

Model = generative

Model = generative

latent space

Model = generative

Model = generative

Model = generative

Illustration - GAN

Illustration - GAN

Wasserstein Distances

Def. For $p \geq 1$, the p-Wasserstein distance between μ, ν in $\mathcal{P}(\Omega)$, defined by a metric
D on Ω,
$W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \inf _{P \in \Pi(\mu, \nu)} \iint D(X, Y)^{p} d \boldsymbol{P}(X, Y)$.

W is versatile

W is versatile

Dual regularization

$W_{p}^{p}(\mu, \nu)=\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \boldsymbol{\nu}-\iota_{C}(\varphi, \psi)$
$C=\left\{(\varphi, \boldsymbol{\psi}) \mid \varphi \oplus \boldsymbol{\psi} \leq D^{p}\right\}$

Dual regularization

$W_{p}^{p}(\mu, \nu)=\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \boldsymbol{\nu}-\iota_{C}(\varphi, \psi)$
$C=\left\{(\varphi, \boldsymbol{\psi}) \mid \varphi \oplus \boldsymbol{\psi} \leq D^{p}\right\}$

Dual regularization

$$
\begin{gathered}
W_{p}^{p}(\mu, \nu)=\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \nu-\iota_{C}(\varphi, \psi) \\
C=\left\{(\varphi, \psi) \mid \varphi \oplus \boldsymbol{\psi} \leq D^{p}\right\} \\
\text { regularizing dual constraints } \gamma>0
\end{gathered}
$$

$$
\begin{gathered}
W_{\gamma}(\mu, \nu)=\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \nu-\iota_{C}^{\gamma}(\varphi, \boldsymbol{\psi}) \\
\iota_{C}^{\gamma}(\varphi, \psi)=\gamma \iint e^{\left(\varphi \oplus \psi-D^{p}\right) / \gamma} d \mu d \nu \\
\text { REGULARIZED DUAL }
\end{gathered}
$$

W is versatile

Discrete - Discrete

,

4

1

OT on Two Empirical Measures

OT on Two Empirical Measures

Dual regularization, Discrete

$$
\begin{gathered}
W_{\gamma}(\mu, \nu)=\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \boldsymbol{\nu}-\iota_{C}^{\gamma}(\varphi, \boldsymbol{\psi}) \\
\iota_{C}^{\gamma}(\varphi, \psi)=\gamma \iint e^{\left(\varphi \oplus \psi-D^{p}\right) / \gamma} d \mu d \boldsymbol{\nu} \\
\text { REGULARZED DUAL }
\end{gathered}
$$

$$
\boldsymbol{\mu}=\sum_{i=1}^{n} a_{i} \delta_{x_{i}} \quad \quad \boldsymbol{\nu}=\sum_{j=1}^{m} \boldsymbol{b}_{\boldsymbol{j}} \delta_{\boldsymbol{y}_{\boldsymbol{j}}}
$$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma \sum_{i \boldsymbol{j}} \boldsymbol{a}_{i} \boldsymbol{b}_{\boldsymbol{j}} e^{\frac{\alpha_{i}+\boldsymbol{\beta}_{\boldsymbol{j}}-D^{p}\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right)}{\gamma}}
$$

REGULARIZED DISCRETE DUAL

Dual regularization, Discrete

$$
\begin{gathered}
W_{\gamma}(\mu, \nu)=\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \boldsymbol{\nu}-\iota_{C}^{\gamma}(\varphi, \boldsymbol{\psi}) \\
\iota_{C}^{\gamma}(\varphi, \psi)=\gamma \iint e^{\left(\varphi \oplus \psi-D^{p}\right) / \gamma} d \mu d \nu
\end{gathered}
$$

REGULARIZED DUAL

$$
\boldsymbol{\mu}=\sum_{i=1}^{n} \boldsymbol{a}_{i} \delta_{x_{i}} \quad \quad \boldsymbol{\nu}=\sum_{j=1}^{m} \boldsymbol{b}_{\boldsymbol{j}} \delta_{\boldsymbol{y}_{\boldsymbol{j}}}
$$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\alpha, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(\boldsymbol{a} \odot e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)
$$

$$
\text { where } K=\left[e^{-\frac{D^{p}\left(x_{i}, y_{j}\right)}{\gamma}}\right]_{i j}
$$

Algorithm: Block Coordinate Ascent

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(\boldsymbol{a} \odot e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)
$$

