Learning with Regularized Distances: Optimal Transport and Dynamic Time Warping

Marco Cuturi

Joint work with many people, including:
G. Peyré, A. Genevay (ENS), A. Doucet (Oxford), J. Solomon (MIT),
J.D. Benamou, N. Bonneel, F. Bach, L. Nenna (INRIA),
G. Carlier (Dauphine), M. Blondel (NTT).

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

Monge

Kantorovich

Dantzig

Wasserstein

Brenier

Otto

McCann

Villani

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

Optimal Transport Geometry

A geometric toolbox to compare probability measures supported on a metric space.

Optimal Transport Geometry

A geometric toolbox to compare probability measures supported on a metric space.

Optimal Transport Geometry

A geometric toolbox to compare probability measures supported on a metric space.

Optimal Transport Geometry

A geometric toolbox to compare probability measures supported on a metric space.

Optimal Transport Geometry

A geometric toolbox to compare probability measures supported on a metric space.

OT and data-analysis

- Key developments in (applied) maths ~'90s [McCann'95], [JKO'98], [Benamou'98], [Gangbo'98], [Ambrosio'06], [Villani'03/'09].
- Key developments in TCS / graphics since '00s [Rubner'98], [Indyk'03], [Naor'07], [Andoni'15].

OSmall to no-impact in large-scale data analysis:

- computationally heavy;
\uparrow Wasserstein distance is not differentiable

OT and data-analysis

Today's talk: Entropy Regularized OT

- Very fast compared to usual approaches, GPGPU parallel.
- Differentiable, important if we want to use OT distances as loss functions.
- Can be automatically differentiated, simple iterative process, $D L$-toolboxes compatible.
- OT can become a building block in ML.

Background: OT Geometry

Ω a probability space, $c: \Omega \times \Omega \rightarrow \mathbb{R}$. μ, ν two probability measures in $\mathcal{P}(\Omega)$.
[Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$

$$
\inf _{T \# \mu=\nu} \int_{\Omega} c(x, T(x)) \mu(d x)
$$

$\forall B \subset \Omega, T \# \mu(B)=\nu(B)$

Background: OT Geometry

Ω a probability space, $c: \Omega \times \Omega \rightarrow \mathbb{R}$. μ, ν two probability measures in $\mathcal{P}(\Omega)$.
[Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$ [Brenier'87] If $\Omega=\mathbb{R}^{d}, c=\|\cdot-\cdot\|^{2}$, μ, ν a.c., then $T=\nabla u, u$ convex.

Background: OT Geometry

Ω a probability space, $c: \Omega \times \Omega \rightarrow \mathbb{R}$. μ, ν two probability measures in $\mathcal{P}(\Omega)$.
[Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$

$$
\inf _{T \# \mu=\nu} \int_{\Omega} c(x, T(x)) \mu(d x)
$$

Background: OT Geometry

Ω a probability space, $c: \Omega \times \Omega \rightarrow \mathbb{R}$. μ, ν two probability measures in $\mathcal{P}(\Omega)$.
[Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$

$$
\inf _{T \# \mu=\nu} \int_{\Omega} c(x, T(x)) \mu(d x)
$$

[Kantorovich'42] Relaxation

- Instead of maps $T: \Omega \rightarrow \Omega$, consider probabilistic maps, i.e. couplings $P \in \mathcal{P}(\Omega \times \Omega)$:

$$
\begin{gathered}
\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\{\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\
\boldsymbol{P}(\boldsymbol{A} \times \Omega)=\boldsymbol{\mu}(\boldsymbol{A}), \\
\boldsymbol{P}(\Omega \times \boldsymbol{B})=\boldsymbol{\nu}(\boldsymbol{B})\}
\end{gathered}
$$

[Kantorovich'42] Relaxation

$$
\begin{aligned}
& \Pi(\mu, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\{\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\
& \boldsymbol{P}(\boldsymbol{A} \times \Omega)=\mu(\boldsymbol{A}), \boldsymbol{P}(\Omega \times \boldsymbol{B})=\boldsymbol{\nu}(\boldsymbol{B})\}
\end{aligned}
$$

[Kantorovich'42] Relaxation

$$
\begin{aligned}
& \Pi(\mu, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\{\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\
& \boldsymbol{P}(\boldsymbol{A} \times \Omega)=\mu(\boldsymbol{A}), \boldsymbol{P}(\Omega \times \boldsymbol{B})=\boldsymbol{\nu}(\boldsymbol{B})\}
\end{aligned}
$$

Wasserstein Distance

Def. For $p \geq 1$, the p-Wasserstein distance between $\boldsymbol{\mu}, \boldsymbol{\nu}$ in $\mathcal{P}(\Omega)$ is

$$
W_{p}(\mu, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\left(\inf _{P \in \Pi(\mu, \nu)} \mathbb{E}_{P}\left[D(X, Y)^{p}\right]\right)^{1 / p}
$$

