ICML - Kernels & RKHS Workshop Distances and Kernels for Structured Objects

Marco Cuturi - Kyoto University

Distances and **Positive Definite Kernels** are crucial ingredients in many popular ML algorithms

.

- When observations are in \mathbb{R}^n
 - **Distances** and **Positive Definite Kernels** share many properties

- When observations are in \mathbb{R}^n
 - **Distances** and **Positive Definite Kernels** share many properties
 - $\circ\,$ At their interface lies the family of Negative Definite Kernels

Distances and **Positive Definite Kernels** are crucial ingredients in many popular ML algorithms

• When observations are in \mathbb{R}^n

Distances and **Positive Definite Kernels** are crucial ingredients in many popular ML algorithms

• When observations are in \mathbb{R}^n

(note: intersection not to be taken literally)

Distances and **Positive Definite Kernels** are crucial ingredients in many popular ML algorithms

• When observations are in \mathbb{R}^n

Distances and **Positive Definite Kernels** are crucial ingredients in many popular ML algorithms

• When observations are in \mathbb{R}^n

• Hilbertian metrics are a sweet spot, both in theory and practice.

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

• When comparing structured data (constrained subsets of \mathbb{R}^n , n very large)...

- When comparing structured data (constrained subsets of \mathbb{R}^n , *n* very large)
 - Classical distances on \mathbb{R}^n that ignore such constraints perform poorly

- When comparing structured data (constrained subsets of \mathbb{R}^n , *n* very large)
 - Classical distances on \mathbb{R}^n that ignore such constraints perform poorly
 - **Combinatorial distances** (to be defined) take them into account (string, tree) Edit-distances, DTW, optimal matchings, transportation distances

- When comparing structured data (constrained subsets of \mathbb{R}^n , n very large)
 - Classical distances on \mathbb{R}^n that ignore such constraints perform poorly
 - **Combinatorial distances** (to be defined) take them into account (string, tree) Edit-distances, DTW, optimal matchings, transportation distances
 - Combinatorial distances are not negative definite (in the general case)

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

• When comparing structured data (constrained subsets of \mathbb{R}^n , *n* very large)

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

• When comparing structured data (constrained subsets of \mathbb{R}^n , *n* very large)

Main message of this talk:

we can recover p.d. kernels from combinatorial distances through generating functions.

Distances and Kernels

Distances

A bivariate function defined on a set \mathcal{X} ,

$$egin{array}{rcl} oldsymbol{d} : & \mathcal{X} imes \mathcal{X} &
ightarrow & \mathbb{R}_+ \ & (\mathbf{x}, \mathbf{y}) & \mapsto & oldsymbol{d}(\mathbf{x}, \mathbf{y}) \end{array}$$

is a **distance** if $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$,

- $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$, symmetry
- $d(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y}$, definiteness
- $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$, triangle inequality

Kernels (Symmetric & Positive Definite)

A bivariate function defined on a set ${\mathcal X}$

$$egin{array}{rcl} m{k}: & \mathcal{X} imes \mathcal{X} &
ightarrow & \mathbb{R}_+ \ & (\mathbf{x}, \mathbf{y}) & \mapsto & m{k}(\mathbf{x}, \mathbf{y}) \end{array}$$

is a **positive definite kernel** if $\forall x, y \in \mathcal{X}$,

•
$$\mathbf{k}(\mathbf{x}, \mathbf{y}) = \mathbf{k}(\mathbf{y}, \mathbf{x})$$
, symmetry

and $\forall n \in \mathbb{N}, \{\mathbf{x}_1, \cdots, \mathbf{x}_n\} \in \mathcal{X}^n, c \in \mathbb{R}^n$

•
$$\sum_{i=1}^{n} c_i c_j \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j) \ge 0$$

Matrices

Convex cone of $n \times n$ distance matrices - dimension $\frac{n(n-1)}{2}$ $\mathcal{M}_n = \{X \in \mathbb{R}^{n \times n} | x_{ii} = 0; \text{ for } i < j, x_{ij} > 0; x_{ik} + x_{kj} - x_{ij} \ge 0\}$