REGULARIZED DISCRETE DUAL
$\mathcal{E}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(\boldsymbol{a} \odot e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)$
$\nabla_{\boldsymbol{\alpha}} \mathcal{E}=\boldsymbol{a}-\boldsymbol{a} \odot e^{\boldsymbol{\alpha} / \gamma} \odot K\left(\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)$

$$
\nabla_{\boldsymbol{\beta}} \mathcal{E}=\boldsymbol{b}-\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma} \odot K^{T}\left(\boldsymbol{a} \odot e^{\boldsymbol{\alpha} / \gamma}\right)
$$

Algorithm: Block Coordinate Ascent

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(\boldsymbol{a} \odot e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)
$$

REGULARIZED DISCRETE DUAL
$\mathcal{E}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(\boldsymbol{a} \odot e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)$
$\nabla_{\boldsymbol{\alpha}} \mathcal{E}=\boldsymbol{a}-\boldsymbol{a} \odot e^{\boldsymbol{\alpha} / \gamma} \odot K\left(\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)$
$\alpha \leftarrow-\gamma \log K\left(\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)$
$\nabla_{\beta} \mathcal{E}=\boldsymbol{b}-\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma} \odot K^{T}\left(\boldsymbol{a} \odot e^{\alpha / \gamma}\right)$
$\boldsymbol{\beta} \leftarrow-\gamma \log K^{T}\left(a \odot e^{\alpha / \gamma}\right)$

Algorithm: Block Coordinate Ascent

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(\boldsymbol{a} \odot e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)
$$

REGULARIZED DISCRETE DUAL

Algorithm: Block Coordinate Ascent

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(\boldsymbol{a} \odot e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)
$$

REGULARIZED DISCRETE DUAL

$$
v \leftarrow \frac{b}{K^{T} u}
$$

Algorithm: Block Coordinate Ascent

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}} \boldsymbol{\alpha}^{T} \boldsymbol{a}+\boldsymbol{\beta}^{T} \boldsymbol{b}-\gamma\left(\boldsymbol{a} \odot e^{\boldsymbol{\alpha} / \gamma}\right)^{T} K\left(\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)
$$

REGULARIZED DISCRETE DUAL

$$
(\boldsymbol{u}, \boldsymbol{v}) \stackrel{\text { def }}{=}\left(\boldsymbol{a} \odot e^{\boldsymbol{\alpha} / \gamma}, \boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)
$$

$\alpha \leftarrow-\gamma \log K\left(\boldsymbol{b} \odot e^{\boldsymbol{\beta} / \gamma}\right)$

$$
\boldsymbol{\beta} \leftarrow-\gamma \log K^{T}\left(a \odot e^{\alpha / \gamma}\right)
$$

$$
u \leftarrow \frac{a}{K v}
$$

$$
\boldsymbol{v} \leftarrow \frac{\boldsymbol{b}}{K^{T} \boldsymbol{u}}
$$

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{P \in U(a, b)}\left\langle\boldsymbol{P}, M_{X Y}\right\rangle+\gamma \mathrm{KL}\left(\boldsymbol{P} \| \boldsymbol{a} \boldsymbol{b}^{T}\right)
$$

$$
\mathrm{KL}\left(\boldsymbol{P} \| \boldsymbol{a} \boldsymbol{b}^{T}\right)=E(\boldsymbol{a})+E(\boldsymbol{b})-E(\boldsymbol{P})
$$

Note: Unique optimal solution because of strong concavity of Entropy

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$ $W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{P \in U(a, b)}\left\langle\boldsymbol{P}, M_{X Y}\right\rangle+\gamma \mathrm{KL}\left(\boldsymbol{P} \| a \boldsymbol{b}^{T}\right)$

Note: Unique optimal solution because of strong concavity of Entropy

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$

$$
P \in U(a, b)
$$

then $\exists!u \in \mathbb{R}_{+}^{n}, v \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$ $P \in U(a, b)$
then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

$$
\begin{aligned}
\mathcal{L}(P, \alpha, \beta) & =\sum_{i j} P_{i j} M_{i j}+\gamma P_{i j}\left(\log P_{i j}-\log \left(a_{i} b_{j}\right)-1\right)-\alpha^{T}(P \mathbf{1}-\boldsymbol{a})-\beta^{T}\left(P^{T} \mathbf{1}-\boldsymbol{b}\right) \\
\partial L / \partial P_{i j} & =M_{i j}+\gamma\left(\log P_{i j}-\log a_{i}-\log b_{j}\right)-\alpha_{i}-\beta_{j} \\
\left(\partial L / \partial P_{i j}\right. & =0) \Rightarrow P_{i j}=a_{i} e^{\frac{\alpha_{i}}{\gamma}} e^{-\frac{M_{i j}}{\gamma}} b_{j} e^{\frac{\beta_{j}}{\gamma}}=u_{i} K_{i j} \boldsymbol{v}_{\boldsymbol{j}}
\end{aligned}
$$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$

$$
P \in U(a, b)
$$

then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \xlongequal{\text { def }} e^{-M_{X Y} / \gamma}$