Wasserstein between 2 Diracs

Wasserstein on Uniform Measures

$$
\mu=\sum_{i=1}^{n} \frac{1}{n} \delta_{x_{i}}
$$

Wasserstein on Uniform Measures

Optimal Assignment \subset Wasserstein

Wasserstein on Empirical Measures

Wasserstein on Empirical Measures

$M_{\boldsymbol{X} \boldsymbol{Y}} \stackrel{\text { def }}{=}\left[D\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right)^{p}\right]_{i j}$
$U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text { def }}{=}\left\{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \mid \boldsymbol{P} \mathbf{1}_{m}=\boldsymbol{a}, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}\right\}$
$\left.\begin{array}{c} \\ x_{1} \\ \vdots \\ x_{n}\end{array} \begin{array}{ccc}y_{1} & \cdots & y_{m} \\ \cdot & \cdot & \cdot \\ \cdot & D\left(x_{i}, \boldsymbol{y}_{j}\right)^{p} & \cdot \\ \cdot & \cdot & \cdot\end{array}{ }_{1_{17} a_{n}}^{a_{1}} \begin{array}{c}a_{1} \\ \vdots \\ \cdots \\ \cdots\end{array} \begin{array}{ccc}b_{1} & \cdots & b_{m} \\ \cdots & \cdots & \cdots \\ \cdots\end{array}\right]$

Wasserstein on Empirical Measures

Consider $\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}$ and $\nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}}$.
$M_{\boldsymbol{X} \boldsymbol{Y}} \stackrel{\text { def }}{=}\left[D\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right)^{p}\right]_{i j}$
$U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text { def }}{=}\left\{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \mid \boldsymbol{P} \mathbf{1}_{m}=\boldsymbol{a}, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}\right\}$
$\left.\begin{array}{c} \\ x_{1} \\ \vdots \\ x_{n}\end{array} \begin{array}{ccc}y_{1} & \cdots & y_{m} \\ x_{n} \\ \cdot & \cdot & \cdot \\ \cdot & D\left(x_{i}, \boldsymbol{y}_{j}\right)^{p} & \cdot \\ \cdot & \cdot & \cdot\end{array}{ }_{a_{17}} \begin{array}{ccc}a_{1} & \cdots & b_{m} \\ \vdots \\ \vdots & \vdots & \vdots \\ \vdots & P^{T} \mathbf{1}_{n}=b & \vdots \\ \vdots & \vdots & \vdots\end{array}\right]$

Wasserstein on Empirical Measures

Consider $\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}$ and $\nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}}$
$M_{\boldsymbol{X} \boldsymbol{Y}} \stackrel{\text { def }}{=}\left[D\left(x_{i}, \boldsymbol{y}_{j}\right)^{p}\right]_{i j}$
$U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text { def }}{=}\left\{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \mid \boldsymbol{P} \mathbf{1}_{m}=\boldsymbol{a}, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}\right\}$
Def. Optimal Transport Problem

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\min _{P \in U(a, b)}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle
$$

Discrete OT Problem

Discrete OT Problem

Discrete OT Problem

Discrete OT Problem

Note: flow/PDE formulations [Beckman'61]/[Benamou'98] can be used for $p=1 / p=2$ for a sparse-graph metric/Euclidean metric.

Discrete OT Problem

Discrete OT Problem

network flow solver used in practice. $O\left(n^{3} \log (n)\right)$

$$
U(\boldsymbol{a}, \boldsymbol{b})
$$

Solution P^{\star} unstable and not always unique.

Discrete OT Problem

Discrete OT Problem

Discrete OT Problem

Discrete OT Problem

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})
$$

$$
E(P) \stackrel{\text { def }}{=}-\sum_{i, j=1}^{n m} P_{i j}\left(\log P_{i j}\right)
$$

Note: Unique optimal solution because of strong concavity of Entropy

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{\boldsymbol{P} \in U(a, \boldsymbol{b})}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})
$$

Note: Unique optimal solution because of strong concavity of Entropy

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$

$$
P \in U(a, b)
$$

then $\exists!u \in \mathbb{R}_{+}^{n}, v \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$ $P \in U(a, b)$
then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

$$
\begin{aligned}
L(P, \alpha, \beta) & =\sum_{i j} P_{i j} M_{i j}+\gamma P_{i j} \log P_{i j}+\alpha^{T}(P \mathbf{1}-\boldsymbol{a})+\beta^{T}\left(P^{T} \mathbf{1}-\boldsymbol{b}\right) \\
\partial L / \partial P_{i j} & =M_{i j}+\gamma\left(\log P_{i j}+1\right)+\alpha_{i}+\beta_{j} \\
\left(\partial L / \partial \boldsymbol{P}_{i j}\right. & =0) \Rightarrow P_{i j}=e^{\frac{\alpha_{i}}{\gamma}+\frac{1}{2}} e^{-\frac{M_{i j}}{\gamma}} e^{\frac{\beta_{j}}{\gamma}+\frac{1}{2}}=u_{i} K_{i j} \boldsymbol{v}_{j}
\end{aligned}
$$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$

$$
P \in U(a, b)
$$

then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \xlongequal{\text { def }} e^{-M_{X Y} / \gamma}$

- [Sinkhorn'64] fixed-point iterations for $(\boldsymbol{u}, \boldsymbol{v})$

$$
u \leftarrow a / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

- $O(n m)$ complexity, GPGPU parallel [C'13].
- $O\left(n^{d+1}\right)$ if $\Omega=\{1, \ldots, n\}^{d}$ and D^{p} separable. [S..C... ${ }^{15]}$

Very Fast EMD Approx. Solver

Note. (Ω, D) is a random graph with shortest path metric, histograms sampled uniformly on simplex, Sinkhorn tolerance 10^{-2}.