 $3\binom{3}{n} + \binom{2}{n}$ linear inequalities; n equalities

Matrices

Convex cone of $n \times n$ distance matrices - dimension $\frac{n(n-1)}{2}$ $\mathcal{M}_n = \{X \in \mathbb{R}^{n \times n} | x_{ii} = 0; \text{ for } i \neq j, x_{ij} > 0; x_{ik} + x_{kj} - x_{ij} \geq 0\}$

 $3\binom{3}{n} + \binom{2}{n}$ linear inequalities; n equalities

Convex cone of $n \times n$ **p.s.d. matrices** - dimension $\frac{n(n+1)}{2}$ $\boldsymbol{S}_{\boldsymbol{n}}^{+} = \{X \in \mathbb{R}^{n \times n} | X = X^{T}; \forall \mathbf{z} \in \mathbb{R}^{n}, \, \mathbf{z}^{T} X \mathbf{z} \ge 0\}$

 $\forall \mathbf{z} \in \mathbb{R}^n, \langle X, \mathbf{z}\mathbf{z}^T \rangle \geq 0$: infinite number of inequalities; $\binom{2}{n}$ equalities

Cones

 ∂S^2_+ image: Dattoro

Functions & Matrices

$$\begin{array}{ll} \boldsymbol{d} \text{ distance} & \Leftrightarrow & \forall n \in \mathbb{N}, \{\mathbf{x}_1, \cdots, \mathbf{x}_n\} \in \mathcal{X}^n & \left[\boldsymbol{d}(\mathbf{x}_i, \mathbf{x}_j)\right] \in \mathcal{M}_n \\ \\ \boldsymbol{k} \text{ kernel} & \Leftrightarrow & \forall n \in \mathbb{N}, \{\mathbf{x}_1, \cdots, \mathbf{x}_n\} \in \mathcal{X}^n & \left[\boldsymbol{k}(\mathbf{x}_i, \mathbf{x}_j)\right] \in \boldsymbol{\mathcal{S}}_n^+ \end{array}$$

 \mathcal{M}_n is a polyhedral cone.

- Facets = $3\binom{3}{n}$ hyperplanes $d_{ik} + d_{kj} d_{ij} = 0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

 \mathcal{M}_n is a polyhedral cone.

- Facets = $3\binom{3}{n}$ hyperplanes $d_{ik} + d_{kj} d_{ij} = 0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

 \mathcal{M}_n is a polyhedral cone.

- Facets = $3\binom{3}{n}$ hyperplanes $d_{ik} + d_{kj} d_{ij} = 0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

 $d_{13} = \min(d_{12} + d_{23}, d_{14} + d_{34})$

 \mathcal{M}_n is a polyhedral cone.

- Facets = $3\binom{3}{n}$ hyperplanes $d_{ik} + d_{kj} d_{ij} = 0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics
- Let G_{n,p} a random graph with n points and edge probability P(ij ∈ G_{n,p} = **p**).
 If for some 0 < ε < 1/5, n^{-1/5+ε} ≤ **p** ≤ 1 − n^{-1/4+ε},
 - then the distance induced by G is an extreme ray of \mathcal{M}_n with probability 1 o(1).

 \mathcal{M}_n is a polyhedral cone.

- Facets = $3\binom{3}{n}$ hyperplanes $d_{ik} + d_{kj} d_{ij} = 0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics
- Let G_{n,p} a random graph with n points and edge probability P(ij ∈ G_{n,p} = p).
 o If for some 0 < ε < 1/5, n^{-1/5+ε} ≤ p ≤ 1 − n^{-1/4+ε},
 o then the distance induced by G is an extreme ray of M_n with probability.
 - then the distance induced by G is an extreme ray of \mathcal{M}_n with probability 1 o(1).
- Grishukin (2005) characterizes the extreme rays of \mathcal{M}_7 (≥ 60.000)

 \mathcal{M}_n is a polyhedral cone.

- Facets = $3\binom{3}{n}$ hyperplanes $d_{ik} + d_{kj} d_{ij} = 0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

 S_n^+ is a self-dual, homogeneous cone. Overall far easier to study:

- Facets are isomorphic to \mathcal{S}_k^+ for k < n
- Extreme rays exactly the p.s.d matrices of rank 1, zz^{T} .