- [Sinkhorn'64] fixed-point iterations for $(\boldsymbol{u}, \boldsymbol{v})$

$$
u \leftarrow a / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

- $O(n m)$ complexity, GPGPU parallel [C'13].
- $O\left(n^{d+1}\right)$ if $\Omega=\{1, \ldots, n\}^{d}$ and D^{p} separable. [S..C... ${ }^{15]}$

(Application: Barycenters)

(Application: Barycenters)

(Application: Barycenters)

 Optimal Transportation on Geometric Domains,

(Application: Barycenters)

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains,

(Application: Barycenters)

Convolutional Wasserstein Distances: Efficient
Optimal Transportation on Geometric Domains,
SIGGRAPH'15
[S..C..'15]
(Application: Wasserstein Regression)

(Application: Brain Regression)

Original

Euclidean projection

Wasserstein projection

(Application: Brain Regression)

Algorithmic Formulation

Def. For $L \geq 1$, define

$$
W_{L}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\left\langle\boldsymbol{P}_{L}, M_{X \boldsymbol{Y}}\right\rangle
$$

where $P_{L} \stackrel{\text { def }}{=} \operatorname{diag}\left(u_{L}\right) K \operatorname{diag}\left(v_{L}\right)$,

$$
v_{0}=\mathbf{1}_{m} ; l \geq 0, u_{l} \stackrel{\text { def }}{=} a / K v_{l}, v_{l+1} \stackrel{\text { def }}{=} b / K^{T} u_{l} .
$$

Prop. $\frac{\partial W_{L}}{\partial X}, \frac{\partial W_{L}}{\partial a}$ can be computed recursively, in $O(L)$ kernel $K \times$ vector products.

Algorithmic Formulation

Def. For $L \geq 1$, define

$$
\begin{gathered}
\underline{\mathrm{W}}_{L}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \gamma \boldsymbol{a}^{T} \log \boldsymbol{u}_{L}+\gamma \boldsymbol{b}^{T} \log \boldsymbol{v}_{L}, \\
\boldsymbol{v}_{0}=\mathbf{1}_{m} ; l \geq 0, \boldsymbol{u}_{l} \stackrel{\text { def }}{=} \boldsymbol{a} / K \boldsymbol{v}_{l}, \boldsymbol{v}_{l+1} \stackrel{\text { def }}{=} \boldsymbol{b} / K^{T} \boldsymbol{u}_{l} . \\
\begin{array}{l}
\text { Prop. } \frac{\partial \mathrm{W}_{L}}{\partial X}, \frac{\partial \mathrm{~W}_{L}}{\partial a} \text { can be computed recur- } \\
\text { sively, in } \stackrel{O}{O}(L) \text { kernel } K \times \text { vector products. }
\end{array}
\end{gathered}
$$

Algorithmic Formulation

Example: Differentiability w.r.t. a

$$
\begin{aligned}
\left(\frac{\partial v_{0}}{\partial a}\right)^{T} & =\mathbf{0}_{m \times n} \\
\left(\frac{\partial u_{l}}{\partial a}\right)^{T} x & =\frac{x}{K v_{l}}-\left(\frac{\partial v_{l}}{\partial a}\right)^{T} K^{T} \frac{x \circ a}{\left(K v_{l}\right)^{2}} \\
\left(\frac{\partial v_{l+1}}{\partial a}\right)^{T} y & =-\left(\frac{\partial u_{l}}{\partial a}\right)^{T} K \frac{y \circ b}{\left(K^{T} u_{l}\right)^{2}}
\end{aligned}
$$