Regularization \rightarrow Differentiability

$$
W_{\gamma}((a, \boldsymbol{X}),(b, \boldsymbol{Y}))=\min _{P \in U(a, b)}\left\langle\boldsymbol{P}, M_{X Y}\right\rangle-\gamma E(\boldsymbol{P})
$$

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}
$$

Regularization $\rightarrow>$ Differentiability

$$
W_{\gamma}((a+\Delta a, \boldsymbol{X}),(\boldsymbol{b}, \boldsymbol{Y}))=W_{\gamma}((a, \boldsymbol{X}),(\boldsymbol{b}, \boldsymbol{Y}))+? ?
$$

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}
$$

Regularization $\rightarrow>$ Differentiability

$$
W_{\gamma}((a+\Delta a, \boldsymbol{X}),(\boldsymbol{b}, \boldsymbol{Y}))=W_{\gamma}((a, \boldsymbol{X}),(\boldsymbol{b}, \boldsymbol{Y}))+? ?
$$

$$
\begin{aligned}
& \mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}} \\
& a \leftarrow a+\Delta a \quad \nu=\sum_{j=1}^{m} b_{j} \delta_{\boldsymbol{y}_{j}}
\end{aligned}
$$

Regularization $\rightarrow>$ Differentiability

$$
W_{\gamma}((a, \boldsymbol{X}+\Delta \boldsymbol{X}),(b, \boldsymbol{Y}))=W_{\gamma}((a, \boldsymbol{X}),(\boldsymbol{b}, \boldsymbol{Y}))+? ?
$$

$$
\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}
$$

Regularization $\rightarrow>$ Differentiability

$$
W_{\gamma}((a, \boldsymbol{X}+\Delta \boldsymbol{X}),(b, \boldsymbol{Y}))=W_{\gamma}((a, \boldsymbol{X}),(b, \boldsymbol{Y}))+? ?
$$

$$
\begin{aligned}
& \mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}} \\
& X \leftarrow X+\Delta X \quad \nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}}
\end{aligned}
$$

Crucial for "min data $+W$ " problems

- Quantization, k-means problem [Lloyd'82]

$$
\min _{\substack{\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right) \\|\operatorname{supp} \mu|=k}} W_{2}^{2}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\text {data }}\right)
$$

- [McCann'95] Interpolant

$$
\min _{\boldsymbol{\mu} \in \mathcal{P}(\Omega)}(1-t) W_{2}^{2}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\mathbf{1}}\right)+t W_{2}^{2}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\mathbf{2}}\right)
$$

- [JKO'98] PDE's as gradient flows in $(\mathcal{P}(\Omega), W)$.

$$
\mu_{t+1}=\underset{\mu \in \mathcal{P}(\Omega)}{\operatorname{argmin}} J(\mu)+\lambda_{t} W_{p}^{p}\left(\mu, \mu_{t}\right)
$$

Crucial for "min data $+W$ " problems

Any (ML) problem involving a KL or L2 loss between (parameterized) histograms or probabilility measures can be easily
Wasserstein-ized if we can differentiate W efficiently.

1. Differentiability of Regularized OT

Def. Dual regularized OT Problem
$W_{\gamma}(\mu, \boldsymbol{\nu})=\max _{\alpha, \beta} \alpha^{T} a+\beta^{T} \boldsymbol{b}-\frac{1}{\gamma}\left(e^{\alpha / \gamma}\right)^{T} K e^{\beta / \gamma}$
Prop. $W_{\gamma}(\mu, \nu)$ is
[CD’14]

1. convex w.r.t. a (Danskin),

$$
\nabla_{a} W_{\gamma}=\alpha^{\star}=\gamma \log (\boldsymbol{u})
$$

2. decreased, when $p=2, \Omega=\mathbb{R}^{d}$, using

$$
\boldsymbol{X} \leftarrow \boldsymbol{Y} P_{\gamma}^{T} \mathbf{D}\left(a^{-1}\right)
$$

2. Duality for Regularized OT's

Prop. Writing $H_{\nu}: a \mapsto W_{\gamma}(\mu, \nu)$,
[C P'16]

1. H_{ν} has simple Legendre transform:
$H_{\nu}^{*}: g \in \mathbb{R}^{n} \mapsto \gamma\left(E(\boldsymbol{b})+\boldsymbol{b}^{T} \log \left(K e^{g / \gamma}\right)\right)$
2. If $A \in \mathbb{R}^{n \times d}$, f convex on \mathbb{R}^{d},
$\min _{a \in \Sigma_{n}} H_{\nu}(a)+f(A a)=\max _{g \in \mathbb{R}^{d}}-H_{\nu}^{*}\left(A^{T} g\right)-f^{*}(-g)$

