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Abstract

Optimal transport distances have been used for more than a decade in machine learning to
compare histograms of features. They have one parameter: the ground metric, which can
be any metric between the features themselves. As is the case for all parameterized dis-
tances, optimal transport distances can only prove useful in practice when this parameter is
carefully chosen. To date, the only option available to practitioners to set the ground met-
ric parameter was to rely on a priori knowledge of the features, which limited considerably
the scope of application of optimal transport distances. We propose to lift this limitation
and consider instead algorithms that can learn the ground metric using only a training set
of labeled histograms. We call this approach ground metric learning. We formulate the
problem of learning the ground metric as the minimization of the difference of two convex
polyhedral functions over a convex set of metric matrices. We follow the presentation of
our algorithms with promising experimental results which show that this approach is useful
both for retrieval and binary/multiclass classification tasks.

Keywords: Optimal Transport Distance, Earth Mover’s Distance, Metric Learning, Metric
Nearness

1. Introduction

We consider in this paper the problem of learning a distance for normalized histograms. Nor-
malized histograms, namely finite-dimensional vectors with nonnegative coordinates whose
sum is equal to 1, arise frequently in natural language processing, computer vision, bioinfor-
matics and more generally areas involving complex datatypes. Objects of interest in such
areas are usually simplified and are represented as a bag of smaller features. The occur-
rence frequencies of each of these features in the considered object can be then represented
as a histogram. For instance, the representation of images as histograms of pixel colors,
SIFT or GIST features (Lowe 1999, Oliva and Torralba 2001, Douze et al. 2009); texts as
bags-of-words or topic allocations (Joachims 2002, Blei et al. 2003, Blei and Lafferty 2009);
sequences as n-grams counts (Leslie et al. 2002) and graphs as histograms of subgraphs
(Kashima et al. 2003) all follow this principle.

Various distances have been proposed in the statistics and machine learning literatures
to compare two histograms (Amari and Nagaoka 2001, Deza and Deza 2009, §14). Our
focus is in this paper is on the family of optimal transport distances, which is both well
motivated theoretically (Villani 2003, Rachev 1991) and works well empirically (Pele and
Werman 2009). Optimal transport distances are particularly popular in computer vision,
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where, following the influential work of Rubner et al. (1997), they were called Earth Mover’s

Distances (EMD).

Optimal transport distances can be thought of as meta-distances that build upon a
metric on the features to form a distance on histograms of features. Such a metric between
features, which is known in the computer vision literature as the ground metric1, is the
only parameter of optimal transport distances. In their seminal paper, Rubner et al. (2000)
argue that, “in general, the ground distance can be any distance and will be chosen according

to the problem at hand”. As a consequence, the earth mover’s distance has only been
applied to histograms of features when a good candidate for the ground metric was available
beforehand. We argue that this is problematic in two senses: first, this restriction limits
the application of optimal transport distances to problems where such a knowledge exists.
Second, even when such an a priori knowledge is available, we argue that there cannot
be a “universal” ground metric that will be suitable for all learning problems involving
histograms on such features. As with all parameters in machine learning algorithms, the
ground metric should be selected adaptively using data samples. The goal of this paper is
to propose ground metric learning algorithms to do so.

This paper is organized as follows: after providing background and a few results on
optimal transport distances in Section 2, we propose in Section 3 a criterion to select a
ground metric given a training set of labeled histograms. We then show how to obtain a local
minimum for that criterion using a projected subgradient descent algorithm in Section 4.
We provide a review of other relevant distances and metric learning techniques in Section 5,
in particular Mahalanobis metric learning techniques (Xing et al. 2003, Weinberger et al.
2006, Weinberger and Saul 2009, Davis et al. 2007) which have inspired much of this work.
We provide empirical evidence in Section 6 that the metric learning framework proposed
in this paper compares favorably to competing tools in terms of retrieval and classification
performance. We conclude this paper in Section 7 by providing a few research avenues that
could alleviate the heavy computational price tag of these techniques.

Notations: We consider throughout this paper histograms of length d ≥ 1. We use
upper case letters A,B, . . . for d× d matrices. Bold upper case letters A,B, . . . stand for
larger matrices; lower case letters r, c, . . . are used for vectors of Rd or simply scalars in
R. An upper case letter M and its bold lower case m stand for the same matrix written
in d× d matrix form or d2 vector form by stacking successively all its column vectors from
the left-most on the top to the right-most at the bottom. The notations m and m stand
respectively for the strict upper and lower triangular parts of M expressed as vectors of
size

(

d
2

)

. The order in which these elements are enumerated must be coherent in the sense
that the upper triangular part of MT expressed as a vector must be equal to m. Finally,
we use the Frobenius dot-product for both matrix and vector representations, written as

〈A,B 〉 def= tr(ATB) = aTb.

1. Since the terms metric and distance are interchangeable mathematically speaking, we will always use

the term metric for a metric between features and the term distance for the resulting transport distance

between histograms, or more generally any other distance on histograms.
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2. Optimal Transport Between Histograms

We recall in this section a few facts about optimal transport between two histograms. A
more general and technical introduction is provided by Villani (2003, Introduction and
§7); practical insights and motivation for the application of optimal transport distances in
machine learning can be found in Rubner et al. (2000); a recent review of extensions and
acceleration techniques to compute the EMD can be found in (Pele and Werman 2009, §2).

Our interest in this paper lies in defining distances for pairs of probability vectors,
namely on two nonnegative vectors r and c with the same sum. We consider in the following
vectors of length d, and define the probability simplex accordingly:

Σd
def
={u ∈ R

d
+ |

d
∑

i=1

ui = 1}.

Optimal transport distances build upon two ingredients: (1) a d×dmetric matrix, known
as the ground metric parameter of the distance; (2) a feasible set of d× d matrices known
as the transport polytope. We provide first an intuitive description of optimal transport
distances in Section 2.1 (which can be skipped by readers familiar with these concepts) and
follow with a more rigorous exposition in Section 2.2.

2.1 The Intuition behind Optimal Transport

The fundamental idea behind optimal transport distances is that they can be used to com-
pare histograms of features, when the features lie in a metric space and can therefore be
compared one with the other. To illustrate this idea, suppose we wish to compare images
of 10 × 10 = 100 pixels. Suppose further, for the sake of simplicity, that these pixels can
only take values in a range of 4 possible colors, dark red, light red, dark blue and light
blue, and that each image is represented as a histogram of 4 colors as in Figure 1.

So called bin-to-bin distances (we provide a formal definition in Section 5.1) would
compute the distance between a and b by comparing for each given index i their coordinates
ai and bi one at a time. For instance, computing the Manhattan distances (the l1 norm of
the difference of two vectors) of three histograms a, b and c in Figure 1, we obtain that a is
equidistant to b and c. However, upon closer inspection, assuming that dark and light red
have more in common than, say, dark red and dark blue, one may have the intuition that c
should be closer to a than it is to b. Optimal transport theory implements this intuition by
carrying out an optimization procedure to compute a distance between histograms. Such
an optimization procedure builds upon a set of feasible solutions (transport mappings) and
a cost function (a linear cost), to define an optimal transport.