 \mathcal{M}_n is a polyhedral cone.

- Facets = $3\binom{3}{n}$ hyperplanes $d_{ik} + d_{kj} d_{ij} = 0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

 S_n^+ is a self-dual, homogeneous cone. Overall far easier to study:

- Facets are isomorphic to \mathcal{S}_k^+ for k < n
- Extreme rays exactly the p.s.d matrices of rank 1, zz^{T} .
 - $\circ \rightarrow \mathsf{Eigendecomposition}$: if $K \in \mathcal{S}_n^+$ then $K = \sum_{i=1}^n \lambda_i \mathbf{z}_i \mathbf{z}_i^T$.
 - $\circ \rightarrow$ Integral representations for p.d. kernels themselves (Bochner theorem)

Checking, **Projection**, Learning

Optimizing in \mathcal{M}_n is relatively difficult.

- Check if X is in \mathcal{M}_n requires up to $3\binom{3}{n}$ comparisons.
- Projection: triangle fixing algorithms (Brickell et al. (2008)), no convergence speed guarantee.
- No simple barrier function
- Optimizing in \mathcal{S}_n^+ is relatively easy.
- Check if X is in S_n^+ only requires finding minimal eigenvalue (eigs).
- Projection: threshold negative eigenvalues.
- log det barrier, semidefinite programming

Checking, **Projection**, Learning

Optimizing in \mathcal{M}_n is relatively difficult.

- Check if X is in \mathcal{M}_n requires up to $3\binom{3}{n}$ comparisons.
- Projection: triangle fixing algorithms (Brickell et al. (2008)), no convergence speed guarantee.
- No simple barrier function

Optimizing in S_n^+ is relatively easy.

- Check if X is in S_n^+ only requires finding minimal eigenvalue (eigs).
- Projection: threshold negative eigenvalues.
- $\log \det$ barrier, semidefinite programming

"Real" metric learning in \mathcal{M}_n is difficult, Mahalanobis learning in \mathcal{S}_n^+ is easier

Negative Definite Kernels

Convex cone of $n \times n$ negative definite kernels - dimension $\frac{n(n+1)}{2}$ $\mathcal{N}_n = \{X \in \mathbb{R}^{n \times n} | X = X^T, \forall z \in \mathbb{R}^n, z^T \mathbf{1} = \mathbf{0}, z^T X z \leq 0\}^2$

infinite linear inequalities; $\binom{2}{n}$ equalities

Negative Definite Kernels

Convex cone of $n \times n$ negative definite kernels - dimension $\frac{n(n+1)}{2}$ $\mathcal{N}_n = \{X \in \mathbb{R}^{n \times n} | X = X^T, \forall z \in \mathbb{R}^n, z^T \mathbf{1} = \mathbf{0}, z^T X z \leq 0\}$

infinite linear inequalities; $\binom{2}{n}$ equalities

 $\boldsymbol{\psi}$ n.d. kernel $\Leftrightarrow \forall n \in \mathbb{N}, \{\mathbf{x}_1, \cdots, \mathbf{x}_n\} \in \mathcal{X}^n \quad [\boldsymbol{\psi}(\mathbf{x}_i, \mathbf{x}_j)] \in \mathcal{N}_n$

A few important results on Negative Definite Kernels

If ψ is a negative definite kernel on ${\mathcal X}$ then

• \exists a Hilbert space \mathcal{H} , a mapping $\mathbf{x} \mapsto \varphi_{\mathbf{x}} \in \mathcal{H}$, a real valued function f on \mathcal{X} s.t.

$$\boldsymbol{\psi}(\mathbf{x}, \mathbf{y}) = \|\varphi_x - \varphi_y\|^2 + f(x) + f(y)$$

• If $\forall \mathbf{x} \in \mathcal{X}, \boldsymbol{\psi}(x, x) = 0$, then f = 0 and $\sqrt{\boldsymbol{\psi}}$ is a semi-distance.

- If $\{\psi = 0\} = \{(\mathbf{x}, \mathbf{x}), \mathbf{x} \in \mathcal{X}\}$, then $\sqrt{\psi}$ is a distance.
- If $\psi(\mathbf{x}, \mathbf{x}) \ge 0$, then $1 < \alpha < 0$, ψ^{α} is negative definite.
- $\mathbf{k} \stackrel{\text{def}}{=} e^{-t\psi}$ is positive definite for all t > 0.