3. Stochastic Formulation

$W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})$	$=\max _{\alpha, \beta} \alpha^{T} \boldsymbol{a}+\beta^{T} \boldsymbol{b}-\frac{1}{\gamma}\left(e^{\alpha / \gamma}\right)^{T} K e^{\beta / \gamma}$
	$=\max _{\alpha} \boldsymbol{\alpha}^{T} \boldsymbol{a}-\gamma\left(\log K e^{\alpha / \gamma}\right)^{T} \boldsymbol{b}$
	$=\max _{\alpha} \sum_{j=1}^{m} \boldsymbol{b}_{j}\left(\boldsymbol{\alpha}^{T} \boldsymbol{a}-\gamma \log K_{\cdot j}^{T} e^{\alpha / \gamma}\right)$
	$=\max _{\alpha} \sum_{j=1}^{m} f_{\boldsymbol{j}}(\boldsymbol{\alpha})$

- [GCPB'16] shows that incremental gradient methods are competitive ${ }_{30}$ with Sinkhorn.

4. Algorithmic Formulation

Def. For $L \geq 1$, define

$$
W_{L}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\left\langle\boldsymbol{P}_{L}, M_{X \boldsymbol{Y}}\right\rangle,
$$

where $P_{L} \stackrel{\text { def }}{=} \operatorname{diag}\left(u_{L}\right) K \operatorname{diag}\left(v_{L}\right)$,

$$
v_{0}=\mathbf{1}_{m} ; l \geq 0, u_{l} \stackrel{\text { def }}{=} a / K v_{l}, v_{l+1} \stackrel{\text { def }}{=} b / K^{T} u_{l} .
$$

Prop. $\frac{\partial W_{L}}{\partial X}, \frac{\partial W_{L}}{\partial a}$ can be computed recursively, in $O(L)$ kernel $K \times$ vector products.

Algorithmic Formulation of Reg. OT

Example: Differentiability w.r.t. a

$$
\begin{aligned}
\left(\frac{\partial v_{0}}{\partial a}\right)^{T} & =\mathbf{0}_{m \times n} \\
\left(\frac{\partial u_{l}}{\partial a}\right)^{T} x & =\frac{x}{K v_{l}}-\left(\frac{\partial v_{l}}{\partial a}\right)^{T} K^{T} \frac{x \circ a}{\left(K v_{l}\right)^{2}} \\
\left(\frac{\partial v_{l+1}}{\partial a}\right)^{T} y & =-\left(\frac{\partial u_{l}}{\partial a}\right)^{T} K \frac{y \circ b}{\left(K^{T} u_{l}\right)^{2}}
\end{aligned}
$$

Algorithmic Formulation of Reg. OT

Example: Differentiability w.r.t. a

$$
N=K \circ M_{X Y}
$$

$\nabla_{a} W_{L}(\mu, \nu)=\left(\frac{\partial u_{L}}{\partial a}\right)^{T} N v_{L}+\left(\frac{\partial v_{L}}{\partial a}\right)^{T} N^{T} u_{L}$

Thanks to these tricks...

- [Agueh'11] Barycenters [CD'14||BCCNP'15] [GCP'15||S..C..'15]
- [Burger'12] TV gradient flow using duality [CP'16]
- Dictionary Learning / Latent Factors [RCP’16]
- [Bigot'15] W-PCA [SC'15]
- Inverse problems / Wasserstein regression [BPC"16]
- Density fitting / parameter estimation [MMC"16]

Wasserstein Barycenters

$$
\min _{\boldsymbol{\mu} \in \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_{i} W_{p}^{p}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\boldsymbol{i}}\right)
$$

Multimarginal Formulation

- Exact solution $\left(W_{2}\right)$ using MM-OT. [Agueh'11]

Multimarginal Formulation

- Exact solution (W_{2}) using MM-OT. [Agueh'11]

If $\left|\operatorname{supp} \boldsymbol{\nu}_{\boldsymbol{i}}\right|=\boldsymbol{n}_{\boldsymbol{i}}$, LP of size $\left(\prod_{i} \boldsymbol{n}_{\boldsymbol{i}}, \sum_{i} \boldsymbol{n}_{\boldsymbol{i}}\right)$

Finite Case, LP Formulation

- When Ω is a finite set, metric M, another LP.

$$
\min _{\mu} \sum_{i} \lambda_{i} W_{p}^{p}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{i}\right)
$$

Finite Case, LP Formulation

- When Ω is a finite set, metric M, another LP.

$$
\begin{aligned}
\min _{P_{1}, \cdots, P_{N}, a} & \sum_{i=1}^{N} \lambda_{i}\left\langle\boldsymbol{P}_{i}, M\right\rangle \\
\text { s.t. } & P_{i}^{T} \mathbf{1}_{n}=\boldsymbol{b}_{i}, \forall i \leq N, \\
& \boldsymbol{P}_{\mathbf{1}} \mathbf{1}_{n}=\cdots=\boldsymbol{P}_{N} \mathbf{1}_{d}=a .
\end{aligned}
$$

If $|\Omega|=n$, LP of size $\left(N n^{2},(2 N-1) n\right)$; unstable

Primal Descent on Regularized W

$$
\min _{\mu \in Q \subset \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\mu, \boldsymbol{\nu}_{i}\right)
$$