X =

13 7 56 24












10 4 40 6 60
1 1 11 7 20
1 2 4 7 14
1 0 1 4 6

(1)

Mapping a to b: An assignment between a and b
assigns to each of the 100 colored pixels of a one of
the 100 colored pixels of b. By grouping these assign-
ments according to the 4× 4 possible color pairs, we
obtain a 4× 4 matrix which details, for each possible
pair of colors (i, j), the overall amount xij of pixels of color i in a which have been morphed
into pixels of color j in b. Because such a matrix representation only provides aggregated
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Figure 1: Three color histograms summing to 100. Although a and c are arguably closer to
each other because of their overlapping dominance in red colors, the Manhattan
distance cannot consider such an overlap and treats all colors separately. As a
result, in this example, a is equidistant from b and c, ‖a− b‖1 = ‖a− c‖1 = 120.

assignments and does not detail the actual individual assignments, such matrices are known
as transport plans. A transport plan between a and b must be such that its row and column
sums match the quantities detailed in a and b, as highlighted on the top and right side of
an example matrix X in Equation 1.

M =

• • • •












0 1 2 3 •
1 0 3 2 •
2 3 0 1 •
3 2 1 0 •

(2)

A Linear Cost for Transport Plans: A cost
matrix M quantifies all 16 possible costs mij of
turning a pixel of a given color i into another color j.
In the example provided in Equation 3, M states for
instance that the cost of turning a dark red pixel into
a dark blue pixel is twice that of turning it into a
light red pixel; that transferring a colored pixel from a to the same color in b has a zero cost
for all four colors. The cost of a transport plan X, given the cost matrix M , is defined as
the Frobenius dot-product ofX andM , namely 〈X,M 〉 =∑ij xijmij = 169 in our example.

X⋆ =

13 7 56 24












13 42 5 60
7 13 20

14 14
6 6

(3)

Smallest Possible Total Transport Cost: The
transport distance is defined as the lowest cost one
could possibly find by considering all possible trans-
port plans from a to b. Computing such an opti-
mum involves solving a linear program, as detailed
in Section 2.3. For a and b and given M above, solv-
ing this program would return an optimal matrix X⋆

provided in Equation (3) with an optimum of 〈X⋆,M 〉 = 120. When comparing a and c,
the distance would, on the other hand, be equal to 72. Comparing these two numbers, we
can see that the transport distance agrees with our initial intuition that a is closer to c than
b by taking into account a metric on features. We define rigorously the properties of both
the cost matrix M and the set of transport plans in the next section.
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0 m12 m13
• 0 m23
• • 0





Figure 2: Semimetric cone in 3 dimensions. A d×dmetric matrix for d = 3 can be described
by 3 positive numbersm12,m13 andm23 that follow the three triangle inequalities,
m12 ≤ m13 +m23, m13 ≤ m12 +m23, m23 ≤ m12 +m13. The set (neither open
nor closed) of positive triplets (x, y, z) forms a set of metric matrices.

2.2 The Ingredients of Discrete Optimal Transport

Optimal transport distances between histograms are computed through a mathematical
program. The feasible set of that program is a polytope of matrices. Its objective is a linear
function parameterized by metric matrices. We define both in the sections below.

2.2.1 Objective: Semimetric and Metric Matrices

Consider d points labeled as {1, 2, . . . , d} in a metric space. Form now the d× d matrix M
where element mij is equal to the distance between points i and j. Because of the metric
axioms, the elements of M must obey three rules: (1) symmetry: mij = mji for all pairs of
indices i, j; (2) mii = 0 for all indices i and more generally mij ≥ 0 for any pair (i, j); (3)
triangle inequality: mij ≤ mik +mkj, for all triplets of indices i, j, k. The set of all d × d
matrices that observe such rules, and thus represent hypothetically the pairwise distances
between d points taken in any arbitrary metric space, is known as the cone of semimetric
matrices,

M def
=
{

M ∈ R
d×d : ∀ 1 ≤ i, j, k ≤ d,mii = 0,mij ≤ mik +mkj

}

⊂ R
d×d
+ .

Note that the
(

d
2

)

symmetry conditionsmij = mji and non-negativity conditionsmij ≥ 0 are
contained in the d3 linear inequalities described in the definition above. M is a polyhedral
set, because it is defined by a finite set of linear equalities and inequalities. M is also a
convex pointed cone as can be visualized in Figure 2 for d = 3. Additionally, if a matrix M
satisfies conditions (1) and (3) but also has, in addition to (2), the property that mij > 0
whenever i 6= j, then we call M a metric matrix. We writeM+ ⊂M for the set of metric
matrices, which is neither open nor closed.

2.2.2 Feasible Set: Transport Polytopes

Consider two vectors r and c in the simplex Σd. Let U(r, c) be the set of d× d nonnegative
matrices such that their row and columns sums are equal to r and c respectively, that is,
writing 1d ∈ R

d for the column vector of ones,

U(r, c) = {X ∈ R
d×d
+ | X1d = r, X⊤

1d = c}.
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Because of these constraints, it is easy to see that any matrix X = [xij ] in U(r, c) is such that
∑

ij xij = 1. While r and c can be interpreted as two probability measures on the discrete set
{1, . . . , d}, any matrix X in U(r, c) is thus a probability measure on {1, . . . , d}×{1, . . . , d},
the cartesian product of {1, . . . , d} with itself. U(r, c) can be identified with the set of all
discrete probabilities on {1, . . . , d} × {1, . . . , d} that admit r and c as their first and second
marginals respectively.

U(r, c) is a bounded polyhedron (the entries of any X in U(r, c) are bounded between
0 and 1) and is thus a polytope with a finite set of extreme points. This polytope has
an effective dimension of d2 − 2d + 1 in the general case where r and c have positive
coordinates (Brualdi 2006, §8.1). U(r, c) is known in the operations research literature as
the set of transport plans between r and c (Rachev and Rüschendorf 1998). When r and c
are integer valued histograms with the same total sum, a transport plan with integral values
is also known as a contingency table or a two-way table with fixed margins (Lauritzen 1982,
Diaconis and Efron 1985).

M

dM (r, c) = 〈X⋆,M〉 = min
X∈U (r,c)

〈X,M〉

U(r, c)

X⋆

Figure 3: Schematic view of the optimal transport distance. Given a feasible set U(r, c)
and a cost parameter M ∈ M+, the distance between r and c is the minimum of
〈X,M 〉 when X varies across U(r, c). The minimum is reached here at X⋆.

2.3 Optimal Transport Distances

Given two histograms r and c of Σd and a matrix M , the quantity

G(r, c;M)
def
= min

X∈U(r,c)
〈M,X 〉.

describes the optimum of a linear program whose feasible set is defined by r and c and
whose cost is parameterized by M . G is a positive homogeneous function of M , that is
G(r, c; tM) = tG(r, c;M) for t ≥ 0. G(r, c;M) can also be described as minus the support
function (Rockafellar 1970, §13) of the polytope U(r, c) evaluated at −M . A schematic view
of that LP is given in Figure 3.

When M belongs to the cone of metric matricesM, the value of G(r, c;M) is a distance
(Villani 2003, §7, p.207) between r and c, parameterized by M . In that case, assuming
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implicitly that M is fixed and only r and c vary, we will refer to G(r, c;M) as dM (r, c), the
optimal transport distance between r and c.

Theorem 1 dM is a distance on Σd whenever M ∈ M+.

The fact that dM (r, c) is a distance is a well known result; a standard proof for continuous
probability densities is provided in (Villani 2003, Theorem 7.3). A proof often reported in
the literature for the discrete case can be found in (Rubner et al. 2000). We believe this
proof is not very clear, so we provide an alternative proof in the Appendix.

When r and c are, on the contrary, considered fixed, we will use the notation Grc(M)
to stress that M is the variable argument of G, as will be mostly the case in this paper.
Although using two notations for the same mathematical object may seem cumbersome,
these notations will allow us to stress alternatively which of the three variables r, c and M
are considered fixed in our analysis.