4. Algorithmic Formulation

Example: Differentiability w.r.t. a

$$
N=K \circ M_{X Y}
$$

$$
\nabla_{a} W_{L}(\mu, \nu)=\left(\frac{\partial u_{L}}{\partial a}\right)^{T} N v_{L}+\left(\frac{\partial v_{L}}{\partial a}\right)^{T} N^{T} u_{L}
$$

```
function [d,grad_a,grad_b,hess_a,hess_b] = sinkhornObjGradHess(a,b,k,M,niter)
u_update = @(v,a) a./(K*v);
v_update = @(u,b) b./(K'*u);
% DuDa = @(eps,dvda,a,v) (eps./(K*v))- (a./((K*v).^2)).*(K*dvda(eps));
%
% DvDa = @(eps,duda,b,u) -(b./((K'*u).^2)).*(K'*duda(eps));
%
% DuDb = @(eps,dvdb,a,v) -(a./((K*v).^2)).*(K*dvdb(eps));
%
% DvDb = @(eps,dudb,b,u) (eps./(K'*u))-(b./((K'*u).^2)).*(K'*dudb(eps));
DuDat = @(x,dvdat,a,v) bsxfun(@rdivide,x,K*v)... (x./(K*v))
    -dvdat(K'*( bsxfun(@times,x,(a./((K*v).^2)))));...-dvdat(K'*( (a./((K*v).^2)).*x));
DvDat = @(x,dudat,b,u) -dudat(K*(bsxfun(@times,x,(b./((K'*u).^2))))); ...(b./((㐌*u).^2)).*x))
JDuDat= @(x,Jdvdat,dvdat,a,v) -diag((x'*dvdat(K'))'./((K*v).^2)) ...(K*dvda(x))
    - Jdvdat(x)*K'*diag(a./((K*v).^2))...
    - dvdat(K'* ...
    ( diag(a.*( (-2*(x'*dvdat(K'))')./((K*v).^3)))+...
    diag(x./((K*v).^2)) )); %1
JDvDat = @(x,Jdudat,dudat,b,u) ...
    -Jdudat(x)*K*diag(b./((K'*u).^2))...
    - dudat(K)* ( ...
    diag(b.*( (-2* (x'*dudat(K))')./((K'*u).^3)))) ;...
```

```
DuDbt = @(x,dvdbt,a,v) -dvdbt(K'*(bsxfun(@times,x,(a./((K*v).^2))))); ...(a./((K*v).^2)).*x));
DvDbt = @(x,dudbt,b,u) bsxfun(@rdivide,x,K'*u) ... (x./(㐌*u))...
    -dudbt(K*( bsxfun(@times,x,(b./((K'*u).^2)))));...( b./((㐌*u).^^2)) .*x));
```

JDvDbt $=@(x, J d u d b t, \operatorname{dudbt}, \mathrm{~b}, \mathrm{u})-\operatorname{diag}\left(\left(\mathrm{x}^{\prime} * \operatorname{dudbt}(\mathrm{~K})\right)^{\prime} . /\left(\left(\mathrm{K}^{\prime} * u\right) \mathrm{C}^{\wedge} 2\right)\right) \ldots \quad\left(\mathrm{K}^{\prime} * \operatorname{dudb}(\mathrm{x})\right)$
- Jdudbt(x)*K*diag(b./((K'*u).^2))...
- dudbt(K)* (...
diag(b.*((-2*($\left.\left.\left.\left.x^{\prime *} \operatorname{dudbt}(\mathrm{~K})\right)^{\prime}\right) . /\left(\left(\mathrm{K}^{\prime *} \mathrm{u}\right) .{ }^{\wedge} 3\right)\right)\right)+\ldots$
$\operatorname{diag}\left(x . /\left(\left(K^{\prime *} u\right) .^{\wedge} 2\right)\right)$) ;
JDuDbt $=$ @($\mathrm{x}, \mathrm{Jdvdb} \mathrm{t}, \mathrm{dvdb}, \mathrm{a}, \mathrm{v}) \ldots$
-Jdvdbt(x)*K'*diag(a./((K*v).^2))...
- dvdbt(K')* (...
diag(a.*((-2* ($x^{\prime *}$ dvdbt($\left.\left.\left.\left.\left.\mathrm{K}^{\prime}\right)\right)^{\prime}\right) . /\left(\left(\mathrm{K}^{*} \mathrm{v}\right) .^{\wedge} 3\right)\right)\right)$) ;

```
n=size(a,1);
m=size(b,1);
```