Fast Computation of Wasserstein Barycenters International Conference on Machine Learning 2014

Primal Descent on Regularized W

Fast Computation of Wasserstein Barycenters International Conference on Machine Learning 2014

Primal Descent on Regularized W

$$
\min _{\boldsymbol{\mu} \in \mathcal{Q} \subset \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\boldsymbol{i}}\right)
$$

Fast Computation of Wasserstein Barycenters International Conference on Machine Learning 2014

Primal Descent on Algorithmic W

$$
\min _{\mu \in Q \subset \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_{i} W_{L}\left(\mu, \nu_{i}\right)
$$

Primal Descent on Algorithmic W

$$
\min _{\boldsymbol{\mu} \in \boldsymbol{Q} \subset \mathcal{P}(\Omega)} \sum_{i=1}^{N} \lambda_{i} W_{\boldsymbol{L}}\left(\boldsymbol{\mu}, \boldsymbol{\nu}_{\boldsymbol{i}}\right)
$$

Wasserstein Barycenter = KL Projections

$$
\left\langle P, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(P)=\gamma \mathbf{K} \mathbf{L}(P \mid K)
$$

$$
\begin{gathered}
\min _{a} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(a, \boldsymbol{b}_{i}\right)=\min _{\substack{\mathrm{P}=\left[P_{1}, \ldots, P_{N}\right] \\
\mathbf{P} \in C_{i} \cap C_{2}}} \sum_{i=1}^{N} \lambda_{i} \mathbf{K L}\left(P_{i} \mid K\right) \\
C_{1}=\left\{\mathbf{P} \mid \exists a, \forall i, P_{i} \mathbf{1}_{m}=a\right\} \\
C_{2}=\left\{\mathbf{P} \mid \forall i, P_{i}^{T} \mathbf{1}_{n}=\boldsymbol{b}_{i}\right\}
\end{gathered}
$$

Wasserstein Barycenter = KL Projections

$\min _{a} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)=\min _{\substack{\mathbf{P}=\left[\boldsymbol{P}_{\mathbf{1}}, \ldots, \boldsymbol{P}_{\mathbf{N}}\right] \\ \mathbf{P} \in \boldsymbol{C}_{1} \cap \boldsymbol{C}_{\mathbf{2}}}} \sum_{i=1}^{N} \lambda_{i} \mathbf{K} \mathbf{L}\left(\boldsymbol{P}_{\boldsymbol{i}} \mid K\right)$

$$
\begin{aligned}
& \boldsymbol{C}_{\mathbf{1}}=\left\{\mathbf{P} \mid \exists a, \forall i, P_{i} \mathbf{1}_{m}=a\right\} \\
& \boldsymbol{C}_{\mathbf{2}}=\left\{\mathbf{P} \mid \forall i, P_{i}^{T} \mathbf{1}_{n}=\boldsymbol{b}_{\boldsymbol{i}}\right\}
\end{aligned}
$$

[BCCNP'15]

Wasserstein Barycenter = KL Projections

$\min _{a} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)=\min _{\substack{\mathbf{P}=\left[\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{N}\right] \\ \mathbf{P} \in \boldsymbol{C}_{\mathbf{1}} \cap \boldsymbol{C}_{\mathbf{2}}}} \sum_{i=1}^{N} \lambda_{i} \mathbf{K} \mathbf{L}\left(\boldsymbol{P}_{\boldsymbol{i}} \mid K\right)$

$$
\begin{aligned}
& C_{\mathbf{1}}=\left\{\mathbf{P} \mid \exists a, \forall i, P_{i} \mathbf{1}_{m}=a\right\} \\
& \boldsymbol{C}_{\mathbf{2}}=\left\{\mathbf{P} \mid \forall i, P_{i}^{T} \mathbf{1}_{n}=\boldsymbol{b}_{\boldsymbol{i}}\right\}
\end{aligned}
$$

u=ones(size(B)); \% d x N matrix

[BCCNP'15]

 while not converged$$
\begin{aligned}
& v=u . *\left(K^{\prime} *\left(B . /\left(K^{*} u\right)\right)\right) ; \% 2(N d \wedge 2) \text { cost } \\
& u=b s x f u n(@ t i m e s, u, \exp (\log (v) * \text { weights))} . / v ;
\end{aligned}
$$

end
$a=$ mean $(v, 2)$;

Iterative Bregman Projections for Regularized Transportation Problems SIAM J. on Sci. Comp. 2015

Application: Graphics

Application: Graphics

Application: Graphics

 Optimal Transportation on Geometric Domains,

Application: Graphics

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains,

Application: Graphics

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains,

Inverse Wasserstein Problems

- consider Barycenter operator:

$$
\boldsymbol{b}(\lambda) \stackrel{\text { def }}{=} \underset{a}{\operatorname{argmin}} \sum_{i=1}^{N} \lambda_{i} W_{\gamma}\left(\boldsymbol{a}, \boldsymbol{b}_{\boldsymbol{i}}\right)
$$

- address now Wasserstein inverse problems:

Given \boldsymbol{a}, find $\operatorname{argmin} \mathcal{E}(\lambda) \stackrel{\text { def }}{=} \operatorname{Loss}(\boldsymbol{a}, \boldsymbol{b}(\lambda))$ $\lambda \in \Sigma_{N}$