2.3.1 Extensions of Optimal Transport Distances

The distance dM bears many names: 1-Wasserstein; Monge-Kantorovich; Mallow’s (Mal-
lows 1972, Levina and Bickel 2001) and finally Earth Mover’s (Rubner et al. 2000) in the
computer vision literature. Rubner et al. (2000) and more recently Pele and Werman (2009)
have also proposed to extend the optimal transport distance to compare unnormalized his-
tograms, that is vectors with nonnegative coordinates which do not necessarily sum to 1.
Simply put, these extensions compute a distance between two unnormalized histograms u
and v by combining any difference in the total mass of u and v with the optimal transport
plan that can carry the whole mass of u onto v if ‖u‖1 ≤ ‖v‖1 or v onto u if ‖v‖1 ≤ ‖u‖1.
These extensions can also be traced back to earlier work by Kantorovich and Rubinshtein
(1958), see Vershik (2006) for a historical perspective. We will not consider such extensions
in this work, and will only consider distances for histograms of equal sum.

2.3.2 Relationship with Other Distances

The optimal transport distance bears an interesting relationship with the total variation
distance, which is a popular distance between histograms of features in computer vision
following early work by Swain and Ballard (1991). As noted by (Villani 2003, p.7 & Ex.1.17
p.36), the total variation distance, defined as

dTV(r, c)
def
=

1

2
‖r − c‖1,

can be seen as a trivial instance of optimal transport distances by simply noting that

dTV = dM1
,

where M1 is the matrix of ones with a zero diagonal, namely M1(i, j) is equal to 1 if
i = j and zero otherwise. The metric on features defined by M1 simply states that all
d considered features are equally different, that is their pairwise distances are constant.
This relationship between total variation and optimal transport can be compared to the
analogous observation that Euclidean distances are a trivial instance of the Mahalanobis
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family of distances, by setting the Mahalanobis parameter to the identity matrix. Tuning
the ground metric M to select an optimal transport distance dM can thus be compared to
the idea of tuning a positive-definite matrix Ω to define a suitable Mahalanobis distance
for a given problem: Mahalanobis distances are to the Euclidean distance what optimal
transport distances are to the total variation distance, as schematized in Figure 4. We
discuss this parallel further when reviewing related work in Section 5.2.

Figure 4: Contour plots of the Euclidean (top-left) and Total variation (bottom-left) of all
points in the simplex for d = 3 to the point [0.5, 0.3, 0.2], and their respective pa-
rameterized equivalents, the Mahalanobis distance (top-right) and the transport
distance (bottom-right). The parameter for the Mahalanobis distance has been
drawn randomly. The upper right values of the ground metric M are 0.8 and 0.4
on the first row and 0.6 on the second row.

2.3.3 Computing Optimal Transport Distances

The distance dM between two histograms r and c can be computed as the solution of the
following Linear Program (LP),
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dM (r, c) = minimize
∑d

i,j=1mijxij

subject to
∑d

j=1 xij = ri, 1 ≤ i ≤ d
∑d

i=1 xij = cj , 1 ≤ j ≤ d
xij ≥ 0, 1 ≤ i, j ≤ d.

This program is equivalent to the following program, provided in a more compact form, as:

dM (r, c) = minimize mTx

subject to Ax =

[

r
c

]

∗
x ≥ 0,

(4)

where A is the (2d− 1)× d2 matrix that encodes the row-sum and column-sum constraints
for X to be in U(r, c) as

A =

[

11×d ⊗ Id
Id ⊗ 11×d

]

∗
,

where ⊗ is Kronecker’s product and the lower subscript
[

·
]

∗ in a matrix (resp. a vector)
means that its last line (resp. element) has been removed. This modification is carried out
to make sure that all constraints described by A are independent, or equivalently that AT

is not rank deficient. This LP can be solved using the network simplex (Ford and Fulkerson
1962) or through more specialized minimum-cost network flow algorithms (Ahuja et al.
1993, §9). The computational effort required to compute a single distance between two
histograms of dimension d scales typically as O(d3 log(d)) (Pele and Werman 2009, §2.3)
when M has no particular structure.

2.4 Properties of the Optimal Transport Distance Seen As a Function of M

When both its arguments are fixed, the optimal transport distance dM (r, c) seen as a func-
tion Grc ofM has three important properties: Grc is piecewise linear; concave; a subgradient
of Grc can be directly recovered by considering any optimal solution of the linear program
considered to compute Grc. These properties are crucial, because they highlight that for a
given pair of histograms (r, c), a gradient direction to increase or decrease dM (r, c) can be
obtained through the optimal transport plan that realizes dM (r, c), and that maximizing
this value is a convex problem.

2.4.1 Concavity and Piecewise-linearity

Because its feasible set U(r, c) is a bounded polytope and its objective is linear, Problem (4)
has an optimal solution in the finite set Ex(r, c) of extreme points of U(r, c) (Bertsimas and
Tsitsiklis 1997, Theorem 2.7, p.65). Grc is thus the minimum of a finite collection of linear
functions, each indexed by an extreme point, and thus

Grc(M) = min
X∈U(r,c)

〈X,M 〉 = min
X∈Ex(r,c)

〈X,M 〉, (5)

is piecewise linear. Grc is also concave by a standard result stating that the point-wise
minimum of a family of affine functions is itself concave (Boyd and Vandenberghe 2004,
§3.2.3).
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2.4.2 Differentiability

Because the computation of Grc involves a linear program, the gradient ∇Grc of Grc at a
given point M is equal to the optimal solution X⋆ to Problem (4) whenever this solution is
unique,

∇Grc = X⋆,

as stated by Bertsimas and Tsitsiklis (1997, Theorem 5.3). Intuitively, by continuity of all
functions involved in Problem (4) and the uniqueness of the optimal solution X⋆, one can
show that there exists a ball with a positive radius around M for which Grc(M) is locally
linear, equal to 〈X⋆,M 〉 on that ball, resulting in the fact that the gradient of 〈X⋆,M 〉 is
simply X⋆. More generally and regardless of the uniqueness of X⋆, any optimal solution
X⋆ of Problem (4) is in the sub-differential ∂Grc(M) of Grc at M (Bertsimas and Tsitsiklis
1997, Lemma 11.4). Indeed, suppose that Z(p) is the minimum of a linear program Z
parameterized by a cost vector x, over a bounded feasible polytope with extreme points
{c1, . . . , cm}. Z(x) can in that case be written as

Z(x) = min
i=1,...,m

ui + cTi x.

Then, defining E(x) = {i|Z(x) = ui + cTi x}, namely the set of indices of extreme points
which are optimal for x, Bertsimas and Tsitsiklis (1997, Lemma 11.4) show that for any
fixed x and any index i in E(x), ci is a subgradient of Z at x. More generally, this lemma
also shows that the differential of Z at x is exactly the convex hull of those optimal solutions
{ci}i∈E(x). If, as in Equation (5), these ci’s describe the set of extreme points of U(r, c),
the variable x is the ground metric M , and Z is Grc, this lemma implies that any optimal
transport is necessarily in the subdifferential of Grc(M), and that this subdifferential is
exactly the convex hull of all the optimal transports between r and c using cost M .

In summary, the distance dM (r, c) seen as a function of M (Grc(M) using our notations)
can be computed by solving a network flow problem, and any optimal solution of that
network flow is a subgradient of the distance with respect to M . This function itself is
concave in M . We use extensively these properties in Section 4 when we optimize the
criteria considered in the next section.

3. Learning Ground Metrics as an Optimization Problem

We define in this section a family of criteria to quantify the relevance of a ground metric
to compare histograms in a given learning task. We use to that effect a training sample of
histograms with additional information.