A Rough Sketch

We can now give a more precise meaning to

A Rough Sketch

using this diagram

Importance of this link

- One of the biggest practical issues with kernel methods is that of **diagonal dominance**.
 - Cauchy Schwartz: $\mathbf{k}(\mathbf{x}, \mathbf{y}) \leq \sqrt{\mathbf{k}(\mathbf{x}, \mathbf{x})\mathbf{k}(\mathbf{y}, \mathbf{y})}$
Importance of this link

- One of the biggest practical issues with kernel methods is that of **diagonal dominance**.
 - Cauchy Schwartz: $\mathbf{k}(\mathbf{x}, \mathbf{y}) \leq \sqrt{\mathbf{k}(\mathbf{x}, \mathbf{x})\mathbf{k}(\mathbf{y}, \mathbf{y})}$
 - Diagonal dominance: $\mathbf{k}(\mathbf{x}, \mathbf{y}) \ll \sqrt{\mathbf{k}(\mathbf{x}, \mathbf{x})\mathbf{k}(\mathbf{y}, \mathbf{y})}$

Importance of this link

- One of the biggest practical issues with kernel methods is that of **diagonal dominance**.
 - Cauchy Schwartz: $\mathbf{k}(\mathbf{x}, \mathbf{y}) \leq \sqrt{\mathbf{k}(\mathbf{x}, \mathbf{x})\mathbf{k}(\mathbf{y}, \mathbf{y})}$
 - Diagonal dominance: $\mathbf{k}(\mathbf{x}, \mathbf{y}) \ll \sqrt{\mathbf{k}(\mathbf{x}, \mathbf{x})\mathbf{k}(\mathbf{y}, \mathbf{y})}$
- If ${\pmb k}$ is infinitely divisible, k^{α} with small α is
 - $\circ~$ positive definite
 - $\circ~$ less diagonally dominant

Importance of this link

- One of the biggest practical issues with kernel methods is that of **diagonal dominance**.
 - Cauchy Schwartz: $\mathbf{k}(\mathbf{x}, \mathbf{y}) \leq \sqrt{\mathbf{k}(\mathbf{x}, \mathbf{x})\mathbf{k}(\mathbf{y}, \mathbf{y})}$
 - Diagonal dominance: $\mathbf{k}(\mathbf{x}, \mathbf{y}) \ll \sqrt{\mathbf{k}(\mathbf{x}, \mathbf{x})\mathbf{k}(\mathbf{y}, \mathbf{y})}$
- If ${\pmb k}$ is infinitely divisible, k^{α} with small α is
 - $\circ~$ positive definite
 - less diagonally dominant
- This explain the **success** of
 - \circ Gaussian kernels $e^{-t \|\mathbf{x}-\mathbf{y}\|^2}$
 - Laplace kernels $e^{-t \|\mathbf{x}-\mathbf{y}\|}$
- and arguably, the failure of many non-infinitely divisible kernels, because too difficult to tune.

Questions Worth Asking

Two questions:

Let d be a distance that is **not** negative definite. is it possible that e^{-t_1d} is positive definite for some $t_1 \in \mathbb{R}$?

$\varepsilon\text{-infinite divisibility.}$ a distance d such that e^{-td} is positive definite for $t>\varepsilon?$

Questions Worth Asking

Two questions:

Let d be a distance that is **not** negative definite. is it possible that e^{-t_1d} is positive definite for some $t_1 \in \mathbb{R}$?

yes.

Examples exist. Stein distance (Sra, 2011) and Inverse generalized variance (C. et al., 2005) kernel for p.s.d matrices.

"arepsilon-infinite divisibility".

a distance d such that e^{-td} is positive definite for $t > \varepsilon$?

?

