
Learning with Regularized
Distances: Optimal Transport
and Dynamic Time Warping

Marco Cuturi

Joint work with many people, including:
G. Peyré, A. Genevay (ENS), A. Doucet (Oxford), J. Solomon (MIT),

J.D. Benamou, N. Bonneel, F. Bach, L. Nenna (INRIA),
G. Carlier (Dauphine), M. Blondel (NTT).

What is Optimal Transport?

A geometric toolbox to  
compare probability measures  
supported on a metric space.

2

Monge Kantorovich Dantzig Wasserstein Brenier McCann VillaniOtto

What is Optimal Transport?
A geometric toolbox to  

compare probability measures  
supported on a metric space.

3

Empirical
Measures

µ

⌫

h1

Color Histograms

h2

Bags
of features

d

p✓

p✓0

Statistical Models Brain Activation Maps

h2

Bags
of features

d

Brain Activation Maps

What is Optimal Transport?
A geometric toolbox to  

compare probability measures  
supported on a metric space.

4

p✓

p✓0

Statistical Models

Empirical
Measures

µ

⌫

Color Histograms

5

p✓

p✓0

P(⌦)

Optimal Transport Geometry
A geometric toolbox to  

compare probability measures 
supported on a metric space.

5

p✓

Wasserstein Distance

W (p✓, p✓0) p✓0

P(⌦)

Optimal Transport Geometry
A geometric toolbox to  

compare probability measures 
supported on a metric space.

5

p✓

[McCann’95]
Interpolant

p✓0

P(⌦)

Optimal Transport Geometry
A geometric toolbox to  

compare probability measures 
supported on a metric space.

6

p✓0

p✓ p✓00

P (⌦)

A geometric toolbox to  
compare probability measures 
supported on a metric space.

Optimal Transport Geometry

6

p✓0

p✓ p✓00

Wasserstein
Barycenter
[Agueh’11]P (⌦)

A geometric toolbox to  
compare probability measures 
supported on a metric space.

Optimal Transport Geometry

OT and data-analysis

• Key developments in (applied) maths ~’90s  
[McCann’95], [JKO’98], [Benamou’98], [Gangbo’98],
[Ambrosio’06], [Villani’03/’09].

• Key developments in TCS / graphics since ’00s  
[Rubner’98], [Indyk’03], [Naor’07], [Andoni’15].

๏Small to no-impact in large-scale data analysis:
✦ computationally heavy;
✦Wasserstein distance is not differentiable

7

OT and data-analysis

• Key developments in (applied) maths ~’90s  
[McCann’95], [JKO’98], [Benamou’98], [Gangbo’98],
[Ambrosio’06], [Villani’03/’09].

• Key developments in TCS / graphics since ’00s  
[Rubner’98], [Indyk’03], [Naor’07], [Andoni’15].

๏Small to no-impact in large-scale data analysis:
✦ computationally heavy;
✦Wasserstein distance is not differentiable

7

Today’s talk: Entropy Regularized OT
• Very fast compared to usual approaches,
GPGPU parallel.

• Differentiable, important if we want to use
OT distances as loss functions.

• Can be automatically differentiated, simple
iterative process, DL-toolboxes compatible.

• OT can become a building block in ML.

Background: OT Geometry

8

⌦ a probability space, c : ⌦⇥ ⌦ ! R.
µ,⌫ two probability measures in P(⌦).

inf
T#µ=⌫

Z

⌦
c(x,T (x))µ(dx)

x

T (x)

8B ⇢ ⌦,T#µ(B) = ⌫(B)

[Monge’81] problem: find a map T : ⌦ ! ⌦

Background: OT Geometry

8

⌦ a probability space, c : ⌦⇥ ⌦ ! R.
µ,⌫ two probability measures in P(⌦).

x

T (x)

If ⌦ = Rd, c = k ·� · k2,
µ,⌫ a.c., then T = ru, u convex.
[Brenier’87]
[Monge’81] problem: find a map T : ⌦ ! ⌦

Background: OT Geometry

9

[Monge’81] problem: find a map T : ⌦ ! ⌦

x

T (x)

⌦ a probability space, c : ⌦⇥ ⌦ ! R.
µ,⌫ two probability measures in P(⌦).

inf
T#µ=⌫

Z

⌦
c(x,T (x))µ(dx)

Background: OT Geometry

9

[Monge’81] problem: find a map T : ⌦ ! ⌦

�
x

⌦ a probability space, c : ⌦⇥ ⌦ ! R.
µ,⌫ two probability measures in P(⌦).

inf
T#µ=⌫

Z

⌦
c(x,T (x))µ(dx)

[Kantorovich’42] Relaxation

10

⇧(µ,⌫)
def
= {P 2 P(⌦⇥ ⌦)| 8A,B ⇢ ⌦,

P (A⇥ ⌦) = µ(A),

P (⌦⇥B) = ⌫(B)}

• Instead of maps , consider
probabilistic maps, i.e. couplings :

T : ⌦ ! ⌦
P 2 P(⌦⇥ ⌦)

11

⇧(µ,⌫)
def
= {P 2 P(⌦⇥ ⌦)| 8A,B ⇢ ⌦,

P (A⇥ ⌦) = µ(A),P (⌦⇥B) = ⌫(B)}

Joint Probabilities of (µ, ν)

For P ∈ Π(µ,ν),
P ({x},Ω) = µ({x}) and P (Ω, {y}) = ν({y})

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

0.6
µ(x) ν(y)

x y

P

0

0.1

0.2

0.3

P (x, y)

[Kantorovich’42] Relaxation

11

⇧(µ,⌫)
def
= {P 2 P(⌦⇥ ⌦)| 8A,B ⇢ ⌦,

P (A⇥ ⌦) = µ(A),P (⌦⇥B) = ⌫(B)}

Joint Probabilities of (µ, ν)

For P ∈ Π(µ,ν),
P ({x},Ω) = µ({x}) and P (Ω, {y}) = ν({y})

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

0.6
µ(x) ν(y)

x y

P

0

0.1

0.2

0.3

P (x, y)

Joint Probabilities of (µ, ν)

Π(µ,ν) = probability measures on Ω2

with marginals µ and ν.

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

0.6
µ(x) ν(y)

x y

P

0

5 · 10−2

0.1

0.15

P (x, y)

Joint Probabilities of (µ, ν)

For P ∈ Π(µ,ν),
P ({x},Ω) = µ({x}) and P (Ω, {y}) = ν({y})

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

0.6
µ(x) ν(y)

x y

P

0

0.1

0.2

0.3

P (x, y)

[Kantorovich’42] Relaxation

Wasserstein Distance

12

Def. For p � 1, the p-Wasserstein distance

between µ,⌫ in P(⌦) is

Wp(µ,⌫)
def
=

✓
inf

P2⇧(µ,⌫)
EP [D(X,Y)

p
]

◆1/p

.

Wasserstein between 2 Diracs

13

�y

�
x

(⌦,D)

W p
p (�x, �y) = D(x,y)

Wasserstein on Uniform Measures

14

µ =
nX

i=1

1

n
�
xi

⌫ =
nX

j=1

1

n
�yj

(⌦,D)

Wasserstein on Uniform Measures

14

µ =
nX

i=1

1

n
�
xi

⌫ =
nX

j=1

1

n
�yj

(⌦,D)

C(�) =
1

n

nX

i=1

D(xi,y�i
)p

Optimal Assignment ⊂ Wasserstein

15

µ =
nX

i=1

1

n
�
xi

W p
p (µ,⌫) = min

�2Sn

C(�)
⌫ =

nX

j=1

1

n
�yj

(⌦,D)

16

(⌦,D)

Wasserstein on Empirical Measures

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

Wasserstein on Empirical Measures

17

U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}
MXY

def
= [D(xi,yj)

p]ij

Consider µ =

nX

i=1

a
i

�
xi and ⌫ =

mX

j=1

b
j

�
yj .

2

66664

b1 ... bm

a1 · · · · · · · · ·
... · · · P1m = a · · ·

an · · · · · · · · ·

3

77775

2

66664

y1 ... ym

x1 · · ·
.

.

. · D(x
i

,y
j

)p ·

xn · · ·

3

77775

Wasserstein on Empirical Measures

17

U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}
MXY

def
= [D(xi,yj)

p]ij

Consider µ =

nX

i=1

a
i

�
xi and ⌫ =

mX

j=1

b
j

�
yj .

2

66664

b1 ... bm

a1

...
...

...

...
... P T1n = b

...

an

...
...

...

3

77775

2

66664

y1 ... ym

x1 · · ·
.

.

. · D(x
i

,y
j

)p ·

xn · · ·

3

77775

Wasserstein on Empirical Measures

17

U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}
MXY

def
= [D(xi,yj)

p]ij

Def. Optimal Transport Problem

W p
p (µ,⌫) = min

P2U(a,b)
hP ,MXY i

Consider µ =

nX

i=1

a
i

�
xi and ⌫ =

mX

j=1

b
j

�
yj .

Discrete OT Problem

18

MXY

U(a, b)

Discrete OT Problem

19

MXY

U(a, b)

P ?

Discrete OT Problem

19

Def. Dual OT problem
W p

p (µ,⌫) = max

↵2Rn,�2Rm

↵i+�jD(xi,yj)
p

↵Ta+ �T b

MXY

U(a, b)

P ?

Discrete OT Problem

19

MXY

U(a, b)

P ?

O(n3
log(n))

network flow solver
used in practice.

Note: flow/PDE formulations [Beckman’61]/[Benamou’98] can be
used for p=1/p=2 for a sparse-graph metric/Euclidean metric.

Discrete OT Problem

20

MXY

U(a, b)

P ?

O(n3
log(n))

network flow solver
used in practice.

Discrete OT Problem

20

MXY

U(a, b)

P ?

O(n3
log(n))

network flow solver
used in practice.

P ?Solution unstable
and not always unique.

Discrete OT Problem

20

MXY

U(a, b)

O(n3
log(n))

network flow solver
used in practice.

P ?Solution unstable
and not always unique.{P ?}

Discrete OT Problem

21

MXY

U(a, b)

O(n3
log(n))

network flow solver
used in practice.

{P ?}
P ?Solution unstable

and not always unique.