3.1 Training Set: Histograms and Side Information

Suppose that we are given a sample {r1, . . . , rn} ⊂ Σd of histograms in the canonical simplex
along with a family of coefficients {ωij}1≤i,j≤n, which quantify how similar ri and rj are.
We assume that these coefficients are such that ωij is positive whenever ri and rj describe
similar objects and negative for dissimilar objects. We further assume that this similarity
is symmetric, ωij = ωji. The similarity of an object with itself will not be considered in the
following, so we simply assume that ωii = 0 for 1 ≤ i ≤ n.
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In the most simple case, these weights may reflect a labeling of all histograms into
multiple classes and be set to ωij > 0 whenever ri and rj come from the same class and ωij <
0 for two different classes. An ever simpler setting which we consider in our experiments
is that of setting ωij = 1yi=yj , where the label yi of histogram ri for 1 ≤ i ≤ n is taken in
a finite set of labels L = {1, 2, . . . , L}. Let us introduce more notations before moving on
to the next section. Since by symmetry ωij = ωji and Grirj = Grjri , we restrict the set of
pairs of indices (i, j) we will study to

I def
={(i, j) | i, j ∈ {1, . . . , n}, i < j},

and introduce two subsets of I, the subsets of similar and dissimilar histograms:

E+ def
={(i, j) ∈ I | ωij > 0}; E− def

={(i, j) ∈ I | ωij < 0}.

Finally, we define the shorthand Gij
def
= Grirj .

3.2 Feasible Set of Metrics

We propose to formulate the ground metric learning problem as that of finding a metric
matrix M ∈ M+ such that the corresponding optimal transport distance dM computed
between pairs of points in (r1, . . . , rn) agrees with the weights ω. However, because projec-
tors are not well defined on feasible sets that are not closed, we will consider the whole of
the semimetric coneM as a feasible set instead of consideringM+ directly. We implicitly
assume in this paper that, if our algorithms output a matrix that has null off-diagonal
elements, such a matrix will be regularized by adding the same arbitrarily small positive
constant to all its off-diagonal elements. Moreover, and as remarked earlier, two histograms
r and c define a homogeneous function Grc of M , that is Grc(tM) = tGrc(M). To remove
this ambiguity on the scale of M , we only consider in the following matrices that lie in the
intersection ofM and the unit sphere in R

d×d of the 1-norm,

M1 =M∩B1,

where B1 = {A ∈ R
d×d | ‖A‖1 def

=‖a‖1 = 1}. M1 is convex as the intersection of two convex
sets. In what follows we call matrices in M1 metric matrices (this is a slight abuse of
language since some of these matrices are in fact semimetrics).

3.3 A Local Criterion to Select the Ground Metric

More precisely, this criterion will favor metrics M for which the distance dM (ri, rj) is small

for pairs of similar histograms ri and rj (ωij > 0) and large for pairs of dissimilar histograms
(ωij < 0). We build such a criterion by considering the family of all

(

n
2

)

pairs

{ (ωij, Gij(M)) , (i, j) ∈ I}.

Given the ith datum of the training set, we consider the subsets Ei+ and Ei− of points
that share their label with ri and those that do not respectively:

Ei+ def
={j|(i, j) or (j, i) ∈ E+}, Ei− def

={j|(i, j) or (j, i) ∈ E−}.
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Within these subsets, we consider the sets N+
ik and N−

ik , which stand for the indices of any
k nearest neighbours of ri using distance dM and whose indices are taken respectively in
the subsets Ei+ and Ei−. For each index i and corresponding histogram ri, we can now form
the weighted sum of distances to its similar and dissimilar neighbors

S+
ik(M)

def
=
∑

j∈N+

ik

ωij Gij(M), and S−
ik(M)

def
=
∑

j∈N−

ik

ωij Gij(M). (6)

Note that N+
ik and N−

ik are not necessarily uniquely defined. Whenever more than one list
of indices can qualify as the k closest neighbors of ri, we select such a list randomly among
all possible choices. We adopt the convention that N+

ik = Ei+ whenever k is larger than the
cardinality of Ei+, and follow the same convention for N−

ik . We use these two terms to form
our final criterion:

Ck(M)
def
=

n
∑

i=1

S+
ik
(M) + S−

ik
(M). (7)

4. Approximate Minimization of Ck

Since all functions Gij are concave, Ck can be cast as a difference of convex functions

Ck(M) = S−
k (M)− -S+

k (M),

where both

S−
k (M)

def
=

n
∑

i=1

S−
ik(M) and -S+

k (M)
def
=

n
∑

i=1

-S+
ik(M)

are convex, by virtue of the convexity of each of the terms S−
ik

and -S+
ik

defined in Equa-
tion (6). This follows in turn from the concavity of each of the distances Gij as discussed
in Sections 2.4 and 3.3, and the fact that such functions are weighted by negative factors,
ωij for (i, j) ∈ E− and -ωij for (i, j) ∈ E+. We propose an algorithm to approximate the
minimization of Ck defined in Equation (7) that takes advantage of this decomposition.

4.1 Subdifferentiability of Ck

It is easy to see that, using the results on Grc we have recalled in Section 2.4.1, the gradient
of Ck computed at a given metric matrix M is

∇Ck(M) = ∇S−
k (M) +∇S+

k (M),

where,

∇S+
k (M) =

n
∑

i=1

∑

j∈N+

ik

ωijX
⋆
ij , ∇S−

k (M) =

n
∑

i=1

∑

j∈N−

ik

ωijX
⋆
ij ,

whenever all solutions X⋆
ij to the linear programs Gij considered in Ck are unique and

whenever each of the two sets of k nearest neighbors of each histogram ri is unique. Also
as recalled in Section 2.4.1, any optimal solution X⋆

ij is in the sub-differential ∂Gij(M) of
Gij at M and we thus have that
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n
∑

i=1

∑

j∈N+

ik

ωijX
⋆
ij ∈ ∂S+

k (M),

n
∑

i=1

∑

j∈N−

ik

ωijX
⋆
ij ∈ ∂S−

k (M),

regardless of the unicity of the nearest-neighbors sets of each histogram ri. The details of
the computation of S−

k (M) and of the subgradient described above are given in Algorithm 1.
The computations for S+

k (M) are analogous to those of S−
k (M) and we use the abbreviation

S±
k (M) to consider either of these two cases in our algorithm outline.

Algorithm 1 Computation of z = S±
k
(M) and a subgradient γ, where ± is either + or −.

Input: M ∈ M1.
for (i, j) ∈ E± do

Compute the optimum z⋆ij and an optimal solution X⋆
ij for Problem (4) with cost vector

m and constraint vector [ri; rj ]∗.
end for
Set G = 0, z = 0.
for i ∈ {1, · · · , n} do

Select the smallest k elements of z⋆ij , j ∈ Ei± to define the set of neighbors N±
ik .

for j ∈ N±
ik

do
G← G+ ωijX

⋆
ij .

z ← z + ωijz
⋆.

end for
end for
Output z and γ = g + g.

4.2 Local Linearization of the Concave Part of Ck

We describe in Algorithm 2 a simple approach to obtain an approximate solution to the
problem of minimizing Ck with a projected subgradient descent and a local linearization of
the concave part of Ck. Algorithm 2 runs a subgradient descent on Ck using two nested
loops: we linearize the concave part of Ck in an outer loop and minimize the resulting
convex approximation in the inner loop.

More precisely, the first loop is parameterized with an iteration counter p and starts by
computing both S+

k (the concave part of Ck) and a vector γ+ in its subdifferential using the
current candidate metric Mp. Using this value and the subgradient γ+, the concave part
S+
k

of Ck can be locally approximated by its first order Taylor expansion,

Ck(M) ≈ S−
k (M) + S+

k (Mp) + γT+(M −Mp).

