ICML - Kernels \& RKHS Workshop

Distances and Kernels for Structured Objects

Marco Cuturi - Kyoto University

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

- When observations are in \mathbb{R}^{n}
- Distances and Positive Definite Kernels share many properties

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

- When observations are in \mathbb{R}^{n}
- Distances and Positive Definite Kernels share many properties
- At their interface lies the family of Negative Definite Kernels

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

- When observations are in \mathbb{R}^{n}

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

- When observations are in \mathbb{R}^{n}

(note: intersection not to be taken literally)

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

- When observations are in \mathbb{R}^{n}

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

- When observations are in \mathbb{R}^{n}

- Hilbertian metrics are a sweet spot, both in theory and practice.

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

- When comparing structured data (constrained subsets of \mathbb{R}^{n}, n very large)...

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

- When comparing structured data (constrained subsets of \mathbb{R}^{n}, n very large)
- Classical distances on \mathbb{R}^{n} that ignore such constraints perform poorly

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

- When comparing structured data (constrained subsets of \mathbb{R}^{n}, n very large)
- Classical distances on \mathbb{R}^{n} that ignore such constraints perform poorly
- Combinatorial distances (to be defined) take them into account (string, tree) Edit-distances, DTW, optimal matchings, transportation distances

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

- When comparing structured data (constrained subsets of \mathbb{R}^{n}, n very large)
- Classical distances on \mathbb{R}^{n} that ignore such constraints perform poorly
- Combinatorial distances (to be defined) take them into account (string, tree) Edit-distances, DTW, optimal matchings, transportation distances
- Combinatorial distances are not negative definite (in the general case)

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

- When comparing structured data (constrained subsets of \mathbb{R}^{n}, n very large)

Outline

Distances and Positive Definite Kernels are crucial ingredients in many popular ML algorithms

- When comparing structured data (constrained subsets of \mathbb{R}^{n}, n very large)

Main message of this talk:
we can recover p.d. kernels from combinatorial distances through generating functions.

Distances and Kernels

Distances

A bivariate function defined on a set \mathcal{X},

$$
\begin{array}{rllc}
d: \mathcal{X} \times \mathcal{X} & \rightarrow & \mathbb{R}_{+} \\
(\mathbf{x}, \mathbf{y}) & \mapsto & d(\mathbf{x}, \mathbf{y})
\end{array}
$$

is a distance if $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{X}$,

- $\boldsymbol{d}(\mathbf{x}, \mathbf{y})=\boldsymbol{d}(\mathbf{y}, \mathbf{x})$, symmetry
- $\boldsymbol{d}(\mathbf{x}, \mathbf{y})=0 \Leftrightarrow \mathbf{x}=\mathbf{y}$, definiteness
- $\boldsymbol{d}(\mathbf{x}, \mathbf{z}) \leq \boldsymbol{d}(\mathbf{x}, \mathbf{y})+\boldsymbol{d}(\mathbf{y}, \mathbf{z})$, triangle inequality

Kernels (Symmetric \& Positive Definite)

A bivariate function defined on a set \mathcal{X}

$$
\begin{array}{rllc}
k: \mathcal{X} \times \mathcal{X} & \rightarrow & \mathbb{R}_{+} \\
(\mathbf{x}, \mathbf{y}) & \mapsto & k(\mathbf{x}, \mathbf{y})
\end{array}
$$

is a positive definite kernel if $\forall \mathbf{x}, \mathbf{y} \in \mathcal{X}$,

- $k(\mathbf{x}, \mathbf{y})=k(\mathbf{y}, \mathbf{x})$, symmetry
and $\forall n \in \mathbb{N},\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right\} \in \mathcal{X}^{n}, c \in \mathbb{R}^{n}$
- $\sum_{i=1}^{n} c_{i} c_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 0$

Matrices

> Convex cone of $n \times n$ distance matrices - dimension $\frac{n(n-1)}{2}$ $\mathcal{M}_{n}=\left\{X \in \mathbb{R}^{n \times n} \mid x_{i i}=0 ;\right.$ for $\left.i<j, x_{i j}>0 ; x_{i k}+x_{k j}-x_{i j} \geq 0\right\}$
$3\binom{3}{n}+\binom{2}{n}$ linear inequalities; n equalities