DVDAT= @(eps) zeros(n,size(eps,2));
DVDBT= @(eps) zeros(m,size(eps,2));
JDVDAT= @(eps) zeros (n, m);
JDVDBT= @(eps) zeros (m,m);
$\mathrm{v}=\mathrm{ones}(\mathrm{m}, \operatorname{size}(\mathrm{b}, 2))$;
for $j=1:$ niter,
u=u_update(v,a);
DUDAT $=$ @(x) $\operatorname{DuDat(x,DVDAT,a,v);~}$
DUDBT $=$ @(x) DuDbt(x,DVDBT, a,v);
if nargout>3
JDUDAT $=$ @(x) JDuDat $(x$, JDVDAT, DVDAT, $\mathrm{a}, \mathrm{v})$;
JDUDBT $=$ @(x) JDuDbt(x,JDVDBT,DVDBT, a,v);
end
v=v_update(u,b);
DVDAT $=$ @(x) $\operatorname{DvDat(x,DUDAT,b,u);~}$
$\operatorname{DVDBT}=@(x) \operatorname{DvDbt}(x, \operatorname{DUDBT}, \mathrm{~b}, \mathrm{u}) ;$
if nargout>3
JDVDAT $=$ @(x) JDvDat(x, JDUDAT, DUDAT, $\mathrm{b}, \mathrm{u})$;
$\operatorname{JDVDBT}=@(x) \operatorname{JDvDbt}(x, J D U D B T, D U D B T, b, u) ;$
end
end

```
U=K.*M;
d=diag(u'*U*v);
grad_a=(DUDAT(U*v)+DVDAT(U'*u));
grad_b=(DUDBT(U*v)+DVDBT(U'*u));
if nargout>3
    hess_a= @(eps) JDUDAT(eps)*(U*V)+DUDAT((eps'*DVDAT(U'))')+...
        JDVDAT(eps)*(U'*u)+DVDAT((eps'*DUDAT(U))');
end
```


W is versatile

W is versatile

D transforms

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\sup _{\substack{\varphi \in L_{1}(\boldsymbol{\mu}), \boldsymbol{\psi} \in L_{1}(\boldsymbol{\nu}) \\ \varphi(x)+\boldsymbol{\psi}(y) \leq D^{p}(x, y)}}
$$

DUAL

D transforms

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=
$$

$$
\begin{gather*}
\varphi \in L_{1}(\boldsymbol{\mu}), \boldsymbol{\psi} \in L_{1}(\boldsymbol{\nu}) \\
\boldsymbol{\varphi}(x)+\boldsymbol{\psi}(y) \leq D^{p}(x, y)
\end{gather*}
$$

$$
\int \varphi d \mu+\int \psi d \nu
$$

For given φ, cannot get a better ψ than

$$
\varphi^{D}(y) \stackrel{\text { def }}{=} \inf _{x} D^{p}(x, y)-\varphi(x)
$$

$$
W_{p}^{p}(\mu, \nu)=\sup _{\varphi} \int \varphi d \mu+\int \varphi^{D} d \nu
$$

D transforms

$W_{p}^{p}(\mu, \nu)=\sup _{\varphi} \int \varphi d \mu+\int \varphi^{D} d \boldsymbol{\nu}$.

$\varphi^{D}(y) \stackrel{\text { def }}{=} \inf _{x} D^{p}(x, y)-\varphi(x)$.
$\varphi^{D D}(x)=\inf _{y} D^{p}(x, y)-\varphi^{D}(y)$.
φ is D concave if $\exists \phi: \varphi=\phi^{D}$

D transforms

$$
\varphi^{D}(y) \stackrel{\text { def }}{=} \inf _{x} D^{p}(x, y)-\varphi(x) .
$$

$$
\varphi^{D D}(x)=\inf _{y} D^{p}(x, y)-\varphi^{D}(y) .
$$

φ is D concave if $\exists \phi: \varphi=\phi^{D}$

$$
W_{p}^{p}(\mu, \nu)=
$$

$$
\sup _{\varphi \text { is } D \text {-concave }} \int \varphi d \mu+\int \varphi^{D} d \nu
$$

Reminder: dual regularization

$$
\begin{gathered}
W_{p}^{p}(\mu, \nu)=\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \nu-\iota_{C}(\varphi, \psi) \\
C=\left\{(\varphi, \psi) \mid \varphi \oplus \boldsymbol{\psi} \leq D^{p}\right\}
\end{gathered}
$$

regularizing dual \quad constraints $\quad \gamma>0$

$$
\begin{gathered}
W_{\gamma}(\mu, \nu)=\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \nu-\iota_{C}^{\gamma}(\varphi, \boldsymbol{\psi}) \\
\iota_{C}^{\gamma}(\varphi, \psi)=\gamma \iint e^{\left(\varphi \oplus \psi-D^{p}\right) / \gamma} d \mu d \nu \\
\text { REGULARIZED DUAL }
\end{gathered}
$$

Smoothed D transforms

$$
\begin{gathered}
W_{\gamma}(\mu, \nu)=\sup _{\varphi, \psi} \int \varphi d \mu+\int \psi d \nu-\iota_{C}^{\gamma}(\varphi, \psi) \\
\iota_{C}^{\gamma}(\varphi, \psi)=\gamma \iint e^{\left(\varphi \oplus \psi-D^{p}\right) / \gamma} d \mu d \nu
\end{gathered}
$$