The Wasserstein Simplex

Barycenters = Fixed Points

Prop. [BCCNP'15] Consider $\boldsymbol{B} \in \Sigma_{d}^{N}$ and let $U_{0}=1_{d \times N}$, and then for $l \geq 0$:

$$
\boldsymbol{b}^{l} \stackrel{\text { def }}{=} \exp \left(\log \left(K^{T} \boldsymbol{U}_{l}\right) \lambda\right) ;\left\{\begin{array}{l}
\boldsymbol{V}_{l+1} \stackrel{\text { def }}{=} \frac{b^{l} \mathbf{1}_{N}^{T}}{K^{T} U_{l}} \\
U_{l+1} \stackrel{\text { def }}{=} \frac{B}{K V_{l+1}}
\end{array}\right.
$$

Using Truncated Barycenters

- instead of using the exact barycenter

$$
\underset{\lambda \in \Sigma_{N}}{\operatorname{argmin}} \mathcal{E}(\lambda) \stackrel{\text { def }}{=} \operatorname{Loss}(\boldsymbol{a}, \boldsymbol{b}(\lambda))
$$

- use instead the L-iterate barycenter

$$
\underset{\lambda \in \Sigma_{N}}{\operatorname{argmin}} \mathcal{E}^{(L)}(\lambda) \stackrel{\text { def }}{=} \operatorname{Loss}\left(\boldsymbol{a}, \boldsymbol{b}^{(L)}(\lambda)\right)
$$

- Differente using the chain rule.
$\nabla \mathcal{E}^{(L)}(\lambda)=\left[\partial \boldsymbol{b}^{(L)}\right]^{T}(\boldsymbol{g}),\left.\boldsymbol{g} \stackrel{\text { def }}{=} \nabla \operatorname{Loss}(\boldsymbol{a}, \cdot)\right|_{\boldsymbol{b}^{(L)}(\lambda)}$.

Gradient / Barycenter Computation

$$
\begin{aligned}
& \text { function SINKHORN-DIFFERENTIATE }\left(\left(p_{s}\right)_{s=1}^{S}, q, \lambda\right) \\
& \forall s, b_{s}^{(0)} \leftarrow \mathbb{1} \\
& (w, r) \leftarrow\left(0^{S}, 0^{S \times N}\right) \\
& \text { for } \ell=1,2, \ldots, L \\
& \forall s, \varphi_{s}^{(\ell)} \leftarrow K^{\top} \frac{p_{s}}{K b_{s}^{(\ell-1)}} \\
& p \leftarrow \prod_{s}\left(\varphi_{s}^{(\ell)}\right)^{\lambda_{s}} \\
& \forall s, b_{s}^{(\ell)} \leftarrow \frac{p}{\varphi_{s}^{(\ell)}} \\
& g \leftarrow \nabla \mathcal{L}(p, q) \odot p \\
& \text { for } \ell=L, L-1, \ldots, 1 \quad / / \text { Reverse loop } \\
& \quad \forall s, w_{s} \leftarrow w_{s}+\left\langle\log \varphi_{s}^{(\ell)}, g\right\rangle \\
& \forall s, r_{s} \leftarrow-K^{\top}\left(K\left(\frac{\lambda_{s} g-r_{s}}{\varphi_{s}^{(\ell)}}\right) \odot \frac{p_{s}}{\left(K b_{s}^{(\ell-1)}\right)^{2}}\right) \odot b_{s}^{(\ell-1)} \\
& g \leftarrow \sum_{s} r_{s} \\
& \text { return } P^{(L)}(\lambda) \leftarrow p, \nabla \mathcal{E}_{L}(\lambda) \leftarrow w
\end{aligned}
$$

Application: Volume Reconstruction

Shape database

$$
\left(p_{1}, \ldots, p_{5}\right)
$$

Wasserstein Barycentric Coordinates: Histogram
Regression using Optimal Transport, SIGGRAPH'16

Projection $P(\lambda)$

Iso-surface
[BPC'16]

Application: Color Grading

Application: Color Grading

Application: Color Grading

Application: Color Grading

Wasserstein Barycentric Coordinates: Histogram Regression using Optimal Transport, SIGGRAPH'16

Application: Brain Mapping

Original

Euclidean projection

Wasserstein projection

Minimum Kantorovich Estimation

$$
\theta^{\star}=\underset{\theta \in \Theta}{\operatorname{argmin}} W_{p}^{p}\left(\boldsymbol{p}_{\theta}, \boldsymbol{\nu}_{\text {data }}\right) \quad[\text { Bassetti'06] }
$$

$$
\mid W_{\gamma}\left(p_{\theta}, \boldsymbol{\nu}_{\text {data }}\right)=\max _{\alpha, \boldsymbol{\beta}}\left\langle\alpha, p_{\theta}\right\rangle+\left\langle\boldsymbol{\beta}, \boldsymbol{\nu}_{\text {data }}\right\rangle-\gamma\left\langle e^{\alpha / \gamma}, K e^{\boldsymbol{\beta} / \gamma}\right\rangle
$$

$$
\nabla_{\theta} W_{\gamma}=\left(\frac{\partial p_{\theta}}{\partial \theta}\right)^{T} \boldsymbol{\alpha}^{\star}
$$

- Application to parameter estimation in discrete models [MMC'16].
- Stochastic methods for semi-discrete OT [GCPB’16]

To conclude on Wasserstein

- Entropy regularization is a very effective way to get OT to work as a generic loss.
- Many recent extensions:
- [Schmitzer'16]: fast multiscale approaches
- [ZFMAP'15] [CSPV'16]: Unbalanced transport
- [SPKS'16] [PCS'16] extensions to Gromov-W.
- [FCTR'15] Domain adaptation in ML

Dynamic Time Warping

A distance to
 compare time series of observations supported on a metric space.