Matrices

Convex cone of $n \times n$ distance matrices - dimension $\frac{n(n-1)}{2}$ $\mathcal{M}_{n}=\left\{X \in \mathbb{R}^{n \times n} \mid x_{i i}=0 ;\right.$ for $\left.i \neq j, x_{i j}>0 ; x_{i k}+x_{k j}-x_{i j} \geq 0\right\}$

$$
3\binom{3}{n}+\binom{2}{n} \text { linear inequalities; } n \text { equalities }
$$

Convex cone of $n \times n$ p.s.d. matrices - dimension $\frac{n(n+1)}{2}$

$$
\mathcal{S}_{n}^{+}=\left\{X \in \mathbb{R}^{n \times n} \mid X=X^{T} ; \forall \mathbf{z} \in \mathbb{R}^{n}, \mathbf{z}^{T} X \mathbf{z} \geq 0\right\}^{2}
$$

$\forall \mathbf{z} \in \mathbb{R}^{n},\left\langle X, \mathbf{z z}^{T}\right\rangle \geq 0$: infinite number of inequalities; $\binom{2}{n}$ equalities

Cones

∂S_{+}^{2} image: Dattoro

Functions \& Matrices

$$
\begin{array}{rlll}
\boldsymbol{d} \text { distance } & \Leftrightarrow & \forall n \in \mathbb{N},\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right\} \in \mathcal{X}^{n} & {\left[\boldsymbol{d}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right] \in \mathcal{M}_{n}} \\
k \text { kernel } & \Leftrightarrow & \forall n \in \mathbb{N},\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right\} \in \mathcal{X}^{n} & {\left[k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right] \in \mathcal{S}_{n}^{+}}
\end{array}
$$

Extreme Rays \& Facets

\mathcal{M}_{n} is a polyhedral cone.

- Facets $=3\binom{3}{n}$ hyperplanes $d_{i k}+d_{k j}-d_{i j}=0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

Extreme Rays \& Facets

\mathcal{M}_{n} is a polyhedral cone.

- Facets $=3\binom{3}{n}$ hyperplanes $d_{i k}+d_{k j}-d_{i j}=0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

Extreme Rays \& Facets

\mathcal{M}_{n} is a polyhedral cone.

- Facets $=3\binom{3}{n}$ hyperplanes $d_{i k}+d_{k j}-d_{i j}=0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

Extreme Rays \& Facets

\mathcal{M}_{n} is a polyhedral cone.

- Facets $=3\binom{3}{n}$ hyperplanes $d_{i k}+d_{k j}-d_{i j}=0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics
- Let $G_{n, p}$ a random graph with n points and edge probability $P\left(i j \in G_{n, p}=p\right)$.
- If for some $0<\varepsilon<1 / 5, n^{-1 / 5+\varepsilon} \leq p \leq 1-n^{-1 / 4+\varepsilon}$,
- then the distance induced by G is an extreme ray of $\mathcal{M}_{\boldsymbol{n}}$ with probability $1-o(1)$.

Extreme Rays \& Facets

$\mathcal{M}_{\boldsymbol{n}}$ is a polyhedral cone.

- Facets $=3\binom{3}{n}$ hyperplanes $d_{i k}+d_{k j}-d_{i j}=0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics
- Let $G_{n, p}$ a random graph with n points and edge probability $P\left(i j \in G_{n, p}=p\right)$.
- If for some $0<\varepsilon<1 / 5, n^{-1 / 5+\varepsilon} \leq p \leq 1-n^{-1 / 4+\varepsilon}$,
- then the distance induced by G is an extreme ray of $\mathcal{M}_{\boldsymbol{n}}$ with probability $1-o(1)$.
- Grishukin (2005) characterizes the extreme rays of $\boldsymbol{\mathcal { M }}_{\boldsymbol{7}}(\geq 60.000)$

Extreme Rays \& Facets

\mathcal{M}_{n} is a polyhedral cone.

- Facets $=3\binom{3}{n}$ hyperplanes $d_{i k}+d_{k j}-d_{i j}=0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics
\mathcal{S}_{n}^{+}is a self-dual, homogeneous cone. Overall far easier to study:
- Facets are isomorphic to \mathcal{S}_{k}^{+}for $k<n$
- Extreme rays exactly the p.s.d matrices of rank $1, \mathbf{z z}^{T}$.

Extreme Rays \& Facets

\mathcal{M}_{n} is a polyhedral cone.