Positivity & Combinatorial Distances

Structured Objects

- Objects in a countable set
 - $\circ\,$ variable length strings, trees, graphs, permutations
- Constrained vectors
 - Positive vectors, histograms
- Vectors of different sizes
 - $\circ\,$ variable length time series

Structured Objects

- Objects in a countable set
 - $\circ\,$ variable length strings, trees, graphs, sets
- Constrained vectors
 - Positive vectors, histograms
- Vectors of different sizes
 - variable length time series

How can we define a **kernel** or a **distance** on such sets?

in most cases, applying standard distances on \mathbb{R}^n or even \mathbb{N}^n is meaningless

• **Distances** are **optimal** by nature, and quantify **shortest length paths**.

• Graph-metrics are defined that way

• Triangle inequalities are defined precisely to enforce this optimality

$$d(\mathbf{x},\mathbf{y}) \leq d(\mathbf{x},\mathbf{z}) + d(\mathbf{z},\mathbf{y})$$

• **Distances** are **optimal** by nature, and quantify **shortest length paths**.

• Graph-metrics are defined that way

• Triangle inequalities are defined precisely to enforce this optimality

$$d(\mathbf{x},\mathbf{y}) \leq d(\mathbf{x},\mathbf{z}) + d(\mathbf{z},\mathbf{y})$$

 \rightarrow many **distances** on structured objects rely on **optimization**

• p.d. kernels are additive by nature

 $\circ~{\pmb k}$ is positive definite $\Leftrightarrow \exists \varphi: \mathcal{X} \to \mathcal{H}$ such that

$$\boldsymbol{k}(\mathbf{x},\mathbf{y}) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{H}}.$$

•
$$X \in \mathcal{S}_n^+ \Leftrightarrow \exists L \in \mathbb{R}^{n \times n} | X = L^T L.$$

- p.d. kernels are additive by nature
 - $\circ~{\pmb k}$ is positive definite $\Leftrightarrow \exists \varphi: \mathcal{X} \to \mathcal{H}$ such that

$$\boldsymbol{k}(\mathbf{x},\mathbf{y}) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{H}}.$$

•
$$X \in \mathcal{S}_n^+ \Leftrightarrow \exists L \in \mathbb{R}^{n \times n} | X = L^T L.$$

 \rightarrow many **kernels** on structured objects rely on defining **explicitly** (possibly infinite) feature vectors

very large literature on this subject which we will not address here.

Combinatorial Distances

- To define a distance, an approach which has been repeatedly used is to,
 - \circ Consider two inputs **x**, **y**,
 - Define a countable set of mappings from **x** to **y**, $T(\mathbf{x}, \mathbf{y})$
 - Define a cost $c(\tau)$ for each element τ of $T(\mathbf{x}, \mathbf{y})$.
 - $\circ~$ Define a distance between $\boldsymbol{x},\boldsymbol{y}$ as

$$d(\mathbf{x}, \mathbf{y}) = \min_{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)$$

Combinatorial Distances

• To define a distance, an approach which has been repeatedly used is to,

- $\circ~$ Consider two inputs $\boldsymbol{x},\boldsymbol{y},$
- Define a countable set of mappings from **x** to **y**, $T(\mathbf{x}, \mathbf{y})$
- Define a cost $c(\tau)$ for each element τ of $T(\mathbf{x}, \mathbf{y})$.
- $\circ~$ Define a distance between $\boldsymbol{x},\boldsymbol{y}$ as

$$d(\mathbf{x}, \mathbf{y}) = \min_{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)$$

• Symmetry, definiteness and triangle inequalities depend on c and T.

Combinatorial Distances

- To define a distance, an approach which has been repeatedly used is to,
 - Consider two inputs **x**, **y**,
 - Define a countable set of mappings from **x** to **y**, $T(\mathbf{x}, \mathbf{y})$
 - Define a **cost** $c(\tau)$ for each element τ of $T(\mathbf{x}, \mathbf{y})$.
 - \circ Define a distance between **x**, **y** as

$$d(\mathbf{x}, \mathbf{y}) = \min_{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)$$

- Symmetry, definiteness and triangle inequalities depend on c and T.
- In many cases, T is endowed with a dot product, $c(\tau) = \langle \tau, \theta \rangle$ for some θ .

Combinatorial Distances are not Negative Definite

$$d(\mathbf{x}, \mathbf{y}) = \min_{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)$$

• In most cases such distances are **not** negative definite

• Can we use them to define kernels?

• Yes so far, using always the same technique.