This approximation is convex, larger than Ck and can be minimized in an inner loop using
a projected subgradient descent. When this convex function has been minimized up to
sufficient precision, we obtain a point

Mp+1 ∈ argmin
M∈M1

S−
k
(M) + S+

k
(Mp) + γT+(M −Mp).
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We increment p and repeat the linearization step described above. The algorithm terminates
when sufficient progress in the outer loop has been realized, at which point the matrix
computed in the last iteration is returned as the output of the algorithm.

The overall quality of the solution obtained through this procedure is directly linked to
the quality of the initial point M0. The selection of M0 requires thus some attention. We
provide a few options to select M0 in the next section.

Algorithm 2 Projected Subgradient Descent to minimize Ck

Input M0 ∈M1 (see Section 4.3), gradient step t0.
t← 1.
p← 0, Mout

0 ←M0.
while p < pmax or insufficient progress for zoutp do

Use Algorithm 1 to compute z+
def
= S+

k
(Mout

p ) and γ+.

q ← 0, M in
0 ←Mout

p .

while q < qmax or insufficient progress for zinq do

Compute γ− and z− of S−
k using Algorithm 1 with M in

q , (i, j) ∈ E−.
Set zinq ← z− + z+ + γT+(m

in
q −mout

p ) .

Set M in
q+1 ← PM1

(

min
q − t0√

q
(γ+ + γ−)

)

.

q ← q + 1.
t← t+ 1.

end while
Mout

p+1 ←M in
q .

p← p+ 1.
end while
Output Mout

p .

4.3 Initial Points

Since Ck is not a convex criterion, particular care needs to be taken to initialize our descent
algorithm. We propose in this section two approaches to choose the initial point M0.

4.3.1 The Total Variation Distance as an Optimal Transport Distance

The total variation distance between two histograms, defined as half the l1 norm of their
difference, can provide an educated guess to define an initial point M0 to optimize Ck.
Indeed, as explained in Section 2.3, the total variation distance can be interpreted as the
optimal transport distance parameterized with the uniform ground metric M1 which is a
matrix equal to 1 on all its off-diagonal terms and 0 on the diagonal. Therefore, we consider
M1 (divided by d(d−1) to normalize it) in our experiments to initialize Algorithm 2. Since
Ck is not convex, using M1 is attractive from a numerical point of view because M1 exhibits
the highest entropy among all matrices inM1. This choice has, however, two drawbacks:

• Because all the costs enumerated in M1 are equal, one can show that for a pair
of histograms (r, c) any transport matrix that assigns the maximum weight to its
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diagonal elements, namely any matrix X in the convex set

{X ∈ U(r, c)|xii = min(ri, ci)}

is optimal. As a result, any matrix in that set is in the subdifferential of Grc at M1.
Solvers that build upon the network simplex will return an arbitrary vertex within
that set, mostly depending on the pivot rule they use. The very first subgradient
descent iteration is thus likely to be extremely uninformative, and this should be
reflected by a poor initial behaviour which we do indeed observe in practice.

• Because such a starting point ignores the information provided by all histograms
{ri, 1 ≤ i ≤ n} and weights {ωij , (i, j) ∈ I}, we expect it to be far from the actual
optimum.

We propose an alternative approach in the next section: we approximate Ck by a linear
function of M and set M0 to be the minimizer of that approximation.

4.3.2 Linear Approximations to Ck and Independence Tables

We propose to form an initial point M0 by replacing the optimization underlying the com-
putation of each distance Gij(M) by a dot product,

Gij(M) = min
X∈U(ri,rj)

〈M,X 〉 ≈ 〈M,Ξij 〉,

where Ξij is a representative matrix of the polytope U(ri, rj). This idea is illustrated in
Figure 5. We discuss a natural choice to define Ξij later in this section. Assuming we
have chosen such matrices, we replace now each term Gij in the criterion presented in
Equation (7) by the corresponding quantity 〈M,Ξij 〉 and obtain an approximation χk of
Ck parameterized by a matrix Ξk,

χk(M)
def
= 〈M,Ξk 〉, where Ξk

def
=

n
∑

i=1

∑

j∈N−

ik
∪N+

ik

ωij Ξij,

where the k nearest neighbors of each histogram ri defined in N−
ik and N+

ik are those selected
by considering the total variation distance. To select a candidate matrix M that minimizes
this criterion, we consider the following penalized problem,

min
M∈M

λ〈M,Ξk 〉+ ‖M‖22 = min
M∈M

‖M +
λ

2
Ξk‖22, λ > 0, (8)

which can be solved using the approach described by Brickell et al. (2008, Algorithm 3.1).
Brickell et al. propose triangle fixing algorithms to obtain projections on the cone of dis-
tances under various norms, including the Euclidean distance. They study in particular the
following problem,

min
M∈M

‖M −H‖2, (9)

where H is a symmetric nonnegative matrix that is zero on the diagonal. It is however
straightforward to check that these three conditions, although intuitive when considering

15



Cuturi and Avis

the metric nearness problem (Brickell et al. 2008, §2), are not necessary for Algorithm (3.1)
described by Brickell et al. (2008, §3) to work. This algorithm is not only valid for non-
symmetric matrices H as pointed out by the authors themselves, but it is also applicable
to matrices H with negative entries and non-zero diagonal entries. Problem (8) can thus
be solved by replacing H by −λ

2Ξk in Problem (9) regardless of the sign of the entries of Ξ.

Note that other approaches could be considered to minimize the dot product 〈M,Ξ 〉
using alternative regularizers. Frangioni et al. (2005) propose for instance to handle lin-
ear programs in the intersection between the cone of metrics and the set of polyhedral
constraints {Mik +Mkj +Mij ≤ 2} which defines what is known as the metric polytope.

The techniques presented above build upon a linear approximation of each function
Gij(M) as 〈M,Ξij 〉 by selecting a particular matrix Ξij such that Gij(M) ≈ 〈M,Ξij 〉. We
propose to use a simple proxy for the optimal transport distance: the dot-product of M
with a matrix that lies at the center of U(r, c), as illustrated in Figure 5. We consider for

M

U(ri, rj)

X⋆
ij

Ξij

Figure 5: Schematic view of the approximation minX∈U(ri,rj)〈M,X 〉 ≈ 〈M,Ξij 〉 carried
out when using a central transport table Ξij instead of the optimal table X⋆

ij to
compare ri and rj .

such a center the independence table rcT (Good 1963). The table rcT , which is in U(r, c)
because rcT1d = r and crT1d = c, is also the maximal entropy table in U(r, c), that is, the
table which maximizes

h(X) = −
d
∑

p,q=1

Xpq logXpq.

Using the independence table to approximate Gij , that is using the approximation

min
X∈U(ri,rj)

〈M,X 〉 ≈ rTi Mrj ,

provides us with a weighted center,

Ξk =
n
∑

i=1

∑

j∈N−

ik
∪N+

ik

ωijrir
T
j .
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Note however that this approximation tends to overestimate substantially the distance
between two similar histograms. Indeed, it is easy to check that rTMr is positive whenever
r has positive entropy. In the case where all coordinates of r are equal to 1/d, rTMr
is ‖M‖1/d2. To close this section, one may notice that several methods can be used to
compute centers for polytopes such as U(r, c), among which the Chebyshev center, the
analytic center, or the center of the Löwner-John ellipsoid, all described by Boyd and Van-
denberghe (2004, §8.4,§8.5). We have not considered these approaches because computing
them involve, unlike the independence table proposed above, the resolution of large convex
programs or LP’s. Barvinok has, on the other hand, proposed recently a new center tailored
specifically for transport polytopes, that he calls the typical table (2010). The typical
table can be computed efficiently, both in theory and practice, as the result of a convex
program of 2d variables (Barvinok 2010, p.523). Experimental results indicate that they
perform very similarly to independent tables so we do not explore them further in this paper.