- Facets $=3\binom{3}{n}$ hyperplanes $d_{i k}+d_{k j}-d_{i j}=0$.
- Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics
\mathcal{S}_{n}^{+}is a self-dual, homogeneous cone. Overall far easier to study:
- Facets are isomorphic to \mathcal{S}_{k}^{+}for $k<n$
- Extreme rays exactly the p.s.d matrices of rank $1, \mathbf{z z}^{T}$.
$\circ \rightarrow$ Eigendecomposition: if $K \in \mathcal{S}_{n}^{+}$then $K=\sum_{i=1}^{n} \lambda_{i} \mathbf{z}_{i} \mathbf{z}_{i}^{T}$.
- \rightarrow Integral representations for p.d. kernels themselves (Bochner theorem)

Checking, Projection, Learning

Optimizing in \mathcal{M}_{n} is relatively difficult.

- Check if X is in \mathcal{M}_{n} requires up to $3\binom{3}{n}$ comparisons.
- Projection: triangle fixing algorithms (Brickell et al. (2008)), no convergence speed guarantee.
- No simple barrier function

Optimizing in \mathcal{S}_{n}^{+}is relatively easy.

- Check if X is in \mathcal{S}_{n}^{+}only requires finding minimal eigenvalue (eigs).
- Projection: threshold negative eigenvalues.
- \log det barrier, semidefinite programming

Checking, Projection, Learning

Optimizing in $\mathcal{M}_{\boldsymbol{n}}$ is relatively difficult.

- Check if X is in $\mathcal{M}_{\boldsymbol{n}}$ requires up to $3\binom{3}{n}$ comparisons.
- Projection: triangle fixing algorithms (Brickell et al. (2008)), no convergence speed guarantee.
- No simple barrier function

Optimizing in \mathcal{S}_{n}^{+}is relatively easy.

- Check if X is in \mathcal{S}_{n}^{+}only requires finding minimal eigenvalue (eigs).
- Projection: threshold negative eigenvalues.
- log det barrier, semidefinite programming
"Real" metric learning in $\mathcal{M}_{\boldsymbol{n}}$ is difficult, Mahalanobis learning in \mathcal{S}_{n}^{+}is easier

Negative Definite Kernels

Convex cone of $n \times n$ negative definite kernels - dimension $\frac{n(n+1)}{2}$ $\mathcal{N}_{n}=\left\{X \in \mathbb{R}^{n \times n} \mid X=X^{T}, \forall \mathbf{z} \in \mathbb{R}^{n}, \mathbf{z}^{T} 1=0, \mathbf{z}^{T} X \mathbf{z} \leq 0\right\}^{2}$
infinite linear inequalities; $\binom{2}{n}$ equalities

Negative Definite Kernels

Convex cone of $n \times n$ negative definite kernels - dimension $\frac{n(n+1)}{2}$

$$
\mathcal{N}_{n}=\left\{X \in \mathbb{R}^{n \times n} \mid X=X^{T}, \forall \mathbf{z} \in \mathbb{R}^{n}, \mathbf{z}^{T} \mathbf{1}=\mathbf{0}, \mathbf{z}^{T} X \mathbf{z} \leq 0\right\}^{2}
$$

infinite linear inequalities; $\binom{2}{n}$ equalities
ψ n.d. kernel $\Leftrightarrow \quad \forall n \in \mathbb{N},\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right\} \in \mathcal{X}^{n} \quad\left[\psi\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right] \in \mathcal{N}_{n}$

A few important results on Negative Definite Kernels

If ψ is a negative definite kernel on \mathcal{X} then

- \exists a Hilbert space \mathcal{H}, a mapping $\mathbf{x} \mapsto \varphi_{\mathbf{x}} \in \mathcal{H}$, a real valued function f on \mathcal{X} s.t.

$$
\psi(\mathbf{x}, \mathbf{y})=\left\|\varphi_{x}-\varphi_{y}\right\|^{2}+f(x)+f(y)
$$

- If $\forall \mathbf{x} \in \mathcal{X}, \psi(x, x)=0$, then $f=0$ and $\sqrt{\psi}$ is a semi-distance.
- If $\{\boldsymbol{\psi}=0\}=\{(\mathbf{x}, \mathbf{x}), \mathbf{x} \in \mathcal{X}\}$, then $\sqrt{\psi}$ is a distance.
- If $\psi(\mathbf{x}, \mathbf{x}) \geq 0$, then $1<\alpha<0, \psi^{\alpha}$ is negative definite.
- $k \stackrel{\text { def }}{=} e^{-t \psi}$ is positive definite for all $t>0$.