Alignment Grid

Fill in Metric Information

Fill in Metric Information

x_{5}	D_{51}	D_{52}	D_{53}	D_{54}	D_{55}	D_{56}	D_{57}
x_{4}	D_{41}	D_{42}	D_{43}	D_{44}	D_{45}	D_{46}	D_{47}
x_{3}	D_{31}	D_{32}	D_{33}	D_{34}	D_{35}	D_{36}	D_{37}
x_{2}	D_{21}	D_{22}	D_{23}	D_{24}	D_{25}	D_{26}	D_{27}
x_{1}	D_{11}	D_{12}	D_{13}	D_{14}	D_{15}	D_{16}	D_{17}
	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}

Alignment Paths

start from $(1,1)$ and ends at $(5,7)$

x_{5}	D_{51}	D_{52}	D_{53}	D_{54}	D_{55}	D_{56}	D_{57}
x_{4}	D_{41}	D_{42}	D_{43}	D_{44}	D_{45}	D_{46}	D_{47}
x_{3}	D_{31}	D_{32}	D_{33}	D_{34}	D_{35}	D_{36}	D_{37}
x_{2}	D_{21}	D_{22}	D_{23}	D_{24}	D_{25}	D_{26}	D_{27}
x_{1}	D_{11}	D_{12}	D_{13}	D_{14}	D_{15}	D_{16}	D_{17}
	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}

Three Possible Directions

Example Path

Path Cost $=$ Sum of Visited Distances

$$
C=D_{11}+D_{21} .
$$

Path Cost $=$ Sum of Visited Distances

$$
C=D_{11}+D_{21}+D_{32} .
$$

Path Cost $=$ Sum of Visited Distances

Path Cost $=$ Sum of Visited Distances

$C=D_{11}+D_{21}+D_{32}+D_{33}+D_{34}+D_{35}+D_{45}+D_{46}+D_{57}$.

\#All Paths = Delannoy(5,7)

Delannoy(5,7) $=2,241$; Delannoy $(20,20)=4.53 e 13$

Dynamic Time Warping (Distance)

$$
d_{\mathrm{DTW}}(\boldsymbol{X}, \boldsymbol{Y})=\min _{\pi \in \mathcal{A}(\boldsymbol{X}, \boldsymbol{Y})} \sum_{i=1} d\left(\boldsymbol{x}_{\pi_{1}(i)}, \boldsymbol{y}_{\pi_{2}(i)}\right)
$$

DP Computation

$$
C_{i j}^{\star}=\min _{\pi \in \mathcal{A}(i, j)} C_{\mathbf{x}_{1}^{i}, y_{1}^{j}}(\pi)
$$

x_{5}	D_{51}	D_{52}	D_{53}	D_{54}	D_{55}	D_{56}	D_{57}
x_{4}		C_{42}^{\star}	D_{43}	D_{44}	D_{45}	D_{46}	D_{47}
x_{3}			D33	D_{34}	D35	D36	D_{37}
x_{2}			D_{23}	D_{24}	D_{25}	D_{26}	D_{27}
x_{1}			D_{13}	D_{14}	D_{15}	D_{16}	D_{17}
	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}

Bellman Recursion

$$
\begin{aligned}
& C^{\star} D_{i+1, j+1} \\
& x_{i+1} \\
& i+1, j C^{\star} \\
& i+1, j+1 \\
& x_{i} \\
& C_{i j}^{\star} \quad C_{i, j+1}^{\star} \\
& y_{j} \quad y_{j+1}
\end{aligned}
$$

Bellman recursion: for all $i \leq n-1, j \leq m-1$,

$$
C_{i+1, j+1}^{\star}=\min \left(C_{i+1, j}^{\star}, C_{i j}^{\star}, C_{i, j+1}^{\star}\right)+D_{i+1, j+1}
$$

Bellman Recursion In Practice

DTW Strengths

Well documented!