Discrete OT Problem

21

MXY

U(a, b)

O(n3
log(n))

network flow solver
used in practice.

P ?

P ?Solution unstable
and not always unique.

Discrete OT Problem

21

MXY

U(a, b)

O(n3
log(n))

network flow solver
used in practice.

P ?

P ?Solution unstable
and not always unique.

W p
p (µ,⌫) not di↵erentiable.

Entropic Regularization [Wilson’62]

22

Note: Unique optimal solution because of strong concavity of Entropy

E(P)

def
= �

nmX

i,j=1

Pij(logPij)

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P)

Entropic Regularization [Wilson’62]

22

EMD Entropy

Discrete analog: Cuturi, NIPS 2013

�
µ

⌫

P�

Note: Unique optimal solution because of strong concavity of Entropy

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P)

Fast & Scalable Algorithm

23

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P)

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

Fast & Scalable Algorithm

23

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P)

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

L(P,↵,�) =
X

ij

PijMij + �Pij logPij + ↵T
(P1� a) + �T

(PT1� b)

@L/@Pij = Mij + �(logPij + 1) + ↵i + �j

(@L/@Pij = 0))Pij = e
↵i
� +

1
2 e

�
Mij

� e
�j

� +
1
2
= ui KKijvj

Fast & Scalable Algorithm

23

• [Sinkhorn’64] fixed-point iterations for

• complexity, GPGPU parallel [C’13] .
• if and separable.

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P)

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

(u,v)

O(nm)

Dp

[S..C..’15]
⌦ = {1, . . . , n}dO(nd+1)

u a/KKv, v b/KKTu

Very Fast EMD Approx. Solver

24

Note. is a random graph with shortest path metric, histograms
sampled uniformly on simplex, Sinkhorn tolerance 10-2.

(⌦,D)

64 128 256 512 1024 2048 4096
10

−6

10
−4

10
−2

10
0

10
2

10
4

Histogram Dimension

A
vg

.
E

xe
cu

tio
n

 T
im

e
 p

e
r

D
is

ta
n

ce
 (

in
 s

.)

FastEMD

Rubner’s emd

CPU γ=0.02

CPU γ=0.1

GPU γ=0.02

GPU γ=0.1

25

(⌦,D)

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

Regularization ⤑ Differentiability
W�((a,X), (b, Y)) = min

P2U(a,b)
hP ,MXY i��E(P)

25

(⌦,D)

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

Regularization ⤑ Differentiability
W�((a + �a,X), (b, Y)) = W�((a,X), (b, Y))+??

25

(⌦,D)

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

Regularization ⤑ Differentiability

a a+�a

W�((a + �a,X), (b, Y)) = W�((a,X), (b, Y))+??

26

(⌦,D)

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

W�((a,X + �X), (b, Y)) = W�((a,X), (b, Y))+??

Regularization ⤑ Differentiability

26

(⌦,D)

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yjX X +�X

W�((a,X + �X), (b, Y)) = W�((a,X), (b, Y))+??

Regularization ⤑ Differentiability

27

• Quantization, k-means problem [Lloyd’82]

• [McCann’95] Interpolant

• [JKO’98] PDE’s as gradient flows in

min
µ2P(⌦)

(1� t)W 2
2 (µ,⌫1) + tW 2

2 (µ,⌫2)

min
µ2P(Rd)

| suppµ|=k

W 2
2 (µ,⌫data)

µt+1 = argmin
µ2P(⌦)

J(µ) + �tW
p
p (µ, µt)

(P(⌦),W).

Crucial for “min data + W ” problems

27

• Quantization, k-means problem [Lloyd’82]

• [McCann’95] Interpolant

• [JKO’98] PDE’s as gradient flows in

min
µ2P(⌦)

(1� t)W 2
2 (µ,⌫1) + tW 2

2 (µ,⌫2)

min
µ2P(Rd)

| suppµ|=k

W 2
2 (µ,⌫data)

µt+1 = argmin
µ2P(⌦)

J(µ) + �tW
p
p (µ, µt)

(P(⌦),W).

Any (ML) problem involving a KL or L2 loss  
between (parameterized) histograms or
probabilility measures can be easily

Wasserstein-ized if we can differentiate W efficiently.

Crucial for “min data + W ” problems

1. Differentiability of Regularized OT

28

Def. Dual regularized OT Problem

W�(µ,⌫) = max

↵,�
↵Ta+ �T b� 1

�
(e↵/�)T KKe�/�

Prop. W�(µ,⌫) is

1. convex w.r.t. a (Danskin),

raW� = ↵?
= � log(u).

2. decreased, when p = 2,⌦ = Rd
, using

X Y PT
� D(a�1

).

[CD’14]

29

[CP’16]
Prop. Writing H⌫ : a 7! W�(µ,⌫),

1. H⌫ has simple Legendre transform:

H⇤
⌫ : g 2 Rn 7! �

⇣
E(b) + bT log(KKeg/�)

⌘

2. If A 2 Rn⇥d
, f convex on Rd

,

min

a2⌃n

H⌫(a)+f(Aa)=max

g2Rd
�H⇤

⌫(A
Tg)�f⇤

(�g)

2. Duality for Regularized OT’s

30

3. Stochastic Formulation
W�(µ,⌫) = max

↵,�
↵Ta+ �T b� 1

�
(e↵/�)T KKe�/�

= max

↵
↵Ta� �(log KKe↵/�

)

T b

= max

↵

mX

j=1

bj
⇣
↵Ta� � log KKT

·je
↵/�

⌘

= max

↵

mX

j=1

ffj(↵)

• [GCPB’16] shows that incremental gradient
methods are competitive with Sinkhorn.

31

4. Algorithmic Formulation

Prop.

@WL
@X , @WL

@a can be computed recur-

sively, in O(L) kernelKK⇥vector products.

Def. For L � 1, define

WL(µ,⌫)
def
= hPL,MXY i,

where PL
def
= diag(uL)KKdiag(vL),

v0 = 1m; l � 0,ul
def
= a/KKvl,vl+1

def
= b/KKTul.

32

✓
@v0

@a

◆T

= 0m⇥n,

✓
@ul

@a

◆T

x =
x

KKvl
�
✓
@vl

@a

◆T

KKT x � a
(KKvl)2

,

✓
@vl+1

@a

◆T

y = �
✓
@ul

@a

◆T

KK
y � b

(KKT
ul)2

.

Example: Di↵erentiability w.r.t. a

Algorithmic Formulation of Reg. OT

33

Example: Di↵erentiability w.r.t. a

NN = KK �MXY

raWL(µ,⌫) =

✓
@uL

@a

◆T

NNvL +

✓
@vL

@a

◆T

NNTuL

Algorithmic Formulation of Reg. OT

34

• [Agueh’11] Barycenters [CD’14][BCCNP’15]  
[GCP’15][S..C..’15]

• [Burger’12] TV gradient flow using duality [CP’16]

• Dictionary Learning / Latent Factors [RCP’16]

• [Bigot’15] W-PCA [SC’15]

• Inverse problems / Wasserstein regression [BPC’16]

• Density fitting / parameter estimation [MMC’16]

Thanks to these tricks…

Wasserstein Barycenters

35

Wasserstein
Barycenter
[Agueh’11]

min
µ2P(⌦)

NX

i=1

�iW
p
p (µ,⌫i)

⌫1

⌫2
⌫3

P(⌦)

Multimarginal Formulation
• Exact solution (W2) using MM-OT. [Agueh’11]

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

36

Multimarginal Formulation
• Exact solution (W2) using MM-OT. [Agueh’11]

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

If | supp⌫i| = ni, LP of size (

Q
i ni,

P
i ni)

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

36

• When is a finite set, metric M, another LP.

Finite Case, LP Formulation

37

⌦

min
µ

X

i

�iW
p
p (µ,⌫i)

• When is a finite set, metric M, another LP.

Finite Case, LP Formulation

37

⌦

min
P1,··· ,PN ,a

NX

i=1

�ihPi,M i

s.t. Pi
T1n = bi, 8i N,

P11n = · · · = PN1d = a.

If |⌦| = n, LP of size (Nn2, (2N � 1)n); unstable

Primal Descent on Regularized W

38

Averaging 30 Measures

30 measures on R2.

50

[CD’14]

min
µ2Q⇢P(⌦)

NX

i=1

�iW�(µ,⌫i)

Fast Computation of Wasserstein Barycenters
International Conference on Machine Learning 2014

Primal Descent on Regularized W

38

Averaging 30 Measures

30 measures on R2.

50

Euclidean Mean

51

[CD’14]

min
µ2Q⇢P(⌦)

NX

i=1

�iW�(µ,⌫i)

Fast Computation of Wasserstein Barycenters
International Conference on Machine Learning 2014

Primal Descent on Regularized W

38

Averaging 30 Measures

30 measures on R2.

50

Euclidean Mean

51

2-Wasserstein

53

[CD’14]

min
µ2Q⇢P(⌦)

NX

i=1

�iW�(µ,⌫i)

Fast Computation of Wasserstein Barycenters
International Conference on Machine Learning 2014

Primal Descent on Algorithmic W

39

min
µ2Q⇢P(⌦)

NX

i=1

�iWL(µ,⌫i)

Primal Descent on Algorithmic W

39

min
µ2Q⇢P(⌦)

NX

i=1

�iWL(µ,⌫i)

Wasserstein Barycenter = KL Projections

40

[BCCNP’15]

hP,MXY i � �E(P) = �KL(P | KK)

C1 = {P|9a, 8i, Pi1m = a}
C2 =

�
P|8i, PT

i 1n = bi

min
a

NX

i=1

�iW�(a, bi) = min
P=[P1,...,PN]

P2C1\C2

NX

i=1

�iKL(Pi|KK)

Wasserstein Barycenter = KL Projections

40

[KK · · · KK] P�

[BCCNP’15]

C1 = {P|9a, 8i, Pi1m = a}
C2 =

�
P|8i, PT

i 1n = bi

min
a

NX

i=1

�iW�(a, bi) = min
P=[P1,...,PN]

P2C1\C2

NX

i=1

�iKL(Pi|KK)

Wasserstein Barycenter = KL Projections

40

[KK · · · KK] P�

u=ones(size(B)); % d x N matrix
while not converged

v=u.*(K’*(B./(K*u))); % 2(Nd^2) cost
u=bsxfun(@times,u,exp(log(v)*weights))./v;

end
a=mean(v,2);

[BCCNP’15]

C1 = {P|9a, 8i, Pi1m = a}
C2 =

�
P|8i, PT

i 1n = bi

min
a

NX

i=1

�iW�(a, bi) = min
P=[P1,...,PN]

P2C1\C2

NX

i=1

�iKL(Pi|KK)

Iterative Bregman Projections for
Regularized Transportation Problems
SIAM J. on Sci. Comp. 2015

Application: Graphics

41

Convolutional Wasserstein Distances: Efficient
Optimal Transportation on Geometric Domains,
SIGGRAPH’15 [S..C..’15]

Application: Graphics

41

Convolutional Wasserstein Distances: Efficient
Optimal Transportation on Geometric Domains,
SIGGRAPH’15 [S..C..’15]

Application: Graphics

41

Convolutional Wasserstein Distances: Efficient
Optimal Transportation on Geometric Domains,
SIGGRAPH’15 [S..C..’15]

Application: Graphics

41

Convolutional Wasserstein Distances: Efficient
Optimal Transportation on Geometric Domains,
SIGGRAPH’15

t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1 t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

!""#""$

H0=∞
!""#""$

H0=max{H(µ0),H(µ1)}

Figure 6: Displacement interpolation without (left) and with (right) entropy limits. The optimization implicitly matches the two peaks at t = 0
and t = 1 and moves mass smoothly from one distribution to the other.