A Rough Sketch

We can now give a more precise meaning to

A Rough Sketch

using this diagram

Importance of this link

- One of the biggest practical issues with kernel methods is that of diagonal dominance.
- Cauchy Schwartz: $k(\mathbf{x}, \mathbf{y}) \leq \sqrt{k(\mathbf{x}, \mathbf{x}) k(\mathbf{y}, \mathbf{y})}$

Importance of this link

- One of the biggest practical issues with kernel methods is that of diagonal dominance.
- Cauchy Schwartz: $k(\mathbf{x}, \mathbf{y}) \leq \sqrt{k(\mathbf{x}, \mathbf{x}) k(\mathbf{y}, \mathbf{y})}$
- Diagonal dominance: $k(\mathbf{x}, \mathbf{y}) \ll \sqrt{k(\mathbf{x}, \mathbf{x}) k(\mathbf{y}, \mathbf{y})}$

Importance of this link

- One of the biggest practical issues with kernel methods is that of diagonal dominance.
- Cauchy Schwartz: $k(\mathbf{x}, \mathbf{y}) \leq \sqrt{k(\mathbf{x}, \mathbf{x}) k(\mathbf{y}, \mathbf{y})}$
- Diagonal dominance: $k(\mathbf{x}, \mathbf{y}) \ll \sqrt{k(\mathbf{x}, \mathbf{x}) k(\mathbf{y}, \mathbf{y})}$
- If k is infinitely divisible, k^{α} with small α is
- positive definite
- less diagonally dominant

Importance of this link

- One of the biggest practical issues with kernel methods is that of diagonal dominance.
- Cauchy Schwartz: $k(\mathbf{x}, \mathbf{y}) \leq \sqrt{k(\mathbf{x}, \mathbf{x}) k(\mathbf{y}, \mathbf{y})}$
- Diagonal dominance: $k(\mathbf{x}, \mathbf{y}) \ll \sqrt{k(\mathbf{x}, \mathbf{x}) k(\mathbf{y}, \mathbf{y})}$
- If k is infinitely divisible, k^{α} with small α is
- positive definite
- less diagonally dominant
- This explain the success of
- Gaussian kernels $e^{-t\|\mathbf{x}-\mathbf{y}\|^{2}}$
- Laplace kernels $e^{-t\|\mathbf{x}-\mathbf{y}\|}$
- and arguably, the failure of many non-infinitely divisible kernels, because too difficult to tune.

Questions Worth Asking

Two questions:

Let d be a distance that is not negative definite. is it possible that $e^{-t_{1} d}$ is positive definite for some $t_{1} \in \mathbb{R}$?
ε-infinite divisibility.
a distance d such that $e^{-t d}$ is positive definite for $t>\varepsilon$?

Questions Worth Asking

Two questions:

Let d be a distance that is not negative definite. is it possible that $e^{-t_{1} d}$ is positive definite for some $t_{1} \in \mathbb{R}$?
yes.
Examples exist. Stein distance (Sra, 2011) and Inverse generalized variance (C. et al., 2005) kernel for p.s.d matrices.

```
" \(\varepsilon\)-infinite divisibility".
a distance \(d\) such that \(e^{-t d}\) is positive definite for \(t>\varepsilon\) ?
```


Positivity \& Combinatorial Distances

Structured Objects

- Objects in a countable set
- variable length strings, trees, graphs, permutations
- Constrained vectors
- Positive vectors, histograms
- Vectors of different sizes
- variable length time series

Structured Objects

- Objects in a countable set
- variable length strings, trees, graphs, sets
- Constrained vectors
- Positive vectors, histograms
- Vectors of different sizes
- variable length time series

> How can we define a kernel or a distance on such sets?
in most cases, applying standard distances on \mathbb{R}^{n} or even \mathbb{N}^{n} is meaningless

Back to fundamentals

- Distances are optimal by nature, and quantify shortest length paths.
- Graph-metrics are defined that way

- Triangle inequalities are defined precisely to enforce this optimality

$$
d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z})+d(\mathbf{z}, \mathbf{y})
$$

Back to fundamentals

- Distances are optimal by nature, and quantify shortest length paths.
- Graph-metrics are defined that way

- Triangle inequalities are defined precisely to enforce this optimality

$$
d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z})+d(\mathbf{z}, \mathbf{y})
$$

\rightarrow many distances on structured objects rely on optimization

Back to fundamentals

- p.d. kernels are additive by nature
- k is positive definite $\Leftrightarrow \exists \varphi: \mathcal{X} \rightarrow \mathcal{H}$ such that

$$
k(\mathbf{x}, \mathbf{y})=\langle\varphi(x), \varphi(y)\rangle_{\mathcal{H}}
$$

- $X \in \mathcal{S}_{n}^{+} \Leftrightarrow \exists L \in \mathbb{R}^{n \times n} \mid X=L^{T} L$.