Dynamic Time Warping Matching

DTW as LP

Let $\boldsymbol{X}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{Y}=\left(y_{1}, \ldots, y_{m}\right)$.
$U(\boldsymbol{n}, \boldsymbol{m}) \stackrel{\text { def }}{=} \operatorname{co}\{\pi,(n, \boldsymbol{m})$ alig. mat. $\} \subset[0,1]^{n \times m}$
$M_{\boldsymbol{X} \boldsymbol{Y}} \stackrel{\text { def }}{=}\left[D\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right)^{p}\right]_{i j}$

$$
]
$$

DTW Problem

Soft Dynamic Time Warping

$\operatorname{dtw}(X, Y)=\min _{\pi \in U(n, m)}\left\langle\pi, M_{X Y}\right\rangle$

Soft Dynamic Time Warping

$\operatorname{dtw}(X, \boldsymbol{Y})=\min _{\pi \in U(n, m)}\left\langle\boldsymbol{\pi}, M_{X \boldsymbol{Y}}\right\rangle$

Soft Dynamic Time Warping

$\operatorname{dtw}(X, Y)=\min _{\pi \in U(n, m)}\left\langle\pi, M_{X Y}\right\rangle$

$$
\min ^{\gamma}\left\{a_{1}, \ldots, a_{n}\right\}:= \begin{cases}\min _{i \leq n} a_{i}, & \gamma=0 \\ -\gamma \log \sum_{i=1}^{n} e^{-a_{i} / \gamma}, & \gamma>0\end{cases}
$$

$\mathbf{d t w}^{\gamma}(\boldsymbol{X}, \boldsymbol{Y})=\min _{\pi \in U(n, \boldsymbol{m})}^{\gamma}\left\langle\pi, M_{X Y}\right\rangle$

Soft Dynamic Time Warping

$\operatorname{dtw}(X, Y)=\min _{\pi \in U(n, m)}\left\langle\pi, M_{X Y}\right\rangle$

$$
\min ^{\gamma}\left\{a_{1}, \ldots, a_{n}\right\}:= \begin{cases}\min _{i \leq n} a_{i}, & \gamma=0, \\ -\gamma \log \sum_{i=1}^{n} e^{-a_{i} / \gamma}, & \gamma>0\end{cases}
$$

$\mathrm{dtw}^{\gamma}(\boldsymbol{X}, \boldsymbol{Y})=\min _{\pi \in U(n, m)}^{\gamma}\left\langle\pi, M_{X Y}\right\rangle$

Differentiation of sDTW

```
Algorithm 2 Computes \(\operatorname{dtw}_{\gamma}(\mathbf{x}, \mathbf{y})\) and \(\nabla_{\mathbf{x}} \mathbf{d t w}_{\gamma}(\mathbf{x}, \mathbf{y})\)
    Inputs: \(\mathbf{x}, \mathbf{y}\), smoothing \(\gamma \geq 0\), distance function \(\delta\).
    \(\Delta=\left[\delta\left(x_{i}, y_{j}\right)\right]_{i, j}\).
    \(r_{0,0}=0 ; r_{i, 0}=r_{0, j}=\infty ; i \in \llbracket n \rrbracket, j \in \llbracket m \rrbracket\).
    for \(j=1, \ldots, m\) do \(\quad \triangleright\) Forward recursion
        for \(i=1, \ldots, n\) do
            \(r_{i, j}=\delta_{i, j}+\min ^{\gamma}\left\{r_{i-1, j-1}, r_{i-1, j}, r_{i, j-1}\right\}\)
            end for
    end for
    \(\delta_{i, m+1}=\delta_{n+1, j}=0, i \in \llbracket n \rrbracket, j \in \llbracket m \rrbracket\)
    \(e_{i, m+1}=e_{n+1, j}=0, i \in \llbracket n \rrbracket, j \in \llbracket m \rrbracket\)
    \(r_{i, m+1}=r_{n+1, j}=-\infty, i \in \llbracket n \rrbracket, j \in \llbracket m \rrbracket\)
    \(\delta_{n+1, m+1}=0, e_{n+1, m+1}=1, r_{n+1, m+1}=r_{n, m}\)
    for \(j=m, \ldots, 1\) do \(\quad \triangleright\) Backward recursion
        for \(i=n, \ldots, 1\) do
            \(a=\exp \frac{1}{\gamma}\left(r_{i+1, j}-r_{i, j}-\delta_{i+1, j}\right)\)
            \(b=\exp \frac{1}{\gamma}\left(r_{i, j+1}-r_{i, j}-\delta_{i, j+1}\right)\)
            \(c=\exp \frac{1}{\gamma}\left(r_{i+1, j+1}-r_{i, j}-\delta_{i+1, j+1}\right)\)
            \(e_{i, j}=e_{i+1, j} \cdot a+e_{i, j+1} \cdot b+e_{i+1, j+1} \cdot c\)
            end for
    end for
    Output: \(\operatorname{dtw}_{\gamma}(\mathbf{x}, \mathbf{y})=r_{n, m}\)
            \(\nabla_{\mathbf{x}} \mathbf{d t w}_{\gamma}(\mathbf{x}, \mathbf{y})=\left(\frac{\partial \Delta(\mathbf{x}, \mathbf{y})}{\partial \mathbf{x}}\right)^{T} E\)
```


Automatic Differentiation

Applications: sDTW as Loss

Barycenters Clustering

(a) Euclidean loss

(b) Soft-DTW loss $(\gamma=1)$

Applications: sDTW as Loss

Barycenters Clustering

(a) Euclidean loss

(b) Soft-DTW loss $(\gamma=1)$
sDTW as a prediction loss
https://arxiv.org/abs/ 1703.01541