Linear interpolation Convolutional barycenter

Convolutional barycenter (bounded entropy)

Figure 8: BRDF interpolation: BRDFs for the materials in the
four corners of each image are fixed, and the rest are computed
using bilinear weights. Linearly interpolating BRDFs (left) yields
spurious highlights, the convolutional barycenter (center) moves
highlights continuously but increases diffusion, and the entropy-
bounded barycenter (right) moves highlights in a sharper fashion.

more provides the scaling factors (vi,wi) for each i = 1, . . . , k,
which define the transport maps πi = DviKDwi between each
input histogram µi and the barycenter µ. This discrete coupling πi

should be understood as a discretization of a continuous coupling
πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M → M , defined on the
support of µi (i.e. the set of x ∈M such that µi(x) > 0), by

∀x ∈M, Ti(x) = 1
µi(x)

∫

M
πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where
πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized
coupling πi converges to a measure supported on the graph of the
optimal matching between µi and the barycenter; this phenomenon
is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal
transport map. It can thus be used to define a corrected image

fα
i

def.
= Ti ◦ fi whose chrominance histogram matches µ. Fig. 11

shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R
3

and a skeleton graph G = (V,E) representing the topology of its
interior. For instance, if M is a human body shape, then G might
have “stick figure” topology. To relate G directly to the geometry of

Figure 9: Embeddings of skeletons computed using Wasserstein
propagation; the positions of the blue vertices are computed auto-
matically using the fixed green vertices and topology of the graph.

M , we might wish to find a map V &→ R
3 embedding the vertices

of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation (§6.3).
We take as input the positions of vertices in a small subset V0 ⊆ V .
As suggested by Solomon et al. [2014a], we express the position
of each v ∈ V0 as a distribution µv ∈ Prob(M) using barycen-
tric coordinates computed using the algorithm by Ju et al. [2005].
Distributions µv ∈ Prob(M) can be interpolated along G to the
remaining v ̸∈ V0 via Wasserstein propagation with uniform edge
weights. The computed µv’s serve as barycentric coordinates to
embed the unlabeled vertices. Thanks to displacement interpolation,
the constructed embedding conforms to the geometry of the surface;
Fig. 9 shows sample embeddings generated using this strategy.

Soft maps. A relaxation of the point-to-point correspondence
problem replaces the unknown from a map φ : M0 → M to a
measure-valued map µx : M0 → Prob(M). Solomon et al. [2013]
generalize the Dirichlet energy of a map to the measure-valued case,
but their discussion is limited to analysis rather than computation of
maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel
matrix of M . A regularized discretization of the measure-valued
map Dirichlet energy is provided by the Wasserstein propagation
objective (17) from M0 viewed as a graph M0 = (V,E) to distri-
butions on M , with weights proportional to inverse squared edge
lengths. Coupled with pointwise constraints, Algorithm 4 provides a
way to recover a map minimizing the resulting energy; convergence
can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate conver-
gence, we introduce a compatibility function c(x, y) : M0 ×M →
R+ expressing the geometric compatibility of x ∈M0 and y ∈M ;
small c(x, y) indicates that the geometry of M0 near x is similar to
that of M near y. Discretely, take cv to sample the compatibility
function c(v, ·) on M associated with v ∈ M0. We modify the
objective (17) as follows:

⎡

⎣

∑

(v,w)∈E

1
ℓ2(v,w)

W2
2,Ht(µv,µw)

⎤

⎦+ τ

[

∑

v∈V

ωva
⊤(µv ⊗ cv)

]

.

(18)

[S..C..’15]

Application: Graphics

41

Convolutional Wasserstein Distances: Efficient
Optimal Transportation on Geometric Domains,
SIGGRAPH’15

t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1 t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

!""#""$

H0=∞
!""#""$

H0=max{H(µ0),H(µ1)}

Figure 6: Displacement interpolation without (left) and with (right) entropy limits. The optimization implicitly matches the two peaks at t = 0
and t = 1 and moves mass smoothly from one distribution to the other.

Linear interpolation Convolutional barycenter

Convolutional barycenter (bounded entropy)

Figure 8: BRDF interpolation: BRDFs for the materials in the
four corners of each image are fixed, and the rest are computed
using bilinear weights. Linearly interpolating BRDFs (left) yields
spurious highlights, the convolutional barycenter (center) moves
highlights continuously but increases diffusion, and the entropy-
bounded barycenter (right) moves highlights in a sharper fashion.

more provides the scaling factors (vi,wi) for each i = 1, . . . , k,
which define the transport maps πi = DviKDwi between each
input histogram µi and the barycenter µ. This discrete coupling πi

should be understood as a discretization of a continuous coupling
πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M → M , defined on the
support of µi (i.e. the set of x ∈M such that µi(x) > 0), by

∀x ∈M, Ti(x) = 1
µi(x)

∫

M
πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where
πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized
coupling πi converges to a measure supported on the graph of the
optimal matching between µi and the barycenter; this phenomenon
is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal
transport map. It can thus be used to define a corrected image

fα
i

def.
= Ti ◦ fi whose chrominance histogram matches µ. Fig. 11

shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R
3

and a skeleton graph G = (V,E) representing the topology of its
interior. For instance, if M is a human body shape, then G might
have “stick figure” topology. To relate G directly to the geometry of

Figure 9: Embeddings of skeletons computed using Wasserstein
propagation; the positions of the blue vertices are computed auto-
matically using the fixed green vertices and topology of the graph.

M , we might wish to find a map V &→ R
3 embedding the vertices

of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation (§6.3).
We take as input the positions of vertices in a small subset V0 ⊆ V .
As suggested by Solomon et al. [2014a], we express the position
of each v ∈ V0 as a distribution µv ∈ Prob(M) using barycen-
tric coordinates computed using the algorithm by Ju et al. [2005].
Distributions µv ∈ Prob(M) can be interpolated along G to the
remaining v ̸∈ V0 via Wasserstein propagation with uniform edge
weights. The computed µv’s serve as barycentric coordinates to
embed the unlabeled vertices. Thanks to displacement interpolation,
the constructed embedding conforms to the geometry of the surface;
Fig. 9 shows sample embeddings generated using this strategy.

Soft maps. A relaxation of the point-to-point correspondence
problem replaces the unknown from a map φ : M0 → M to a
measure-valued map µx : M0 → Prob(M). Solomon et al. [2013]
generalize the Dirichlet energy of a map to the measure-valued case,
but their discussion is limited to analysis rather than computation of
maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel
matrix of M . A regularized discretization of the measure-valued
map Dirichlet energy is provided by the Wasserstein propagation
objective (17) from M0 viewed as a graph M0 = (V,E) to distri-
butions on M , with weights proportional to inverse squared edge
lengths. Coupled with pointwise constraints, Algorithm 4 provides a
way to recover a map minimizing the resulting energy; convergence
can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate conver-
gence, we introduce a compatibility function c(x, y) : M0 ×M →
R+ expressing the geometric compatibility of x ∈M0 and y ∈M ;
small c(x, y) indicates that the geometry of M0 near x is similar to
that of M near y. Discretely, take cv to sample the compatibility
function c(v, ·) on M associated with v ∈ M0. We modify the
objective (17) as follows:

⎡

⎣

∑

(v,w)∈E

1
ℓ2(v,w)

W2
2,Ht(µv,µw)

⎤

⎦+ τ

[

∑

v∈V

ωva
⊤(µv ⊗ cv)

]

.

(18)

t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1 t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

!""#""$

H0=∞
!""#""$

H0=max{H(µ0),H(µ1)}

Figure 6: Displacement interpolation without (left) and with (right) entropy limits. The optimization implicitly matches the two peaks at t = 0
and t = 1 and moves mass smoothly from one distribution to the other.

Linear interpolation Convolutional barycenter

Convolutional barycenter (bounded entropy)

Figure 8: BRDF interpolation: BRDFs for the materials in the
four corners of each image are fixed, and the rest are computed
using bilinear weights. Linearly interpolating BRDFs (left) yields
spurious highlights, the convolutional barycenter (center) moves
highlights continuously but increases diffusion, and the entropy-
bounded barycenter (right) moves highlights in a sharper fashion.

more provides the scaling factors (vi,wi) for each i = 1, . . . , k,
which define the transport maps πi = DviKDwi between each
input histogram µi and the barycenter µ. This discrete coupling πi

should be understood as a discretization of a continuous coupling
πi(x, y) between each µi and µ.

For each i, we introduce a map Ti : M → M , defined on the
support of µi (i.e. the set of x ∈M such that µi(x) > 0), by

∀x ∈M, Ti(x) = 1
µi(x)

∫

M
πi(x, y)y dy.

This integral is computed numerically as a sum over the grid, where
πi is used in place of πi.