An alternative definition of minimality

for a family of numbers $a_n, n \in \mathbb{N}$,

soft-min
$$a_n = -\log \sum_n e^{-a_n}$$

Soft-min of costs - Generating Functions

$$d(\mathbf{x}, \mathbf{y}) = \min_{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)$$

 e^{-d} is **not** positive definite in the general case

Soft-min of costs - Generating Functions

$$d(\mathbf{x}, \mathbf{y}) = \min_{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)$$

 e^{-d} is ${\bf not}$ positive definite in the general case

$$\delta(\mathbf{x},\mathbf{y}) = \underset{\tau \in T(\mathbf{x},\mathbf{y})}{\operatorname{soft-min}} \quad c(\tau)$$

 $e^{-\delta}$ has been proved to be **positive definite** in all known cases

Soft-min of costs - Generating Functions

$$d(\mathbf{x}, \mathbf{y}) = \min_{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)$$

 e^{-d} is **not** positive definite in the general case

$$\delta(\mathbf{x},\mathbf{y}) = \underset{\tau \in T(\mathbf{x},\mathbf{y})}{\operatorname{soft-min}} \quad c(\tau)$$

 $e^{-\delta}$ has been proved to be **positive definite** in all known cases

$$e^{-\delta(\mathbf{x},\mathbf{y})} = \sum_{\tau \in T(\mathbf{x},\mathbf{y})} e^{-\langle \tau,\theta \rangle} = G_{T(\mathbf{x},\mathbf{y})}(\theta)$$

 $G_{T(\mathbf{x},\mathbf{y})}$ is the **generating function** of the set of all mappings between **x** and **y**.

• Input: $\mathbf{x} = \{x_1, \cdots, x_n\}, \mathbf{y} = \{y_1, \cdots, y_n\} \in \mathcal{X}^n$

• Input: $\mathbf{x} = \{x_1, \cdots, x_n\}, \mathbf{y} = \{y_1, \cdots, y_n\} \in \mathcal{X}^n$

• cost parameter: distance d on \mathcal{X} . mapping variable: permutation σ in S_n

• cost:
$$\sum_{i=1}^n d(x_i, y_{\sigma(i)})$$
.

• Input: $\mathbf{x} = \{x_1, \cdots, x_n\}, \mathbf{y} = \{y_1, \cdots, y_n\} \in \mathcal{X}^n$

• cost parameter: distance d on \mathcal{X} . mapping variable: permutation σ in S_n .

• cost:
$$\sum_{i=1}^{n} d(x_i, y_{\sigma(i)}) = \langle P_{\sigma}, D \rangle$$
 where $D = [d(x_i, y_j)]$

$$d_{\text{Assig.}}(\mathbf{x}, \mathbf{y}) = \min_{\sigma \in S_n} \sum_{i=1}^n d(x_i, y_{\sigma(i)}) = \min_{\sigma \in S_n} \langle P_\sigma, D \rangle$$

$$d_{\text{Assig.}}(\mathbf{x}, \mathbf{y}) = \min_{\sigma \in S_n} \sum_{i=1}^n d(x_i, y_{\sigma(i)}) = \min_{\sigma \in S_n} \langle P_\sigma, D \rangle$$

define $k = e^{-d}$. If k is positive definite on \mathcal{X} then

$$k_{\mathsf{Perm}}(\mathbf{x}, \mathbf{y}) = \sum_{\sigma \in S_n} e^{-\langle P_{\sigma}, D \rangle} = \mathsf{Permanent}[k(x_i, y_j)]$$

is positive definite (C. 2007). $e^{-d_{Assig.}}$ is not (Frohlich et al. 2005, Vert 2008).