REGULARIZED DUAL

$$
\nabla_{\psi}=0
$$

$$
\gamma>0
$$

$$
W_{\gamma}(\mu, \nu)=\sup _{\varphi} \int \varphi d \mu+\int \varphi^{D, \gamma} d \nu .
$$

$$
\varphi^{D, \gamma}(\boldsymbol{y})=-\gamma \log \int e^{\frac{\varphi(x)-D(x, y)^{p}}{\gamma}} d \mu(x)
$$

Regularized Semidual Wasserstein

$$
\begin{gathered}
W_{\gamma}(\mu, \nu)=\sup _{\varphi} \int \varphi d \mu+\int_{\varphi} \varphi^{D, \gamma} d \nu . \\
\varphi^{D, \gamma}(\boldsymbol{y})=-\gamma \log \int e^{\varphi(x)-D(x, y)^{p}} d \mu(x)
\end{gathered}
$$

substituting

$$
\sup _{\boldsymbol{\varphi}} \int_{\boldsymbol{y}}\left[\int_{\boldsymbol{x}} \varphi(\boldsymbol{x}) d \boldsymbol{\mu}(\boldsymbol{x})-\gamma \log \int_{\boldsymbol{x}} e^{\frac{\varphi(\boldsymbol{x})-D(x, y)^{p}}{\gamma}} d \boldsymbol{\mu}(\boldsymbol{x})\right] d \boldsymbol{\nu}(\boldsymbol{y})
$$

Semi-discrete case: Stochastic Opt.

$$
\sup _{\varphi} \int_{y}\left[\int_{x} \varphi(x) d \mu(x)-\gamma \log \int_{x} e^{\varphi(x)-D(x, y)^{p}} d \mu(x)\right] d \nu(y) .
$$

Semi-discrete case: Stochastic Opt.

$$
\sup _{\boldsymbol{\varphi}} \int_{\boldsymbol{y}}\left[\int_{\boldsymbol{x}} \varphi(\boldsymbol{x}) d \boldsymbol{\mu}(\boldsymbol{x})-\gamma \log \int_{\boldsymbol{x}} e^{\frac{\varphi(x)-D(x, y)^{p}}{\gamma}} d \boldsymbol{\mu}(\boldsymbol{x})\right] d \boldsymbol{\nu}(\boldsymbol{y})
$$

REGULARIZED SEMI-DUAL

What if μ is a discrete measure?

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}
$$

$\varphi \in L_{1}(\boldsymbol{\mu})$ is now just a vector $\boldsymbol{\alpha} \in \mathbb{R}^{n}$!

Semi-discrete case: Stochastic Opt.

$\sup _{\boldsymbol{\varphi}} \int_{\boldsymbol{y}}\left[\int_{\boldsymbol{x}} \boldsymbol{\varphi}(\boldsymbol{x}) d \boldsymbol{\mu}(\boldsymbol{x})-\gamma \log \int_{\boldsymbol{x}} e^{\frac{\varphi(x)-D(x, y)^{p}}{\gamma}} d \boldsymbol{\mu}(\boldsymbol{x})\right] d \boldsymbol{\nu}(\boldsymbol{y})$

REGULARIZED SEMI-DUAL

What if μ is a discrete measure?

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}
$$

$\varphi \in L_{1}(\boldsymbol{\mu})$ is now just a vector $\alpha \in \mathbb{R}^{n}$!

$$
=\sup _{\boldsymbol{\alpha} \in \mathbb{R}^{n}} \mathbb{E}_{\boldsymbol{\nu}}[f(\boldsymbol{\alpha}, \boldsymbol{y})]
$$

(in Discrete Setting)

$$
\sup _{\boldsymbol{\varphi}} \int_{\boldsymbol{y}}\left[\int_{\boldsymbol{x}} \varphi(\boldsymbol{x}) d \boldsymbol{\mu}(\boldsymbol{x})-\gamma \log \int_{\boldsymbol{x}} e^{\frac{\varphi(x)-D(x, y)^{p}}{\gamma}} d \boldsymbol{\mu}(\boldsymbol{x})\right] d \boldsymbol{\nu}(\boldsymbol{y})
$$

(in Discrete Setting)

$$
\sup _{\boldsymbol{\varphi}} \int_{\boldsymbol{y}}\left[\int_{\boldsymbol{x}} \varphi(\boldsymbol{x}) d \boldsymbol{\mu}(\boldsymbol{x})-\gamma \log \int_{\boldsymbol{x}} e^{\frac{\varphi(\boldsymbol{x})-D(x, y)^{p}}{\gamma}} d \boldsymbol{\mu}(\boldsymbol{x})\right] d \boldsymbol{\nu}(\boldsymbol{y})
$$

What if $\boldsymbol{\nu}$ is also a discrete measure?