The rationale behind this definition is that as γ → 0, the regularized
coupling πi converges to a measure supported on the graph of the
optimal matching between µi and the barycenter; this phenomenon
is highlighted in Fig. 2. Thus, as γ → 0, Ti converges to the optimal
transport map. It can thus be used to define a corrected image

fα
i

def.
= Ti ◦ fi whose chrominance histogram matches µ. Fig. 11

shows an application of the method to k = 2 input images.

Skeleton layout. Suppose we are given a triangle mesh M ⊂ R
3

and a skeleton graph G = (V,E) representing the topology of its
interior. For instance, if M is a human body shape, then G might
have “stick figure” topology. To relate G directly to the geometry of

Figure 9: Embeddings of skeletons computed using Wasserstein
propagation; the positions of the blue vertices are computed auto-
matically using the fixed green vertices and topology of the graph.

M , we might wish to find a map V &→ R
3 embedding the vertices

of the graph into the interior of the surface.

We can approach this problem using Wasserstein propagation (§6.3).
We take as input the positions of vertices in a small subset V0 ⊆ V .
As suggested by Solomon et al. [2014a], we express the position
of each v ∈ V0 as a distribution µv ∈ Prob(M) using barycen-
tric coordinates computed using the algorithm by Ju et al. [2005].
Distributions µv ∈ Prob(M) can be interpolated along G to the
remaining v ̸∈ V0 via Wasserstein propagation with uniform edge
weights. The computed µv’s serve as barycentric coordinates to
embed the unlabeled vertices. Thanks to displacement interpolation,
the constructed embedding conforms to the geometry of the surface;
Fig. 9 shows sample embeddings generated using this strategy.

Soft maps. A relaxation of the point-to-point correspondence
problem replaces the unknown from a map φ : M0 → M to a
measure-valued map µx : M0 → Prob(M). Solomon et al. [2013]
generalize the Dirichlet energy of a map to the measure-valued case,
but their discussion is limited to analysis rather than computation of
maps because their discretization scales poorly.

Suppose M0 and M are triangle meshes and Ht is the heat kernel
matrix of M . A regularized discretization of the measure-valued
map Dirichlet energy is provided by the Wasserstein propagation
objective (17) from M0 viewed as a graph M0 = (V,E) to distri-
butions on M , with weights proportional to inverse squared edge
lengths. Coupled with pointwise constraints, Algorithm 4 provides a
way to recover a map minimizing the resulting energy; convergence
can be slow, however, when the constraints are far apart.

To relax dependence on pointwise constraints and accelerate conver-
gence, we introduce a compatibility function c(x, y) : M0 ×M →
R+ expressing the geometric compatibility of x ∈M0 and y ∈M ;
small c(x, y) indicates that the geometry of M0 near x is similar to
that of M near y. Discretely, take cv to sample the compatibility
function c(v, ·) on M associated with v ∈ M0. We modify the
objective (17) as follows:

⎡

⎣

∑

(v,w)∈E

1
ℓ2(v,w)

W2
2,Ht(µv,µw)

⎤

⎦+ τ

[

∑

v∈V

ωva
⊤(µv ⊗ cv)

]

.

(18)

[S..C..’15]

42

• consider Barycenter operator:

• address now Wasserstein inverse problems:

b(�)
def
= argmin

a

NX

i=1

�iW�(a, bi)

Given a, find argmin

�2⌃N

E(�) def= Loss(a, b(�))

Inverse Wasserstein Problems

43

The Wasserstein Simplex

Barycenters = Fixed Points

44

Prop. [BCCNP’15] Consider B 2 ⌃

N
d

and let U0 = 1d⇥N , and then for l � 0:

bl
def
= exp

�
log

�
KTUl

�
�
�
;

8
<

:
Vl+1

def
=

bl1T
N

KTUl
,

Ul+1
def
=

B
KVl+1

.

45

Using Truncated Barycenters

argmin

�2⌃N

E(L)
(�)

def
= Loss(a, b(L)

(�))

argmin

�2⌃N

E(�) def= Loss(a, b(�))

• instead of using the exact barycenter

• use instead the L-iterate barycenter

• Differente using the chain rule.

rE(L)
(�) = [@b(L)

]

T
(g), g

def
= rLoss(a, ·)|b(L)(�).

46

Gradient / Barycenter Computation

47

Application: Volume Reconstruction

Wasserstein Barycentric Coordinates: Histogram
Regression using Optimal Transport, SIGGRAPH’16 [BPC’16]

48

Application: Color Grading

49

Application: Color Grading

50

Application: Color Grading

51

Application: Color Grading

Wasserstein Barycentric Coordinates: Histogram
Regression using Optimal Transport, SIGGRAPH’16 [BPC’16]

52

Application: Brain Mapping

53

✓? = argmin
✓2⇥

W p
p (p✓,⌫data) [Bassetti’06]

W�(p✓,⌫data) = max

↵,�
h↵, p✓ i+ h�,⌫data i � �he↵/� , KKe�/� i

r✓W� = (@p✓

@✓)T↵?

• Application to parameter estimation in discrete
models [MMC'16].

• Stochastic methods for semi-discrete OT
[GCPB’16]

Minimum Kantorovich Estimation

To conclude on Wasserstein

• Entropy regularization is a very effective way to get
OT to work as a generic loss.

• Many recent extensions:
• [Schmitzer’16]: fast multiscale approaches
• [ZFMAP’15] [CSPV’16]: Unbalanced transport
• [SPKS’16] [PCS’16] extensions to Gromov-W.
• [FCTR’15] Domain adaptation in ML

54

Dynamic Time Warping

55

A distance to  
compare time series of observations 

supported on a metric space.

(⌦, d)

56

Optimal Alignment

y7

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6

We first “lay out” the n × m grid,
corresponding to x = (x1, · · · , x5) y = (y1, · · · , y7)

March 7th 2011. 11

Alignment Grid

57

Optimal Alignment

Dij = d(xi, yj)

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

The grid is filled with pairwise distances.

March 7th 2011. 12

Fill in Metric Information

58

Optimal Alignment

D27

D13D12 D14 D15 D16

D21 D23D22 D24 D25 D26

D31 D33D32 D34 D35 D36

D41 D43D42 D44 D45 D46

D51 D53D52 D54 D55 D56

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D57

D17

D37

D47

D11

This rectangular matrix is the only thing we need.

March 7th 2011. 13

Fill in Metric Information

Alignment Paths

59

Optimal Alignment

D57

D23D22 D24 D25 D26

D31 D33D32 D34 D35 D36

D41 D43D42 D44 D45 D46

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D11

D21

An alignment is a path that starts from (1, 1) to reach (5, 7)

March 7th 2011. 14

start from (1,1) and ends at (5,7)

60

Optimal Alignment

D26

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56 D57

D11

D41 D43D42 D44 D45 D46

D31 D33D32 D34 D35 D36

D21 D23D22 D24 D25

The only admissible moves from one cell to the next are →, ↑ and ↗

March 7th 2011. 15

Three Possible Directions

61

Optimal Alignment

D32

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D11

D57

The cost of a path is the sum of contributions Dij it walks through.

March 7th 2011. 16

Example Path

62

Optimal Alignment

D32

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D11

D57

Moving up,

C = D11 + D21.

March 7th 2011. 18

Path Cost = Sum of Visited Distances

Optimal Alignment

D32

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D11

D57

Moving up,

C = D11 + D21.

March 7th 2011. 18

63

Optimal Alignment

D32

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D11

D57

Moving diagonally,

C = D11 + D21 + D32.

March 7th 2011. 19

Optimal Alignment

D32

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D11

D57

Moving diagonally,

C = D11 + D21 + D32.

March 7th 2011. 19

Path Cost = Sum of Visited Distances

64

Optimal Alignment

D57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D32 D33

D45 D46

D11

Moving right,

C = D11 + D21 + D32 + D33.

March 7th 2011. 20

Optimal Alignment

D57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D32 D33

D45 D46

D11

Moving right,

C = D11 + D21 + D32 + D33.

March 7th 2011. 20

Path Cost = Sum of Visited Distances

65

Optimal Alignment

D11x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56 D57

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D32 D33

D45 D46

etc., until we reach the upper right corner

C = D11 + D21 + D32 + D33 + D34 + D35 + D45 + D46 + D57.

March 7th 2011. 21

Optimal Alignment

D11x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56 D57

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D32 D33

D45 D46

etc., until we reach the upper right corner

C = D11 + D21 + D32 + D33 + D34 + D35 + D45 + D46 + D57.

March 7th 2011. 21

Path Cost = Sum of Visited Distances

66

Optimal Alignment

D11x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D57

D32

A(x, y) ⇔ the set of all paths on this grid.
Only depends on the |x| and |y|, 5 and 7 here.

March 7th 2011. 23

#All Paths = Delannoy(5,7)
Delannoy(5,7) = 2,241 ; Delannoy(20,20)= 4.53e13

Dynamic Time Warping (Distance)

67

Optimal Alignment

π⋆

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D57

D32

D11

DTW finds the minimum among all paths: discrete optimization.
Obviously, checking each would be computationally intractable.

March 7th 2011. 27

dDTW(X,Y) = min
⇡2A(X,Y)

X

i=1

d
⇣
x⇡1(i),y⇡2(i)

⌘

68

Optimal Alignment

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D44 D45 D46

D31 D33D32 D34 D35 D36

D21 D23D22 D24 D25 D26

D11

D57

D43D41 C⋆
42

D42

Define C⋆
ij as the cost of the optimal sub-path

up to the i-th symbol of x and the j-th symbol of y.

C⋆
ij = min

π∈A(i,j)
C

xi
1,yj

1
(π).

March 7th 2011. 29

DP Computation

Optimal Alignment

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D44 D45 D46

D31 D33D32 D34 D35 D36

D21 D23D22 D24 D25 D26

D11

D57

D43D41 C⋆
42

D42

Define C⋆
ij as the cost of the optimal sub-path

up to the i-th symbol of x and the j-th symbol of y.

C⋆
ij = min

π∈A(i,j)
C

xi
1,yj

1
(π).