• Input:
$$x = (x_1, \cdots, x_n), y = (y_1, \cdots, y_m) \in \mathcal{X}^n$$
, \mathcal{X} finite

 $\mathbf{x} = \text{DOING}, \ \mathbf{y} = \text{DONE}$

• Input:
$$x=(x_1,\cdots,x_n), y=(y_1,\cdots,y_m)\in\mathcal{X}^n$$
, $\mathcal X$ finite

 $\mathbf{x} = \text{DOING}, \ \mathbf{y} = \text{DONE}$

• mapping variable: alignment $\pi = \begin{pmatrix} \pi_1(1) & \cdots & \pi_1(q) \\ \pi_2(1) & \cdots & \pi_2(q) \end{pmatrix}$. (increasing path)

• Input:
$$x = (x_1, \cdots, x_n), y = (y_1, \cdots, y_m) \in \mathcal{X}^n$$
, \mathcal{X} finite

 $\mathbf{x} = \text{DOING}, \ \mathbf{y} = \text{DONE}$

• mapping variable: alignment $\pi = \begin{pmatrix} \pi_1(1) & \cdots & \pi_1(q) \\ \pi_2(1) & \cdots & \pi_2(q) \end{pmatrix}$. (increasing path)

- **cost parameter**: distance d on $\mathcal{X} + \text{gap}$ function $g : \mathbb{N} \to \mathbb{R}$.
- $c(\pi) = \sum_{i=1}^{|\pi|} d(x_{\pi_1(i)}, y_{\pi_2(i)}) + \sum_{i=1}^{|\pi|-1} g(\pi_1(i+1) \pi_1(i)) + g(\pi_2(i+1) \pi_2(i))$

Kernel & RKHS Workshop

• Input:
$$x=(x_1,\cdots,x_n), y=(y_1,\cdots,y_m)\in\mathcal{X}^n$$
, $\mathcal X$ finite

 $\mathbf{x} = \text{DOING}, \ \mathbf{y} = \text{DONE}$

• mapping variable: alignment $\pi = \begin{pmatrix} \pi_1(1) & \cdots & \pi_1(q) \\ \pi_2(1) & \cdots & \pi_2(q) \end{pmatrix}$. (increasing path)

- **cost parameter**: distance d on $\mathcal{X} + \text{gap}$ function $g : \mathbb{N} \to \mathbb{R}$.
- $c(\pi) = \sum_{i=1}^{|\pi|} d(x_{\pi_1(i)}, y_{\pi_2(i)}) + \sum_{i=1}^{|\pi|-1} g(\pi_1(i+1) \pi_1(i)) + g(\pi_2(i+1) \pi_2(i))$

$$d_{\mathsf{align}}(\mathbf{x}, \mathbf{y}) = \min_{\pi \in \mathsf{Alignments}} c(\pi)$$

$$d_{\mathsf{align}}(\mathbf{x}, \mathbf{y}) = \min_{\pi \in \mathsf{Alignments}} c(\pi)$$

define $k = e^{-d}$. If k is positive definite on \mathcal{X} then

$$k_{\mathsf{LA}}(\mathbf{x}, \mathbf{y}) = \sum_{\pi \in \mathsf{Alignments}} e^{-c(\pi)}$$

is positive definite (Saigo et al. 2003).

• Input: $x = (x_1, \cdots, x_n), y = (y_1, \cdots, y_m) \in \mathbb{R}^n$

• Input:
$$x = (x_1, \cdots, x_n), y = (y_1, \cdots, y_m) \in \mathbb{R}^n$$

• mapping variable: $\pi = \begin{pmatrix} \pi_1(1) & \cdots & \pi_1(q) \\ \pi_2(1) & \cdots & \pi_2(q) \end{pmatrix}$. (increasing contiguous path)

• Input:
$$x = (x_1, \cdots, x_n), y = (y_1, \cdots, y_m) \in \mathbb{R}^n$$

• mapping variable: $\pi = \begin{pmatrix} \pi_1(1) & \cdots & \pi_1(q) \\ \pi_2(1) & \cdots & \pi_2(q) \end{pmatrix}$. (increasing contiguous path)

• cost parameter: distance d on \mathcal{X} . cost: $c(\pi) = \sum_{i=1}^{|\pi|} d(x_{\pi_1(i)}, y_{\pi_2(i)})$

• Input:
$$x = (x_1, \cdots, x_n), y = (y_1, \cdots, y_m) \in \mathbb{R}^n$$

• mapping variable: $\pi = \begin{pmatrix} \pi_1(1) & \cdots & \pi_1(q) \\ \pi_2(1) & \cdots & \pi_2(q) \end{pmatrix}$. (increasing contiguous path)