In summary, we propose in this section to approximate Ck by a linear function and
compute its minimum in the intersection M1 of the l1 unit sphere and the cone of metric
matrices. This linear objective can be efficiently minimized using a set of tools proposed by
Brickell et al. (2008) adapted to our problem. In order to propose such an approximation, we
have used the independence tables as representative points of the polytopes U(ri, rj). The
successive steps of the computations that yield an initial point M0 are given in Algorithm 3.

Algorithm 3 Initial Point M0 to minimize Ck

Set Ξ = 0.
for i ∈ {1, · · · , n} do

Compute the neighborhood setsN+
ik
andN−

ik
of histogram ri using an arbitrary distance,

e.g. the total variation distance.
for j ∈ N+

ik ∪N−
ik do

Ξ← Ξ + ωijrir
T
j .

end for
end for
Set M0 ← minM∈M‖M + λ

2Ξ‖2 (Brickell et al. 2008, Algorithm 3.1).
Output M0. optional: regularize M0 by setting M0 ← λM0 + (1− λ)M1.

5. Related Work

We provide in this section an overview of other distances for histograms of features. We
start by presenting simple distances on histograms and follow by presenting metric learning
approaches.

5.1 Metrics on the Probability Simplex

Deza and Deza (2009, §14) provide an exhaustive list of metrics for probability measures,
most of which apply to probability measures on R and R

d. When narrowed down to dis-
tances for probabilities on unordered discrete sets – the dominant case in machine learning
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applications – Rubner et al. (2000, §2) propose to split such distances into two families:
bin-to-bin distances and cross-bin distances. Let r = (r1, . . . , rd)

T and c = (c1, . . . , cd)
T be

two histograms in the canonical simplex Σd.

Bin-to-bin distances only compare the d couples of bin-counts (ri, ci)i=1..d independently
to form a distance between r and c. The Jensen-divergence, χ2, Hellinger, total variation
distances and more generally Csizar f -divergences (Amari and Nagaoka 2001, §3.2) all fall
within this category. Notice that any of these divergences is known to work usually better
for histograms than a straightforward application of the Euclidean distance as shown in our
experiments or for instance by Chapelle et al. (1999, Table 4). This can be explained in
theory using geometric (Amari and Nagaoka 2001, §3) or statistical arguments (Aitchison
and Egozcue 2005).

Bin-to-bin distances are easy to compute and accurate enough to compare histograms
when all d features are sufficiently distinct. When, on the contrary, some of these features
are known to be similar, either because of statistical co-occurrence (e.g. the words cat

and kitty) or through any other form of prior knowledge (e.g. pixel colors or amino-acid
similarity) then a simple bin-to-bin comparison may not be accurate enough as argued by
Rubner et al. (2000, §2.2). In particular, bin-to-bin distances are invariably large when they
compare histograms with distinct supports, regardless of the fact that these two supports
may in fact describe very similar features.

Cross-bin distances handle this issue by considering all d2 possible pairs (ri, cj) of cross-
bin counts to form a distance. The most simple cross-coordinate distance for general vectors
in R

d is arguably the Mahalanobis family of distances,

dΩ(x, y) =
√

(x− y)TΩ(x− y),

where Ω is a positive definite d× d matrix. The Mahalanobis distance between x and y can
be interpreted as the Euclidean distance between Lx and Ly where L is a Cholesky factor
of Ω or any square root of Ω. Learning such linear maps L or positive definite matrices Ω
directly using labeled information has been the subject of a substantial amount of research
in recent years. We briefly review this literature in the following section.

5.2 Mahalanobis Metric Learning

Xing et al. (2003), followed byWeinberger et al. (2006) and Davis et al. (2007) have proposed
different algorithms to learn the parameters of a Mahalanobis distance. We refer to recent
surveys by Kulis (2012) and Bellet et al. (2013) for more details on these approaches. These
techniques define first a criterion and a feasible set of candidate matrices – either a positive
semidefinite matrix Ω or a linear map L – to optimize the best parameter that fits best
the data at hand. The criteria we propose in Section 3 are modeled along these ideas.
Weinberger et al. (2006) were the first to consider criteria that only use nearest neighbors,
which inspired in this work the proposal of Ck in Section 3.3.

We would like point out that Mahalanobis metric learning and ground metric learning
have very little in common conceptually: Mahalanobis metric learning algorithms learn a
d × d positive semidefinite matrix or a m × d linear operator L. Ground metric learning
learns instead a d× d metric matrix M . The difference between Mahalanobis distances and
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optimal transport distances can be further highlighted by these simple identities:

dTV(r, c) =
1

2
‖r − c‖1 = dM1

(r, c), d2(r, c) = ‖r − c‖2 = dI(r, c)

The relationship between the Euclidean distance and the family of Mahalanobis distances,
in which the former is a trivial instance of the latter when Ω is set to the identity matrix, is
analogous to that between the total variation distance and optimal transport distances, in
which the former is also a trivial instance of the latter where all distances between features
are uniformly set to 1. The two families of distances evolve in related albeit completely
different sets of distances, just like the l1 and l2 norms describe different geometries. An il-
lustration of this can be found in Figure 4 provided earlier in this paper, where the Euclidean
and the total variation distances are compared with their parameterized counterparts. Both
total variation and optimal transport distances have piecewise linear level sets, whereas the
Euclidean and Mahalanobis distances have ellipsoidal level sets.

It is also worth mentioning that although Mahalanobis distances have been designed
for general vectors in R

d, and as a consequence can be applied to histograms, there is
however, to our knowledge, no statistical theory which motivates their use on the probability
simplex. This should be compared to the fact that there is a fairly large literature on optimal
transport distances for probabilities, described by (Villani 2003, §7) and references therein.

5.3 Metric Learning in the Probability Simplex

Lebanon (2006) has proposed to learn a bin-to-bin distance in the probability simplex using
a parametric family of distances parameterized by a histogram λ ∈ Σd−1 defined as

dλ(r, c) = arccos

(

d
∑

i=1

√

riλi

rTλ

√

ciλi

cTλ

)

.

This formula can be simplified by using the perturbation operator proposed by Aitchison
(1986, p.46):

∀r, λ ∈ Σd−1, r ⊙ λ
def
=

1

rTλ
(r1λ1, · · · , rdλd)

T .

Aitchison argues that the perturbation operation can be naturally interpreted as an addition
operation in the simplex. Using this notation, the family of distances dλ(r, c) proposed by
Lebanon can be seen as the standard Fisher metric applied to perturbed histograms r ⊙ λ
and c⊙ λ,

dλ(r, c) = arccos〈
√
r ⊙ λ,

√
c⊙ λ 〉.

Using arguments related to the fact that a distance should vary according to the density of
points described in a dataset, Lebanon (2006) proposes to learn this perturbation λ in an
unsupervised context, by only considering histograms but no other side-information.

More recently, Kedem et al. (2012) have proposed non-linear metric learning techniques,
and focus more specifically on parameterized χ2 distances defined as dPχ2

(r, c) = dχ2
(Pr, Pc)

where P can be any stochastic matrix P with unit row sums. We also note that, a few
months after the publication on the arxiv of an early version of our paper, Wang and
Guibas (2012) have proposed an algorithm that is very similar to ours, with the notable
difference that they do not take into account metric constraints for the ground metric.
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6. Experiments

We provide in this section a few details on the practical implementation of Algorithms 1, 2
and 3. We follow by presenting empirical evidence that ground metric learning improves
upon other state-of-the-art metric learning techniques when considered on normalized his-
tograms of low dimensions, albeit at a substantial computational cost.