March 7th 2011. 29

69

Optimal Alignment

C⋆
i,j+1

yj+1yj

xi

xi+1 C⋆
i+1,j+1

Di+1,j+1
C⋆

i+1,j

C⋆
ij

Bellman recursion: for all i ≤ n − 1, j ≤ m − 1,

C⋆
i+1,j+1 = min(C⋆

i+1,j, C
⋆
ij, C

⋆
i,j+1) + Di+1,j+1

March 7th 2011. 30

Bellman Recursion

70

Optimal Alignment

C⋆
11

x1

x2

x3

x4

y1 y2 y3 y4 y5 y6 y7

x5

D51

D41

D31

D21

D11 D12

D22

D32

D42

D52

C⋆
21

C⋆
31

C⋆
41

C⋆
51

C⋆
12

C⋆
22

C⋆
32

C⋆
42

C⋆
52

To compute DTW distance...

March 7th 2011. 31

Bellman Recursion In Practice

71

Optimal Alignment

C⋆
11

x1

x2

x3

x4

y1 y2 y3 y4 y5 y6 y7

x5

D51

D41

D31

D21

D11 D12

D22

D32

D42

D52

D13

C⋆
21

C⋆
31

C⋆
41

C⋆
51

C⋆
12

C⋆
22

C⋆
32

C⋆
42

C⋆
52

C⋆
13

apply recursively the formula...

March 7th 2011. 32

Bellman Recursion In Practice

72

Optimal Alignment

C⋆
11

x1

x2

x3

x4

y1 y2 y3 y4 y5 y6 y7

x5

D51

D41

D31

D21

D11 D12

D22

D32

D42

D52

D13

D23
C⋆

21

C⋆
31

C⋆
41

C⋆
51

C⋆
12

C⋆
22

C⋆
32

C⋆
42

C⋆
52

C⋆
23

C⋆
13

...from leftmost to rightmost column....

March 7th 2011. 33

Bellman Recursion In Practice

73

Optimal Alignment

C⋆
13

x1

x2

x3

x4

y1 y2 y3 y4 y5 y6 y7

x5

D51

D41

D31

D21

D11
C⋆

11

D12

D22

D32

D42

D52

D13

D23

D33

C⋆
21

C⋆
31

C⋆
41

C⋆
51

C⋆
12

C⋆
22

C⋆
32

C⋆
42

C⋆
52

C⋆
33

C⋆
23

...from bottom to top...

March 7th 2011. 34

Bellman Recursion In Practice

74

Optimal Alignment

C⋆
57

x1

x2

x3

x4

y1 y2 y3 y4 y5 y6 y7

x5

D51

D41

D31

D21

D11
C⋆

11

D12

D22

D32

D42

D52

D13

D23

D33

C⋆
21

C⋆
51

C⋆
12

C⋆
22

C⋆
32

C⋆
52

C⋆
33

C⋆
23

C⋆
13

C⋆
31

C⋆
41 C⋆

42 etc.

Complexity: nm operations
... substantial improvement over Delannoy(n, m)× cost per path ...

March 7th 2011. 35

Bellman Recursion In Practice

75

DTW Strengths
Well documented!

76

DTW as LP

MXY
def
= [D(xi,yj)

p]ij

M
XY

def
=

2

666664

y1 ... yj ... ym

x1

.

.

.

xi D(x
i

,y
j

)p

.

.

.

xn

3

777775
⇡ =

2

666664

1 0 · · · · · · · · ·
1 0 · · · · · · · · ·
0 1 1 0 · · ·
...

... 1
. . .

...
· · · · · · · · · 1 1

3

777775

Let X = (x1, . . . , xn) and Y = (y1, . . . , ym).

U(n,m)

def
= co{⇡, (n,m) alig. mat.} ⇢ [0, 1]n⇥m

DTW Problem

77

MXY

U(n,m)
⇡⇤

dDTW(X,Y) = h⇡?,MXY i
= min

⇡2U(n,m)
h⇡,MXY i

Soft Dynamic Time Warping

78

Optimal Alignment

π⋆

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D57

D32

D11

DTW finds the minimum among all paths: discrete optimization.
Obviously, checking each would be computationally intractable.

March 7th 2011. 27

dtw(X,Y) = min⇡2U(n,m)h⇡,MXY i

Soft Dynamic Time Warping

78

Optimal Alignment

π⋆

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D57

D32

D11

DTW finds the minimum among all paths: discrete optimization.
Obviously, checking each would be computationally intractable.

March 7th 2011. 27

min

�{a1, . . . , an} :=

(
minin ai, � = 0,

�� log
Pn

i=1 e
�ai/� , � > 0.

dtw(X,Y) = min⇡2U(n,m)h⇡,MXY i

Soft Dynamic Time Warping

78

Optimal Alignment

π⋆

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D57

D32

D11

DTW finds the minimum among all paths: discrete optimization.
Obviously, checking each would be computationally intractable.

March 7th 2011. 27

min

�{a1, . . . , an} :=

(
minin ai, � = 0,

�� log
Pn

i=1 e
�ai/� , � > 0.

dtw�(X,Y) = min�⇡2U(n,m)h⇡,MXY i

dtw(X,Y) = min⇡2U(n,m)h⇡,MXY i

Soft Dynamic Time Warping

78

Optimal Alignment

π⋆

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D57

D32

D11

DTW finds the minimum among all paths: discrete optimization.
Obviously, checking each would be computationally intractable.

March 7th 2011. 27

min

�{a1, . . . , an} :=

(
minin ai, � = 0,

�� log
Pn

i=1 e
�ai/� , � > 0.

dtw�(X,Y) = min�⇡2U(n,m)h⇡,MXY i

dtw(X,Y) = min⇡2U(n,m)h⇡,MXY i

differentiable

79

Differentiation of sDTW
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Soft-DTW: a Differentiable Loss Function for Time-Series

Algorithm 2 Computes dtw�(x,y) and r

x

dtw�(x,y)

1: Inputs: x,y, smoothing � � 0, distance function �.
2: � = [�(xi, yj)]i,j .
3: r

0,0 = 0; ri,0 = r
0,j = 1; i 2 JnK, j 2 JmK.

4: for j = 1, . . . ,m do . Forward recursion
5: for i = 1, . . . , n do
6: ri,j = �i,j +min

�
{ri�1,j�1

, ri�1,j , ri,j�1

}

7: end for
8: end for
9: �i,m+1

= �n+1,j = 0, i 2 JnK, j 2 JmK
10: ei,m+1

= en+1,j = 0, i 2 JnK, j 2 JmK
11: ri,m+1

= rn+1,j = �1, i 2 JnK, j 2 JmK
12: �n+1,m+1

= 0, en+1,m+1

= 1, rn+1,m+1

= rn,m
13: for j = m, . . . , 1 do . Backward recursion
14: for i = n, . . . , 1 do
15: a = exp

1

� (ri+1,j � ri,j � �i+1,j)

16: b = exp

1

� (ri,j+1

� ri,j � �i,j+1

)

17: c = exp

1

� (ri+1,j+1

� ri,j � �i+1,j+1

)

18: ei,j = ei+1,j · a+ ei,j+1

· b+ ei+1,j+1

· c
19: end for
20: end for
21: Output: dtw�(x,y) = rn,m

22: r

x

dtw�(x,y) =
⇣

@�(x,y)
@x

⌘T
E

the convention of normalizing in practice each discrepancy
by n ⇥ ni. Since the length n of x is here fixed across
all evaluations, we do not need to divide the objective of
Eq. (4) by n. Averaging under the soft-DTW geometry re-
sults in substantially different results that those that can be
obtained with the Euclidean geometry (which can only be
used in the case where all lengths n = m

1

= · · · = mN

are equal), as can be seen in the intuitive interpolations we
obtain between two time series shown in Figure 4.

Non-convexity of dtw� . A natural question that arises
from Eq. (4) is whether that objective is convex or not. The
answer is negative, in a way that echoes the non-convexity
of the k-means objective as a function of cluster centroids
locations. Indeed, for any alignment matrix A of suitable
size, each map x 7! hA,�(x,y) i shares the same convex-
ity/concavity property that � may have. However, both min

and min

� can only preserve the concavity of elementary
functions (Boyd & Vandenberghe, 2004, pp.72-74). There-
fore dtw� will only be concave if � is concave, or become
instead a (non-convex) (soft) minimum of convex functions
if � is convex. When � is a squared-Euclidean distance,
dtw

0

is a piecewise quadratic function of x, as is also the
case with the k-means energy (see for instance Figure 2
in (Schultz & Jain, 2017)). Since this is the setting we con-
sider here, all of the computations involving barycenters
should be taken with a grain of salt, since we have no way
of ensuring optimality when approximating Eq. (4).

(a) Euclidean loss (b) Soft-DTW loss (� = 1)

Figure 4. Interpolation between two time series (red and blue) on
the Gun Point dataset. We computed the barycenter by solving
Eq. (4) with weights (�1,�2) set to (0.25, 0.75), (0.5, 0.5) and
(0.75, 0.25). The geometry of the soft-DTW often encourages
visibly different interpolations.

Smoothing helps optimizing dtw� . Smoothing can be re-
garded, however, as a way to “convexify” dtw� . Indeed,
notice that dtw� converges to the sum of all costs when,
in the limit, � ! 1. Therefore, if � is convex, dtw�

will gradually become convex as � grows. For smaller
values of �, one can intuitively foresee that using min

�

instead of a minimum will smooth out local minima and
therefore provide a better (although slightly different from
dtw

0

) optimization landscape. We believe this is why our
approach recovers better results, even when measured in
the original dtw

0

discrepancy, than subgradient (Schultz
& Jain, 2017) or alternate minimization approaches such
as DBA (Petitjean et al., 2011), which can, on the contrary,
get more easily stuck in local minima. Evidence for this
statement is presented in the experimental section.

3.2. Clustering with the soft-DTW geometry

The (approximate) computation of dtw� barycenters can
be seen as a first step towards the task of clustering time
series under the dtw� discrepancy. Indeed, one can nat-
urally formulate that problem as that of finding centroids
x

1

, . . . ,xk that minimize the following energy:

min

x1,...,xk2Rp⇥n

NX

i=1

1

ni
min

j2[[k]]
dtw�(xj ,yi). (5)

To solve that problem one can resort to a direct generaliza-
tion of Lloyd’s algorithm (1982) in which each centering
step and each clustering allocation step is done according
to the dtw� discrepancy.