• cost parameter: distance d on \mathcal{X} . cost: $c(\pi) = \sum_{i=1}^{|\pi|} d(x_{\pi_1(i)}, y_{\pi_2(i)})$

 $d_{\mathsf{DTW}}(\mathbf{x}, \mathbf{y}) = \min_{\pi \in \mathsf{Alignments}} c(\pi)$

$$d_{\mathsf{DTW}}(\mathbf{x}, \mathbf{y}) = \min_{\pi \in \mathsf{Alignments}} c(\pi)$$

define $k = e^{-d}$. If k is positive definite and geometrically divisible on \mathcal{X} then

$$k_{\mathrm{GA}}(\mathbf{x},\mathbf{y}) = \sum_{\pi \in \mathrm{Alignments}} e^{-c(\pi)}$$

is positive definite (C. et al. 2007, C. 2011)

Example: Edit-distance between two trees

- Input: two labeled trees x, y.
- **mapping variable**: sequence of substitutions/deletions/insertions of vertices

• cost parameter: γ distance between labels and cost for deletion/insertion

$$d_{\text{TreeEdit}}(\mathbf{x}, \mathbf{y}) = \min_{\sigma \in \text{EditScripts}(\mathbf{x}, \mathbf{y})} \sum \gamma(\sigma_i)$$

Example: Edit-distance between two trees

- Input: two labeled trees x, y.
- mapping variable: sequence of substitutions/deletions/insertions of vertices

• cost parameter: γ distance between labels and cost for deletion/insertion

$$d_{\text{TreeEdit}}(\mathbf{x}, \mathbf{y}) = \min_{\sigma \in \text{EditScripts}(\mathbf{x}, \mathbf{y})} \sum \gamma(\sigma_i)$$

 Positive definiteness of the generating function (if e^{-γ}) p.d. proved by Shin & Kuboyama 2008; Shin, C., Kuboyama 2011.
Example: Transportation distance between discrete histograms

• Input: two integer histograms $\mathbf{x}, \mathbf{y} \in \mathbb{N}^d$ such that $\sum_{i=1}^d x_i = \sum_{i=1}^d y_i = N$

- mapping: transportation matrices $U(r,c) = \{X \in \mathbb{N}^{d \times d} | X \mathbf{1}_d = \mathbf{x}, X^T \mathbf{1}_d = \mathbf{y}\}$
- cost parameter: M distance matrix in \mathcal{M}_d .

$$d_W(\mathbf{x}, \mathbf{y}) = \min_{X \in U(r,c)} \langle X, M \rangle$$

Example: Transportation distance between discrete histograms

$$d_W(\mathbf{x}, \mathbf{y}) = \min_{X \in U(r,c)} \langle X, M \rangle$$

define $k_{ij} = e^{-m_{ij}}$. If $[k_{ij}]$ is positive definite on \mathcal{X} then

$$k_M(\mathbf{x}, \mathbf{y}) = \sum_{X \in U(r,c)} e^{-\langle X, M \rangle}$$

is positive definite (C., submitted).

To wrap up

$$d(\mathbf{x},\mathbf{y}) = \min_{\tau \in T(\mathbf{x},\mathbf{y})} c(\tau), \quad \delta(\mathbf{x},\mathbf{y}) = \underset{\tau \in T(\mathbf{x},\mathbf{y})}{\text{soft-min}} \quad c(\tau)$$

 $e^{-\delta(\mathbf{x},\mathbf{y})} = \sum_{\tau \in T(\mathbf{x},\mathbf{y})} e^{-\langle \tau, \theta \rangle} = G_{T(\mathbf{x},\mathbf{y})}(\theta)$ is positive definite in many (all) cases.

Open problems

- ∃ unified framework?
 - **Convolution kernels** (Haussler, 1998)
 - Mapping kernels (Shin & Kuboyama 2008) were an important addition
 - Extension to **Countable mapping kernels** (Shin 2011)
 - Extension to symmetric functions (not just e^{\cdot}) (Shin 2011).
- To speed up computations, possible to restrict the sum to subset of $T(\mathbf{x}, \mathbf{y})$?
 - $\circ\,$ C. 2011 with DTW.
 - $\circ\,$ C. submitted with transportation distances