6.1 Implementation Notes

Algorithm 1 builds upon the computation of several optimal transport problems. We use
the CPLEX Matlab API implementation of network flows to that effect. Using directly the
API is faster than calling the CPLEX matlab toolbox or the Mosek solver. These benefits
come from the fact that only the constraint vector in Problem (4) needs to be updated
at each iteration of the first loop of Algorithm 1. We use the metricNearness toolbox
released online by Suvrit Sra to carry out both the projections of each inner loop iteration
of Algorithm 2 and the last step of Algorithm 3.

6.2 Distances used in this benchmark

We consider five distances in this benchmark. Three classic bin-to-bin distances, Maha-
lanobis distances with different learning schemes and the optimal transport distance cou-
pled with ground metric learning. Bin-to-bin distances We consider the l1, l2 and Hellinger
distances on histograms,

l1(r, c) = ‖r − c‖1, l2(r, c) = ‖r − c‖2, H(r, c) = ‖
√
r −
√
c‖2,

where
√
r is the vector whose coordinates are the squared roots of each coordinate of r.

6.2.1 Mahalanobis distances

We use the publicly available implementations of LMNN (Weinberger and Saul 2009) and
ITML (Davis et al. 2007) to learn Mahalanobis distances for each task. We run both
algorithms with default settings, that is k = 3 for LMNN and k = 4 for ITML. We use
these algorithms on the Hellinger representations {√ri, i = 1, . . . , n} of all histograms
originally in the training set using the element-wise square root. We have considered this
representation because the Euclidean distance between the Hellinger representations of two
histograms corresponds exactly to the Hellinger distance (Amari and Nagaoka 2001, p.57).
Since the Mahalanobis distance builds upon the Euclidean distance, we argue that this
representation is more adequate to learn Mahalanobis metrics in the probability simplex.
This observation is confirmed in all of our experimental results, where Mahalanobis metric
learning approaches perform consistently better with the Hellinger transformation (see for
instance the results reported in Figure 7).

6.2.2 Optimal Transport Distances with Ground Metric Learning

We learn ground metrics using the following settings. The neighborhood parameter k is set
to 3 to be directly comparable to the default parameter setting of ITML and LMNN. In
each classification task, and for two images ri and rj, the corresponding weight ωij is set to
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1/nk if both histograms come from the same class and to −1/nk if they come from different
classes. The subgradient stepsize t0 of Algorithm 2 is set to = 0.1, guided by preliminary
experiments and by the fact that, because of the normalization of the weights ωij, both the
current iteration Mk in Algorithm 2 and subgradients γ+ or γ− all have the same 1-norms.

We carry out a minimum of 24 subgradient steps in each inner loop and set qmax to
80. Each inner loop is terminated when the objective does not progress more than 0.75%
every 8 steps, or when q reaches qmax. We carry out a maximum of 20 outer loop iterations.
With these settings, the algorithm takes about 300 steps to converge (Figures 8 and 9),
which, using a single Xeon 2.6Ghz core, 60 training points and d = 128 (the experimental
setting considered below) takes about 900 seconds. The main computational bottleneck
of the algorithm comes from the repeated computation of optimal transports. LMNN and
ITML parameterized with default settings converge much faster, in about 2 and 30 seconds
respectively.

6.3 Binary Classification

We study in this section the performance of ground metric learning when coupled with
a nearest neighbor classifier on binary classification tasks generated with the Caltech-256
database.

6.3.1 Experimental Setting

We sample randomly 80 images for each of the 256 images classes2 of the Caltech-256
database. Each image is represented as a normalized histogram of GIST features (Oliva
and Torralba 2001, Douze et al. 2009), obtained using an implementation provided by the
INRIA-LEAR team3. These features describe 8 edge directions at mid-resolution computed
for each patch of a 4 × 4 grid on each image. Each feature histogram is of dimension
d = 8× 4× 4 = 128 and subsequently normalized to sum to one.

We select randomly 1,000 distinct pairs of classes among the 256 classes available in
the dataset to form as many binary classification tasks. For each pair, we split the 80 + 80
available points into 30+30 points to train distance parameters and 50+50 points to form a
test set. This amounts to having n = 60 training points following the notations introduced
in Section 3.1. We consider in the following κ nearest neighbors approaches. Note that
the neighborhood size κ and the parameter k used in metric learning approaches need not
be the same. In our experiments κ varies, whereas k is always kept fixed, as detailed in
Section 6.2.

6.3.2 Results

The most important results of this experimental section are summarized in Figure 6, which
displays, for all considered distances, their average recall accuracy on the test set and
the average classification error using a κ-nearest neighbor classifier. These quantities are
averaged over 1,000 binary classifications. In this figure, GML paired with the the optimal
transport distance dM is shown to provide, on average, the best performance with three

2. we do not consider the clutter class

3. http://lear.inrialpes.fr/software
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different metrics: the leftmost plot considers retrieval performance for test points and shows
that, for each point considered on its own, GML-EMD selects on average more training
points from the same class as closest neighbors than any other distance. The performance
gap between GML-EMD and competing distances increases significantly as the number
of retrieved neighbors is itself increased. The middle plot displays the average error over
all 1,000 tasks of a κ-nearest neighbor classification algorithm when considered with all
distances for varying values of κ. The rightmost plot studies these errors in more detail for
the case where the neighborhood parameter κ of nearest neighbors is 3. In this case too,
GML combined with EMD fares significantly better than competing distances.

Figure 8 illustrates the empirical behavior of our descent algorithm. This plot displays
40 sample objective curves among the 1,000 computed to obtain the results above. The
bumps that appear regularly on these curves correspond to the first update carried out
after the linearization of the concave part of the objective. These results were obtained by
setting the initial matrix to M1.

It is also worth mentioning as a side remark that the l2 distance does not perform as
well as the l1 or Hellinger distances on these datasets, which validates our earlier statement
that the Euclidean geometry is usually a poor choice to compare histograms directly. This
intuition is further validated in Figure 7, where Mahalanobis learning algorithms are shown
to perform significantly better when they use the Hellinger representation of histograms.

Finally, Figure 9 describes the evolution of the average test error for two initial ground
metrics, M1 and that which builds upon independence tables (Algorithm 3). Two conclu-
sions can be drawn from this plot: First, independence tables provide on average a better
initialization of the algorithm if only the first iterations of the algorithm are taken into
account. However, this advantage seems to vanish as the number of subgradient descent
iterations increases. Second, our algorithm does not seem to suffer from overfitting on av-
erage, since the average error rate is a decreasing curve of the total number of iterations
and does not seem to increase up to termination.

6.4 Multiclass Classification

We follow our experimental evaluation of ground metric learning by considering this time
6 multiclass classification datasets that consider text and image data.

6.4.1 Experimental Setting

The properties of the datasets and parameters used in our experiments are summarized in
Table 1. The dimensions of the features have been kept low to ensure that the computation
of optimal transports are tractable. We follow the recommended train/test splits for these
datasets. If they are not provided, we split the datasets arbitrarily to form features using
either LDA (Blei et al. 2003) or SIFT features (Lowe 1999). We then generate 5 random
splits with the same balance to compute average accuracies over the entire dataset.