3.3. Learning prototypes for time series classification

One of the de-facto baselines for learning to classify time
series is the k nearest neighbors (k-NN) algorithm, com-
bined with DTW as discrepancy measure between time se-
ries. However, k-NN has two main drawbacks. First, the
time series used for training must be stored, leading to po-
tentially high storage cost. Second, in order to compute

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Soft-DTW: a Differentiable Loss Function for Time-Series

4

�i,j

�i+1,j

�i,j+1

�i+1,j+1

ri�1,j�1

ri�1,j ri�1,j+1

ri,j�1

ri,j ri,j+1

ri+1,j�1

ri+1,j ri+1,j+1

e
1
� (ri+1,j�ri,j��i+1,j) e

1
� (ri+1,j+1�ri,j��i+1,j+1)

e
1
� (ri,j+1�ri,j��i,j+1)ei,j

ei+1,j ei+1,j+1

ei,j+1

Figure 3. Sketch of the computational graph for soft-DTW, in the forward pass used to compute dtw� (left) and backward pass used to
compute its gradient r

x

dtw� (right). In both diagrams, purple shaded cells stand for data values available before the recursion starts,
namely cost values (left) and multipliers computed using forward pass results (right). In the left diagram, the forward computation of
ri,j as a function of its predecessors and �i,j is summarized with arrows. Dotted lines indicate a min� operation, solid lines an addition.
From the perspective of the final term rn,m, which stores dtw�(x,y) at the lower right corner (not shown) of the computational graph,
a change in ri,j only impacts rn,m through changes that ri,j causes to ri+1,j , ri,j+1 and ri+1,j+1. These changes can be tracked using
Eq. (2.3,2.3) and appear in lines 15-17) in Algorithm 2 as variables a, b, c, as well as in the purple shaded boxes in the backward pass
(right) which represents the recursion of line 18 in Algorithm 2.

that stores all its intermediary results stored in a matrix
ri,j for i 2 JnK and j 2 JmK. The update rule for
ri,j , displayed in line 6 of Algorithm 2, implies that the
value of dtw�(x,y)—stored in rn,m at the end of the
forward recursion—is impacted by a change in ri,j exclu-
sively through the terms in which ri,j plays a role, namely
the triplet of terms ri+1,j , ri,j+1

, ri+1,j+1

. A straightfor-
ward application of the chain rule then gives

@rn,m

@ri,j| {z }
ei,j

=

@rn,m

@ri+1,j| {z }
ei+1,j

@ri+1,j

@ri,j
+

@rn,m

@ri,j+1| {z }
ei,j+1

@ri,j+1

@ri,j
+

@rn,m

@ri+1,j+1| {z }
ei+1,j+1

@ri+1,j+1

@ri,j
,

in which we have defined the notation of the main object
of interest of the backward recursion: ei,j :

=

@rn,m

@ri,j
. The

Bellman recursion evaluated at (i+1, j) as shown in line 6
of Algorithm 2 (here �i+1,j is �(xi+1

, yj)) yields :

ri+1,j = �i+1,j +min

�
{ri,j�1

, ri,j , ri+1,j�1

},

which, when differentiated w.r.t ri,j yields the ratio:

@ri+1,j

@ri,j
= e�ri,j/�/

⇣
e�ri,j�1/�

+ e�ri,j/�
+ e�ri+1,j�1/�

⌘
.

The logarithm of that derivative can be conveniently cast
using evaluations of min

� computed in the forward loop:

� log
@ri+1,j

@ri,j
= min

�
{ri,j�1

, ri,j , ri+1,j�1

}� ri,j

= ri+1,j � �i+1,j � ri,j .

Similarly, the following relationships can also be obtained:

� log
@ri,j+1

@ri,j
= ri,j+1

� ri,j � �i,j+1

,

� log
@ri+1,j+1

@ri,j
= ri+1,j+1

� ri,j � �i+1,j+1

.

We have therefore obtained a backward recursion to com-
pute the entire matrix E = [ei,j], starting from en,m =

@rn,m

@rn,m
= 1 down to e

1,1. To obtain r

x

dtw�(x,y), notice

that the derivatives w.r.t. the entries of the cost matrix �

can be computed by

@rn,m

@�i,j
=

@rn,m

@ri,j

@ri,j
@�i,j

= ei,j · 1 = ei,j ,

and therefore we have that

r

x

dtw�(x,y) =

✓
@�(x,y)

@x

◆T

E,

where E is exactly the average alignment E� [A] in
Eq. (3). These computations are summarized in Algo-
rithm 2, which, once � has been computed, has complexity
nm in time and space. Because min

� has a 1/�-Lipschitz
continuous gradient, the gradient of dtw� is 2/�-Lipschitz
continuous when � is the squared Euclidean distance.

3. Learning with the soft-DTW loss
3.1. Barycenters with the soft-DTW geometry

We study in this section a direct application of Algorithm 2
to the problem of computing Fréchet means (1948) of time
series with respect to the dtw� discrepancy. Given a fam-
ily of N times series y

1

, . . . ,yN , namely N matrices of
p lines and varying number of columns, m

1

, . . . ,mN , we
are interested in defining one single representative time se-
ries x for that family under a set of normalized weights
�
1

, . . . ,�n 2 RN
+

such that
P

i �i = 1. Our goal is thus
to solve approximately the following problem, in which we
have assumed that x has fixed length n:

min

x2Rp⇥n

NX

i=1

�i

ni
dtw�(x,yi). (4)

Note that each dtw�(x,yi) term is divided by the length
ni. Indeed, since dtw

0

is an increasing (roughly linearly)
function of each of the input lengths n and ni, we follow

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Soft-DTW: a Differentiable Loss Function for Time-Series

4

�i,j

�i+1,j

�i,j+1

�i+1,j+1

ri�1,j�1

ri�1,j ri�1,j+1

ri,j�1

ri,j ri,j+1

ri+1,j�1

ri+1,j ri+1,j+1

e
1
� (ri+1,j�ri,j��i+1,j) e

1
� (ri+1,j+1�ri,j��i+1,j+1)

e
1
� (ri,j+1�ri,j��i,j+1)ei,j

ei+1,j ei+1,j+1

ei,j+1

Figure 3. Sketch of the computational graph for soft-DTW, in the forward pass used to compute dtw� (left) and backward pass used to
compute its gradient r

x

dtw� (right). In both diagrams, purple shaded cells stand for data values available before the recursion starts,
namely cost values (left) and multipliers computed using forward pass results (right). In the left diagram, the forward computation of
ri,j as a function of its predecessors and �i,j is summarized with arrows. Dotted lines indicate a min� operation, solid lines an addition.
From the perspective of the final term rn,m, which stores dtw�(x,y) at the lower right corner (not shown) of the computational graph,
a change in ri,j only impacts rn,m through changes that ri,j causes to ri+1,j , ri,j+1 and ri+1,j+1. These changes can be tracked using
Eq. (2.3,2.3) and appear in lines 15-17) in Algorithm 2 as variables a, b, c, as well as in the purple shaded boxes in the backward pass
(right) which represents the recursion of line 18 in Algorithm 2.

that stores all its intermediary results stored in a matrix
ri,j for i 2 JnK and j 2 JmK. The update rule for
ri,j , displayed in line 6 of Algorithm 2, implies that the
value of dtw�(x,y)—stored in rn,m at the end of the
forward recursion—is impacted by a change in ri,j exclu-
sively through the terms in which ri,j plays a role, namely
the triplet of terms ri+1,j , ri,j+1

, ri+1,j+1

. A straightfor-
ward application of the chain rule then gives

@rn,m

@ri,j| {z }
ei,j

=

@rn,m

@ri+1,j| {z }
ei+1,j

@ri+1,j

@ri,j
+

@rn,m

@ri,j+1| {z }
ei,j+1

@ri,j+1

@ri,j
+

@rn,m

@ri+1,j+1| {z }
ei+1,j+1

@ri+1,j+1

@ri,j
,

in which we have defined the notation of the main object
of interest of the backward recursion: ei,j :

=

@rn,m

@ri,j
. The

Bellman recursion evaluated at (i+1, j) as shown in line 6
of Algorithm 2 (here �i+1,j is �(xi+1

, yj)) yields :

ri+1,j = �i+1,j +min

�
{ri,j�1

, ri,j , ri+1,j�1

},

which, when differentiated w.r.t ri,j yields the ratio:

@ri+1,j

@ri,j
= e�ri,j/�/

⇣
e�ri,j�1/�

+ e�ri,j/�
+ e�ri+1,j�1/�

⌘
.

The logarithm of that derivative can be conveniently cast
using evaluations of min

� computed in the forward loop:

� log
@ri+1,j

@ri,j
= min

�
{ri,j�1

, ri,j , ri+1,j�1

}� ri,j

= ri+1,j � �i+1,j � ri,j .

Similarly, the following relationships can also be obtained:

� log
@ri,j+1

@ri,j
= ri,j+1

� ri,j � �i,j+1

,

� log
@ri+1,j+1

@ri,j
= ri+1,j+1

� ri,j � �i+1,j+1

.

We have therefore obtained a backward recursion to com-
pute the entire matrix E = [ei,j], starting from en,m =

@rn,m

@rn,m
= 1 down to e

1,1. To obtain r

x

dtw�(x,y), notice

that the derivatives w.r.t. the entries of the cost matrix �

can be computed by

@rn,m

@�i,j
=

@rn,m

@ri,j

@ri,j
@�i,j

= ei,j · 1 = ei,j ,

and therefore we have that

r

x

dtw�(x,y) =

✓
@�(x,y)

@x

◆T

E,

where E is exactly the average alignment E� [A] in
Eq. (3). These computations are summarized in Algo-
rithm 2, which, once � has been computed, has complexity
nm in time and space. Because min

� has a 1/�-Lipschitz
continuous gradient, the gradient of dtw� is 2/�-Lipschitz
continuous when � is the squared Euclidean distance.