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}
$$

$$
\boldsymbol{\nu}=\sum_{j=1}^{m} \boldsymbol{b}_{\boldsymbol{j}} \delta_{\boldsymbol{y}_{j}}
$$

(in Discrete Setting)

$$
\sup _{\varphi} \int_{\boldsymbol{y}}\left[\int_{x} \varphi(\boldsymbol{x}) d \boldsymbol{\mu}(\boldsymbol{x})-\gamma \log \int_{x} e^{\frac{\varphi(x)-D(x, \boldsymbol{y})^{p}}{\gamma}} d \boldsymbol{\mu}(\boldsymbol{x})\right] d \boldsymbol{\nu}(\boldsymbol{y}) .
$$

REGULARIZED SEMI-DUAL

What if $\boldsymbol{\nu}$ is also a discrete measure?

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}} \quad \quad \boldsymbol{\nu}=\sum_{j=1}^{m} \boldsymbol{b}_{j} \delta_{\boldsymbol{y}_{j}}
$$

$$
\sup _{\alpha \in \mathbb{R}^{n}} \int_{y}\left[\sum_{i=1}^{n} \boldsymbol{\alpha}_{i} \boldsymbol{a}_{i}-\gamma \log \sum_{i=1}^{n} e^{\frac{\alpha_{i}-D\left(x_{i}, \boldsymbol{y}\right)^{p}}{\gamma}} a_{i}\right] d \boldsymbol{\nu}(\boldsymbol{y})
$$

$$
\sup _{\boldsymbol{\alpha} \in \mathbb{R}^{n}} \boldsymbol{\alpha}^{T} \boldsymbol{a}-\gamma \boldsymbol{b}^{T} \log K^{T}\left(\boldsymbol{a} \odot e^{\frac{\alpha}{\gamma}}\right)
$$

Minimum Kantorovich Estimators

Minimum Kantorovich Estimators

$\min _{\theta \in \Theta} \operatorname{KL}\left(\boldsymbol{\nu}_{\text {data }}\left\|p_{\theta}\right\|\right)$

MKE

[Bassetti'06]

In a discrete setting

- Suppose Ω is a discrete, finite space.

$$
\left|W_{\gamma}\left(p_{\theta}, \boldsymbol{\nu}_{\text {data }}\right)=\max _{\alpha, \boldsymbol{\beta}}\left\langle\alpha, p_{\theta}\right\rangle+\left\langle\boldsymbol{\beta}, \boldsymbol{\nu}_{\text {data }}\right\rangle-\gamma\left\langle e^{\alpha / \gamma}, K e^{\boldsymbol{\beta} / \gamma}\right\rangle\right|
$$

$$
\nabla_{\theta} W_{\gamma}=\left(\frac{\partial p_{\theta}}{\partial \theta}\right)^{T} \boldsymbol{\alpha}^{\star}
$$

- Used for discrete models with very large state spaces in [MMC'16].
- Considered for restricted Boltzmann machines, using stochastic approximation \& regularization.

In a continuous observation setting

In a continuous observation setting

In a continuous observation setting

$$
W_{\gamma}\left(p_{\theta}, \nu_{\text {data }}\right)=\max _{f, b} \int_{\Omega} f d p_{\theta}+b^{T} \mathbf{1}_{m}-\gamma\left\langle e^{f / \gamma}, K e^{b / \gamma}\right\rangle_{p_{\theta}}
$$

In a continuous observation setting

$$
W_{\gamma}\left(p_{\theta}, \nu_{\text {data }}\right)=\max _{f, b} \int_{\Omega} f d p_{\theta}+b^{T} \mathbf{1}_{m}-\gamma\left\langle e^{f / \gamma}, K e^{b / \gamma}\right\rangle_{p_{\theta}}
$$

$$
\sup _{\boldsymbol{\beta} \in \mathbb{R}^{m}} \int_{\boldsymbol{x}}\left[\sum_{i=1}^{m} \boldsymbol{\beta}_{\boldsymbol{j}} / m-\gamma \log \frac{1}{m} \sum_{j=1}^{m} e^{\frac{\boldsymbol{\beta}_{\boldsymbol{j}}-D^{p}\left(x, y_{j}\right)}{\gamma}}\right] p_{\theta}(\boldsymbol{x})
$$