6.4.2 Results

Figure 10 details the results for these 6 experiments, and show that GML coupled with EMD
is at least equivalent or improves on the best techniques considered in our benchmark. These
results also illustrate that the performance of Mahalanobis learning (LMNN in this case) is
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Table 1: Multiclass classification datasets and their parameters.

Dataset #Train #Test #Class Feature #Dim
20 News Group 600 19397 20 Topic Model (LDA) 100
Reuters 500 9926 10 Topic Model(LDA) 100
MIT Scene 800 800 8 SIFT 100
UIUC Scene 1500 1500 15 SIFT 100
OXFORD Flower 680 680 17 SIFT 100
CALTECH-101 3060 2995 102 SIFT 100

greatly improved by considering the Hellinger representation of histograms, and not their
original representation as vectors of the simplex.
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Caltech−256: Distribution of

1,000 Classification Errors for κ=3

Figure 6: (left) Accuracy of each considered distance on the test set as measured by the
average proportion, for each datapoint in the test set, of points coming from the
same class within its κ nearest neighbors. These proportions were averaged over
1,000 binary classification problems randomly chosen among the

(256
2

)

possible.
We use 40 test points from each class for each experiment, namely 80 test points.
The ground metric in GML and Mahalanobis matrices in ITML and LMNN have
been learned using a train set of 30 + 30 points. (middle) κ-NN classification
error using the same distances. These results show average κ-NN error over 1,000
classification tasks depending on the value of κ. A more detailed picture for the
case κ = 3 is provided with boxplots of all 1, 000 errors (right).
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Figure 7: The experimental setting in this figure is identical to that of Figure 6, except that
only two different versions of LMNN and ITML are compared with the Hellinger
and Euclidean distances. This figure supports our claim in Section 6.2.1 that
Mahalanobis learning methods work better using the Hellinger representation of
histograms, {√ri, i = 1, . . . , n}, rather than their straightforward representation
in the simplex {ri}i=1,...,n.

25



Cuturi and Avis

0 50 100 150 200 250 300
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

−5

40 sample objective curves
from the 1,000 Caltech−256 Experiments

Iterations

O
bj

ec
tiv

e 
V

al
ue

Figure 8: 40 sample objective curves randomly selected among the 1,000 binary classifi-
cation tasks run on the Caltech-256 dataset. The initial point used here is the
matrix M1 of ones and zero diagonal. The very first bumps usually observed
in the first iterations agree with our empirical findings on empirical test error
displayed in Figure 9 which illustrate that the very first radients that are applied
are usually not informative and result momentarily in an objective increase.
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Figure 9: Average κ-nearest neighbor test error for GML using either the matrix of ones
(top left) or the independent table (top right) described in Section 4.3. As can be
seen for κ = 3 (bottom), initializing the algorithm with M1 performs worse than
independence tables for a low iteration count. Yet this competitive advantage is
reversed above a few iterations, as the algorithm converges. This figure also seems
to indicate that, on average, the algorithm does not overfit the data since the
average test error seems to decrease monotonically with the number of iterations,
and becomes flat after 200 iterations. The experimental setting is identical to
that of Figure 6.
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Figure 10: κ-nearest neighbor performance for different distances on multi-class problems.
Performance is averaged over 5 repeats, whose variability is illustrated with er-
ror bars. Errors are reported over varying κ nearest neighbor parameters. Our
benchmark considers three classical distances, l1, l2 and Hellinger, and their
respective learned counterparts: GML paired with the transport distance ini-
tialized with the matrix M1, classic LMNN and LMNN on the Hellinger repre-
sentation.
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7. Conclusion and Future Work

We have proposed in this paper an approach to tune adaptively the unique parameter of
optimal transport distances, the ground metric, given a training dataset of histograms. This
approach can be applied on any type of features, as long as a set of histograms along with
side-information, typically labels, are provided for the algorithm to learn a good candidate
for the ground metric. The algorithms proceeds with a projected subgradient descent to
minimize approximately a criterion that is a difference of polyhedral convex functions.
We propose two initial points to initialize this algorithm, and show that our approach
provides, when compared to other competing distances, a superior average performance for
a large set of image binary classification tasks using GIST features histograms, as well as
different multiclass classification tasks. This improvement comes, however, with a heavy
computational price tag.

Our benchmark experiments only contain low-dimensional descriptors. We chose such
small dimensions because it is well known that optimal transport distances do not scale
well for higher dimensions. That being said, the problem of speeding up the computation
of optimal transport distances by considering restrictions on ground metrics has attracted
significant attention. Ling and Okada (2007), Gudmundsson et al. (2007), Pele and Werman
(2009), Ba et al. (2011) have all recently argued that this computation can be dramatically
sped up when the ground metric matrix has a certain structure. For instance, Pele and
Werman (2009) have shown that the computational speed of earth mover’s distances can
be significantly accelerated when the ground metric is thresholded above a certain level.
Ground metrics that follow such constraints are attractive because they result in transport
problems which are provably faster to compute. Our work in this paper suggests on the other
hand that the content (and not the structure) of the ground metric can be learned to improve
classification accuracy. We believe that the combination of these two viewpoints could
result in optimal transport distances that are both adapted to the task at hand and fast to
compute. A strategy to achieve both goals would be to enforce such structural constraints
on candidate metrics M when looking for minimizers of criteria Ck. We also believe that the
recent proposal of Sinkhorn distances (Cuturi 2013) may provide the necessary speed-ups
to make our approach more scaleable regardless of the structure of the ground metric.
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Appendix

Proof (Theorem 1) Symmetry and definiteness of the distance are easy to prove: since
M has a null diagonal, dM (x, x) = 0, with corresponding optimal transport matrix X⋆ =
diag(x); by the positivity of all off-diagonal elements of M , dM (x, y) > 0 whenever x 6= y;
by symmetry of M , dM is itself a symmetric function in its two arguments. To prove the
triangle inequality, Villani (2003, Theorem 7.3) uses the gluing lemma. We provide here
a self-contained version of this proof which provides an explicit formulation for the gluing
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lemma in the discrete case. Let x, y, z ∈ Σd. Let P and Q be two optimal solutions of the
transport problems between x and y, and y and z respectively. Let S be the d×d×d tensor
whose coefficients are defined as

sijk
def
=

pijqjk
yj

,

for all indices j such that yj > 0. For indices j such that yj = 0, the corresponding values
sijk are set to 0. S is a probability measure on {1, . . . , d}3, as a direct consequence of the

fact that the d× d matrix Si·k
def
=[
∑

j sijk]ik is a transport matrix between x and z and thus
sums to 1. Indeed,

∑

i

∑

j

sijk =
∑

j

∑

i

pijqjk
yj

=
∑

j

qjk
yj

∑

i

pij =
∑

j

qjk
yj

yj =
∑

j

qjk = zk (column sums)

∑

k

∑

j

sijk =
∑

j

∑

k

pijqjk
yj

=
∑

j

pij
yj

∑

k

qjk =
∑

j

pij
yj

yj =
∑

j

pij = xi (row sums)

To obtain the triangle inequality, notice that Si·k being a matrix of U(x, z) we can write:

dM (x, z) = min
X∈U(x,z)

〈X,M 〉

≤ 〈Si·k,M 〉 =
∑

ik

mik

∑

j

pijqjk
yj

≤
∑

ijk

(mij +mjk)
pijqjk
yj

=
∑

ijk

mij

pijqjk
yj

+mjk

pijqjk
yj

=
∑

ij

mijpij
∑

k

qjk
yj

+
∑

jk

mjkqjk
∑

i

pij
yj

=
∑

ij

mijpij +
∑

jk

mjkqjk = dM (x, y) + dM (y, z),

where we have used the triangle inequality for M at the end of the second line.
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