3. Learning with the soft-DTW loss
3.1. Barycenters with the soft-DTW geometry

We study in this section a direct application of Algorithm 2
to the problem of computing Fréchet means (1948) of time
series with respect to the dtw� discrepancy. Given a fam-
ily of N times series y

1

, . . . ,yN , namely N matrices of
p lines and varying number of columns, m

1

, . . . ,mN , we
are interested in defining one single representative time se-
ries x for that family under a set of normalized weights
�
1

, . . . ,�n 2 RN
+

such that
P

i �i = 1. Our goal is thus
to solve approximately the following problem, in which we
have assumed that x has fixed length n:

min

x2Rp⇥n

NX

i=1

�i

ni
dtw�(x,yi). (4)

Note that each dtw�(x,yi) term is divided by the length
ni. Indeed, since dtw

0

is an increasing (roughly linearly)
function of each of the input lengths n and ni, we follow

Automatic Differentiation

80

Applications: sDTW as Loss
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Soft-DTW: a Differentiable Loss Function for Time-Series

Algorithm 2 Computes dtw�(x,y) and r

x

dtw�(x,y)

1: Inputs: x,y, smoothing � � 0, distance function �.
2: � = [�(xi, yj)]i,j .
3: r

0,0 = 0; ri,0 = r
0,j = 1; i 2 JnK, j 2 JmK.

4: for j = 1, . . . ,m do . Forward recursion
5: for i = 1, . . . , n do
6: ri,j = �i,j +min

�
{ri�1,j�1

, ri�1,j , ri,j�1

}

7: end for
8: end for
9: �i,m+1

= �n+1,j = 0, i 2 JnK, j 2 JmK
10: ei,m+1

= en+1,j = 0, i 2 JnK, j 2 JmK
11: ri,m+1

= rn+1,j = �1, i 2 JnK, j 2 JmK
12: �n+1,m+1

= 0, en+1,m+1

= 1, rn+1,m+1

= rn,m
13: for j = m, . . . , 1 do . Backward recursion
14: for i = n, . . . , 1 do
15: a = exp

1

� (ri+1,j � ri,j � �i+1,j)

16: b = exp

1

� (ri,j+1

� ri,j � �i,j+1

)

17: c = exp

1

� (ri+1,j+1

� ri,j � �i+1,j+1

)

18: ei,j = ei+1,j · a+ ei,j+1

· b+ ei+1,j+1

· c
19: end for
20: end for
21: Output: dtw�(x,y) = rn,m

22: r

x

dtw�(x,y) =
⇣

@�(x,y)
@x

⌘T
E

the convention of normalizing in practice each discrepancy
by n ⇥ ni. Since the length n of x is here fixed across
all evaluations, we do not need to divide the objective of
Eq. (4) by n. Averaging under the soft-DTW geometry re-
sults in substantially different results that those that can be
obtained with the Euclidean geometry (which can only be
used in the case where all lengths n = m

1

= · · · = mN

are equal), as can be seen in the intuitive interpolations we
obtain between two time series shown in Figure 4.

Non-convexity of dtw� . A natural question that arises
from Eq. (4) is whether that objective is convex or not. The
answer is negative, in a way that echoes the non-convexity
of the k-means objective as a function of cluster centroids
locations. Indeed, for any alignment matrix A of suitable
size, each map x 7! hA,�(x,y) i shares the same convex-
ity/concavity property that � may have. However, both min

and min

� can only preserve the concavity of elementary
functions (Boyd & Vandenberghe, 2004, pp.72-74). There-
fore dtw� will only be concave if � is concave, or become
instead a (non-convex) (soft) minimum of convex functions
if � is convex. When � is a squared-Euclidean distance,
dtw

0

is a piecewise quadratic function of x, as is also the
case with the k-means energy (see for instance Figure 2
in (Schultz & Jain, 2017)). Since this is the setting we con-
sider here, all of the computations involving barycenters
should be taken with a grain of salt, since we have no way
of ensuring optimality when approximating Eq. (4).

(a) Euclidean loss (b) Soft-DTW loss (� = 1)

Figure 4. Interpolation between two time series (red and blue) on
the Gun Point dataset. We computed the barycenter by solving
Eq. (4) with weights (�1,�2) set to (0.25, 0.75), (0.5, 0.5) and
(0.75, 0.25). The geometry of the soft-DTW often encourages
visibly different interpolations.

Smoothing helps optimizing dtw� . Smoothing can be re-
garded, however, as a way to “convexify” dtw� . Indeed,
notice that dtw� converges to the sum of all costs when,
in the limit, � ! 1. Therefore, if � is convex, dtw�

will gradually become convex as � grows. For smaller
values of �, one can intuitively foresee that using min

�

instead of a minimum will smooth out local minima and
therefore provide a better (although slightly different from
dtw

0

) optimization landscape. We believe this is why our
approach recovers better results, even when measured in
the original dtw

0

discrepancy, than subgradient (Schultz
& Jain, 2017) or alternate minimization approaches such
as DBA (Petitjean et al., 2011), which can, on the contrary,
get more easily stuck in local minima. Evidence for this
statement is presented in the experimental section.

3.2. Clustering with the soft-DTW geometry

The (approximate) computation of dtw� barycenters can
be seen as a first step towards the task of clustering time
series under the dtw� discrepancy. Indeed, one can nat-
urally formulate that problem as that of finding centroids
x

1

, . . . ,xk that minimize the following energy:

min

x1,...,xk2Rp⇥n

NX

i=1

1

ni
min

j2[[k]]
dtw�(xj ,yi). (5)

To solve that problem one can resort to a direct generaliza-
tion of Lloyd’s algorithm (1982) in which each centering
step and each clustering allocation step is done according
to the dtw� discrepancy.

3.3. Learning prototypes for time series classification

One of the de-facto baselines for learning to classify time
series is the k nearest neighbors (k-NN) algorithm, com-
bined with DTW as discrepancy measure between time se-
ries. However, k-NN has two main drawbacks. First, the
time series used for training must be stored, leading to po-
tentially high storage cost. Second, in order to compute

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Soft-DTW: a Differentiable Loss Function for Time-Series

Input Output

Figure 1. Given the first part of a time series, we trained a multi-
layer perceptron (MLP) to predict the second part. This figure
shows the results obtained when training an MLP under Euclidean
and soft-DTW losses, on the ShapesAll dataset. Oftentimes, we
observe that the soft-DTW loss enables us to better predict sharp
changes. More time series predictions are given in Appendix J.

a minor modification of Bellman’s recursion, in which all
(min,+) operations are replaced with (+,⇥). As a result,
both DTW and soft-DTW have quadratic in time & linear
in space complexity with respect to the sequences’ lengths.
Because soft-DTW can be used with kernel machines, one
typically observes an increase in performance when using
soft-DTW over DTW (Cuturi, 2011) for classification.

Our contributions. We explore in this paper another
important benefit of smoothing DTW: unlike the original
DTW discrepancy, soft-DTW is differentiable in all of its
arguments. We show that the gradients of soft-DTW w.r.t
to all of its variables can be computed as a by-product of
the computation of the discrepancy itself, with an added
quadratic storage cost. We use this fact to propose an alter-
native approach to the DBA (DTW Barycenter Averaging)
clustering algorithm of (Petitjean et al., 2011), and observe
that our proposal significantly outperforms known base-
lines for that task. More generally, we propose to use soft-
DTW as a fitting term to compare the output of a machine
synthesizing a time series segment with a ground truth ob-
servation. When paired with a neural network, soft-DTW
allows for a differentiable end-to-end approach to design
predictive and generative models for time series. This idea
is illustrated in Figure 1.

Structure. After providing background material, we show
in §2 how soft-DTW can be differentiated w.r.t the locations
of two time series. We follow in §3 by illustrating how
these results can be directly used for tasks that require to
output time series: averaging, clustering and prediction of
time series. We close this paper with experimental results
in §4 that showcase each of these potential applications.

Notations. We consider in what follows multivariate dis-
crete time series of varying length taking values in ⌦ ⇢ Rp.
A time series can be thus represented as a matrix of p lines
and varying number of columns. We consider a differen-

tiable substitution-cost function � : Rp
⇥ Rp

! R
+

which
will be, in most cases, the quadratic Euclidean distance be-
tween two vectors. For an integer n we write JnK for the set
{1, . . . , n} of integers. Given two series’ lengths n and m,
we write An,m ⇢ {0, 1}n⇥m for the set of (binary) align-
ment matrices, that is paths on a n⇥m matrix that connect
the upper-left (1, 1) matrix entry to the lower-right (n,m)

one using only #,!,& moves. The cardinal of An,m is
called the delannoy(n � 1,m � 1) number; that number
grows exponentially with m and n.

2. The DTW and soft-DTW loss functions
We start this section with reminders about the original
DTW discrepancy (Sakoe & Chiba, 1978) and the Global
Alignment kernel (GAK) (Cuturi et al., 2007), which can
be used to compare two time series x = (x

1

, . . . , xn) 2

Rp⇥n and y = (y
1

, . . . , ym) 2 Rp⇥m. We propose a uni-
fied formulation for these two quantities, called soft-DTW,
and discuss how it can be differentiated.

2.1. Alignment Costs: Optimality and Sum

Given the cost matrix �(x,y) :

=

⇥
�(xi, yj)

⇤
ij

2 Rn⇥m,
the inner product hA,�(x,y) i of that matrix with an align-
ment matrix A in An,m gives the score of A, as illustrated
in Figure 2. Both DTW and GAK consider the costs of all
possible alignment matrices, yet do so differently:

DTW(x,y) := min

A2An,m

hA,�(x,y) i

k�GA(x,y) :=
X

A2An,m

e�hA,�(x,y) i/� .
(1)

Gibbs distribution. By defining an energy hA,�(x,y) i
for an alignment matrix A, k�GA(x,y) turns out to be the
normalization constant (or partition function) of the Gibbs
distribution p�(A) / e�hA,�(x,y) i/� defined on all align-
ments of An,m with temperature �.

DP Computation. Both DTW and k�GA can be com-
puted using dynamic programming. Sakoe & Chiba (1978)
showed that the Bellman recursion for the DTW prob-
lem only involves (min,+) operations, as represented in
line 5 of Algorithm 1 (disregarding for now the exponent
�). When considering summing over all alignments, Cu-
turi et al. (2007, Theorem 2) and the highly related formu-
lation of Saigo et al. (2004, p.1685) follow an early refer-
ence (Bahl & Jelinek, 1975) which consists in (i) replacing
all costs by their neg-exponential; (ii) replace (min,+) op-
erations with (+,⇥) operations.