$$
\sup _{\sup _{p_{\theta}}}[h(\boldsymbol{\beta}, \boldsymbol{x})]
$$

$$
\boldsymbol{\beta} \in \mathbb{R}^{m}
$$

$\boldsymbol{P}_{\text {data }}$

In a continuous observation setting

$$
W_{\gamma}\left(p_{\theta}, \nu_{\text {data }}\right)=\max _{f, b} \int_{\Omega} f d p_{\theta}+b^{T} \mathbf{1}_{m}-\gamma\left\langle e^{f / \gamma}, K e^{b / \gamma}\right\rangle_{p_{\theta}}
$$

$$
\sup _{\boldsymbol{\beta} \in \mathbb{R}^{m}} \int_{x}\left[\sum_{i=1}^{m} \boldsymbol{\beta}_{\boldsymbol{j}} / m-\gamma \log \frac{1}{m} \sum_{j=1}^{m} e^{\frac{\boldsymbol{\beta}_{\boldsymbol{j}}-D^{p}\left(x, y_{j}\right)}{\gamma}}\right] p_{\theta}(\boldsymbol{x})
$$

$\sup \mathbb{E}_{p_{\theta}}[h(\boldsymbol{\beta}, x)]$ $\boldsymbol{\beta} \in \mathbb{R}^{m}$
$\boldsymbol{f}^{\star}=\left(\boldsymbol{b}^{\star}\right)^{\boldsymbol{D}, \gamma}=\boldsymbol{x} \mapsto-\gamma \log \frac{1}{m} \sum_{i=1}^{m} e^{\frac{b_{j}^{\star}-D^{p}\left(\boldsymbol{y}_{\boldsymbol{j}}, \boldsymbol{x}\right)}{\gamma}}$

In a continuous observation setting

$W_{\gamma}\left(p_{\theta}, \nu_{\text {data }}\right)=\max _{f, b} \int_{\Omega} f d p_{\theta}+b^{T} \mathbf{1}_{m}-\gamma\left\langle e^{f / \gamma}, K e^{b / \gamma}\right\rangle_{p_{\theta}}$ $\sup _{\boldsymbol{\beta} \in \mathbb{R}^{m}} \int_{\boldsymbol{x}}\left[\sum_{i=1}^{m} \boldsymbol{\beta}_{\boldsymbol{j}} / m-\gamma \log \frac{1}{m} \sum_{j=1}^{m} e^{\frac{\boldsymbol{\beta}_{\boldsymbol{j}}-D^{p}\left(x, y_{j}\right)}{\gamma}}\right] p_{\theta}(\boldsymbol{x})$
$\sup \mathbb{E}_{p_{\theta}}[h(\boldsymbol{\beta}, x)]$ $\boldsymbol{\beta} \in \mathbb{R}^{m}$

$$
\boldsymbol{f}^{\star}=\left(\boldsymbol{b}^{\star}\right)^{D, \gamma}=\boldsymbol{x} \mapsto-\gamma \log \frac{1}{m} \sum_{i=1}^{m} e^{\frac{b_{j}^{\star}-D^{p}\left(\boldsymbol{y}_{\boldsymbol{j}}, \boldsymbol{x}\right)}{\gamma}}
$$

$$
\nabla_{\theta} W_{\gamma}=\left(\frac{\partial p_{\theta}}{\partial \theta}\right)^{*} f^{\star}
$$

In a generative model setting

In a generative model setting

latent space

In a generative model setting

In a generative model setting

In a generative model setting

$\min _{\boldsymbol{\theta} \in \Theta} W\left(\boldsymbol{\nu}_{\text {data }}, f_{\boldsymbol{\theta} \sharp} \boldsymbol{\mu}\right)$

GM-MKE
W-GAN
[ACB'17] [BGTSS'17]

Our algorithmic proposal

Approximate regularized W loss by W_{L}.

Example: Fitting Ellipses

- k-means problem can be seen as a MKE when the model = atomic measures with k atoms.
- We generalize by estimating uniform ellipsoid measures that approximate clouds of points.

(a) Initialization (unit balls, kmeans centers)

(b) After 3 gradient steps

(c) At convergence (15 steps)

Example: MNIST, Learning f_{θ}

55558888811111111111	
	5558888871111111
	5558888871111111
100	555888222111111111
	555888222111111111
	5558882221111111
	$555588222+1111$
	$353333222 \alpha 1111111$
	333333222481111111
	3333338246541111117
	3333356666644777
	3333566666499997979
	333566666499999999
	3000066669999999999
	0000066649999999999
	00000066999999
	00000066499944449777
	00000066499997777777
	00000066497777777777
	00000066977777777777
	$\begin{array}{lllll}100 & 200 & 300 & 400 & 500\end{array}$