Unified formulation. Instead of considering (and repro-
ducing in this paper) two different formulations, we pro-
vide here a unified formula that is simpler. That formula-
tion is new to our knowledge. To do so, we introduce a gen-

Barycenters
Clustering

sDTW as a prediction loss

80

Applications: sDTW as Loss
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Soft-DTW: a Differentiable Loss Function for Time-Series

Algorithm 2 Computes dtw�(x,y) and r

x

dtw�(x,y)

1: Inputs: x,y, smoothing � � 0, distance function �.
2: � = [�(xi, yj)]i,j .
3: r

0,0 = 0; ri,0 = r
0,j = 1; i 2 JnK, j 2 JmK.

4: for j = 1, . . . ,m do . Forward recursion
5: for i = 1, . . . , n do
6: ri,j = �i,j +min

�
{ri�1,j�1

, ri�1,j , ri,j�1

}

7: end for
8: end for
9: �i,m+1

= �n+1,j = 0, i 2 JnK, j 2 JmK
10: ei,m+1

= en+1,j = 0, i 2 JnK, j 2 JmK
11: ri,m+1

= rn+1,j = �1, i 2 JnK, j 2 JmK
12: �n+1,m+1

= 0, en+1,m+1

= 1, rn+1,m+1

= rn,m
13: for j = m, . . . , 1 do . Backward recursion
14: for i = n, . . . , 1 do
15: a = exp

1

� (ri+1,j � ri,j � �i+1,j)

16: b = exp

1

� (ri,j+1

� ri,j � �i,j+1

)

17: c = exp

1

� (ri+1,j+1

� ri,j � �i+1,j+1

)

18: ei,j = ei+1,j · a+ ei,j+1

· b+ ei+1,j+1

· c
19: end for
20: end for
21: Output: dtw�(x,y) = rn,m

22: r

x

dtw�(x,y) =
⇣

@�(x,y)
@x

⌘T
E

the convention of normalizing in practice each discrepancy
by n ⇥ ni. Since the length n of x is here fixed across
all evaluations, we do not need to divide the objective of
Eq. (4) by n. Averaging under the soft-DTW geometry re-
sults in substantially different results that those that can be
obtained with the Euclidean geometry (which can only be
used in the case where all lengths n = m

1

= · · · = mN

are equal), as can be seen in the intuitive interpolations we
obtain between two time series shown in Figure 4.

Non-convexity of dtw� . A natural question that arises
from Eq. (4) is whether that objective is convex or not. The
answer is negative, in a way that echoes the non-convexity
of the k-means objective as a function of cluster centroids
locations. Indeed, for any alignment matrix A of suitable
size, each map x 7! hA,�(x,y) i shares the same convex-
ity/concavity property that � may have. However, both min

and min

� can only preserve the concavity of elementary
functions (Boyd & Vandenberghe, 2004, pp.72-74). There-
fore dtw� will only be concave if � is concave, or become
instead a (non-convex) (soft) minimum of convex functions
if � is convex. When � is a squared-Euclidean distance,
dtw

0

is a piecewise quadratic function of x, as is also the
case with the k-means energy (see for instance Figure 2
in (Schultz & Jain, 2017)). Since this is the setting we con-
sider here, all of the computations involving barycenters
should be taken with a grain of salt, since we have no way
of ensuring optimality when approximating Eq. (4).

(a) Euclidean loss (b) Soft-DTW loss (� = 1)

Figure 4. Interpolation between two time series (red and blue) on
the Gun Point dataset. We computed the barycenter by solving
Eq. (4) with weights (�1,�2) set to (0.25, 0.75), (0.5, 0.5) and
(0.75, 0.25). The geometry of the soft-DTW often encourages
visibly different interpolations.

Smoothing helps optimizing dtw� . Smoothing can be re-
garded, however, as a way to “convexify” dtw� . Indeed,
notice that dtw� converges to the sum of all costs when,
in the limit, � ! 1. Therefore, if � is convex, dtw�

will gradually become convex as � grows. For smaller
values of �, one can intuitively foresee that using min

�

instead of a minimum will smooth out local minima and
therefore provide a better (although slightly different from
dtw

0

) optimization landscape. We believe this is why our
approach recovers better results, even when measured in
the original dtw

0

discrepancy, than subgradient (Schultz
& Jain, 2017) or alternate minimization approaches such
as DBA (Petitjean et al., 2011), which can, on the contrary,
get more easily stuck in local minima. Evidence for this
statement is presented in the experimental section.

3.2. Clustering with the soft-DTW geometry

The (approximate) computation of dtw� barycenters can
be seen as a first step towards the task of clustering time
series under the dtw� discrepancy. Indeed, one can nat-
urally formulate that problem as that of finding centroids
x

1

, . . . ,xk that minimize the following energy:

min

x1,...,xk2Rp⇥n

NX

i=1

1

ni
min

j2[[k]]
dtw�(xj ,yi). (5)

To solve that problem one can resort to a direct generaliza-
tion of Lloyd’s algorithm (1982) in which each centering
step and each clustering allocation step is done according
to the dtw� discrepancy.

3.3. Learning prototypes for time series classification

One of the de-facto baselines for learning to classify time
series is the k nearest neighbors (k-NN) algorithm, com-
bined with DTW as discrepancy measure between time se-
ries. However, k-NN has two main drawbacks. First, the
time series used for training must be stored, leading to po-
tentially high storage cost. Second, in order to compute

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Soft-DTW: a Differentiable Loss Function for Time-Series

Input Output

Figure 1. Given the first part of a time series, we trained a multi-
layer perceptron (MLP) to predict the second part. This figure
shows the results obtained when training an MLP under Euclidean
and soft-DTW losses, on the ShapesAll dataset. Oftentimes, we
observe that the soft-DTW loss enables us to better predict sharp
changes. More time series predictions are given in Appendix J.

a minor modification of Bellman’s recursion, in which all
(min,+) operations are replaced with (+,⇥). As a result,
both DTW and soft-DTW have quadratic in time & linear
in space complexity with respect to the sequences’ lengths.
Because soft-DTW can be used with kernel machines, one
typically observes an increase in performance when using
soft-DTW over DTW (Cuturi, 2011) for classification.

Our contributions. We explore in this paper another
important benefit of smoothing DTW: unlike the original
DTW discrepancy, soft-DTW is differentiable in all of its
arguments. We show that the gradients of soft-DTW w.r.t
to all of its variables can be computed as a by-product of
the computation of the discrepancy itself, with an added
quadratic storage cost. We use this fact to propose an alter-
native approach to the DBA (DTW Barycenter Averaging)
clustering algorithm of (Petitjean et al., 2011), and observe
that our proposal significantly outperforms known base-
lines for that task. More generally, we propose to use soft-
DTW as a fitting term to compare the output of a machine
synthesizing a time series segment with a ground truth ob-
servation. When paired with a neural network, soft-DTW
allows for a differentiable end-to-end approach to design
predictive and generative models for time series. This idea
is illustrated in Figure 1.

Structure. After providing background material, we show
in §2 how soft-DTW can be differentiated w.r.t the locations
of two time series. We follow in §3 by illustrating how
these results can be directly used for tasks that require to
output time series: averaging, clustering and prediction of
time series. We close this paper with experimental results
in §4 that showcase each of these potential applications.

Notations. We consider in what follows multivariate dis-
crete time series of varying length taking values in ⌦ ⇢ Rp.
A time series can be thus represented as a matrix of p lines
and varying number of columns. We consider a differen-

tiable substitution-cost function � : Rp
⇥ Rp

! R
+

which
will be, in most cases, the quadratic Euclidean distance be-
tween two vectors. For an integer n we write JnK for the set
{1, . . . , n} of integers. Given two series’ lengths n and m,
we write An,m ⇢ {0, 1}n⇥m for the set of (binary) align-
ment matrices, that is paths on a n⇥m matrix that connect
the upper-left (1, 1) matrix entry to the lower-right (n,m)

one using only #,!,& moves. The cardinal of An,m is
called the delannoy(n � 1,m � 1) number; that number
grows exponentially with m and n.

2. The DTW and soft-DTW loss functions
We start this section with reminders about the original
DTW discrepancy (Sakoe & Chiba, 1978) and the Global
Alignment kernel (GAK) (Cuturi et al., 2007), which can
be used to compare two time series x = (x

1

, . . . , xn) 2

Rp⇥n and y = (y
1

, . . . , ym) 2 Rp⇥m. We propose a uni-
fied formulation for these two quantities, called soft-DTW,
and discuss how it can be differentiated.

2.1. Alignment Costs: Optimality and Sum

Given the cost matrix �(x,y) :

=

⇥
�(xi, yj)

⇤
ij

2 Rn⇥m,
the inner product hA,�(x,y) i of that matrix with an align-
ment matrix A in An,m gives the score of A, as illustrated
in Figure 2. Both DTW and GAK consider the costs of all
possible alignment matrices, yet do so differently:

DTW(x,y) := min

A2An,m

hA,�(x,y) i

k�GA(x,y) :=
X

A2An,m

e�hA,�(x,y) i/� .
(1)

Gibbs distribution. By defining an energy hA,�(x,y) i
for an alignment matrix A, k�GA(x,y) turns out to be the
normalization constant (or partition function) of the Gibbs
distribution p�(A) / e�hA,�(x,y) i/� defined on all align-
ments of An,m with temperature �.

DP Computation. Both DTW and k�GA can be com-
puted using dynamic programming. Sakoe & Chiba (1978)
showed that the Bellman recursion for the DTW prob-
lem only involves (min,+) operations, as represented in
line 5 of Algorithm 1 (disregarding for now the exponent
�). When considering summing over all alignments, Cu-
turi et al. (2007, Theorem 2) and the highly related formu-
lation of Saigo et al. (2004, p.1685) follow an early refer-
ence (Bahl & Jelinek, 1975) which consists in (i) replacing
all costs by their neg-exponential; (ii) replace (min,+) op-
erations with (+,⇥) operations.

Unified formulation. Instead of considering (and repro-
ducing in this paper) two different formulations, we pro-
vide here a unified formula that is simpler. That formula-
tion is new to our knowledge. To do so, we introduce a gen-

Barycenters
Clustering

sDTW as a prediction loss

https://arxiv.org/abs/
1703.01541