Back to fundamentals

- p.d. kernels are additive by nature
- k is positive definite $\Leftrightarrow \exists \varphi: \mathcal{X} \rightarrow \mathcal{H}$ such that

$$
k(\mathbf{x}, \mathbf{y})=\langle\varphi(x), \varphi(y)\rangle_{\mathcal{H}}
$$

- $X \in \mathcal{S}_{n}^{+} \Leftrightarrow \exists L \in \mathbb{R}^{n \times n} \mid X=L^{T} L$.
\rightarrow many kernels on structured objects rely on defining explicitly (possibly infinite) feature vectors
very large literature on this subject which we will not address here.

Combinatorial Distances

- To define a distance, an approach which has been repeatedly used is to,
- Consider two inputs \mathbf{x}, \mathbf{y},
- Define a countable set of mappings from \mathbf{x} to $\mathbf{y}, T(\mathbf{x}, \mathbf{y})$
- Define a cost $c(\tau)$ for each element τ of $T(\mathbf{x}, \mathbf{y})$.
- Define a distance between \mathbf{x}, \mathbf{y} as

$$
d(\mathbf{x}, \mathbf{y})=\min _{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)
$$

Combinatorial Distances

- To define a distance, an approach which has been repeatedly used is to,
- Consider two inputs \mathbf{x}, \mathbf{y},
- Define a countable set of mappings from \mathbf{x} to $\mathbf{y}, T(\mathbf{x}, \mathbf{y})$
- Define a cost $c(\tau)$ for each element τ of $T(\mathbf{x}, \mathbf{y})$.
- Define a distance between \mathbf{x}, \mathbf{y} as

$$
d(\mathbf{x}, \mathbf{y})=\min _{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)
$$

- Symmetry, definiteness and triangle inequalities depend on c and T.

Combinatorial Distances

- To define a distance, an approach which has been repeatedly used is to,
- Consider two inputs \mathbf{x}, \mathbf{y},
- Define a countable set of mappings from \mathbf{x} to $\mathbf{y}, T(\mathbf{x}, \mathbf{y})$
- Define a cost $c(\tau)$ for each element τ of $T(\mathbf{x}, \mathbf{y})$.
- Define a distance between \mathbf{x}, \mathbf{y} as

$$
d(\mathbf{x}, \mathbf{y})=\min _{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)
$$

- Symmetry, definiteness and triangle inequalities depend on c and T.
- In many cases, T is endowed with a dot product, $c(\tau)=\langle\tau, \theta\rangle$ for some θ.

Combinatorial Distances are not Negative Definite

$$
d(\mathbf{x}, \mathbf{y})=\min _{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)
$$

- In most cases such distances are not negative definite

- Can we use them to define kernels?

- Yes so far, using always the same technique.

An alternative definition of minimality

for a family of numbers $a_{n}, n \in \mathbb{N}$,

$$
\operatorname{soft}-\min a_{n}=-\log \sum_{n} e^{-a_{n}}
$$

Min: 0.19 Soft-min: -1.4369

Min: 0.206 Soft-min: -1.5755

Soft-min of costs - Generating Functions

$$
d(\mathbf{x}, \mathbf{y})=\min _{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)
$$

e^{-d} is not positive definite in the general case

Soft-min of costs - Generating Functions

$$
d(\mathbf{x}, \mathbf{y})=\min _{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)
$$

e^{-d} is not positive definite in the general case

$$
\delta(\mathbf{x}, \mathbf{y})=\underset{\tau \in T(\mathbf{x}, \mathbf{y})}{\operatorname{soft}-\min } \quad c(\tau)
$$

$e^{-\delta}$ has been proved to be positive definite in all known cases

Soft-min of costs - Generating Functions

$$
d(\mathbf{x}, \mathbf{y})=\min _{\tau \in T(\mathbf{x}, \mathbf{y})} c(\tau)
$$

e^{-d} is not positive definite in the general case

$$
\delta(\mathbf{x}, \mathbf{y})=\underset{\tau \in T(\mathbf{x}, \mathbf{y})}{\operatorname{soft}-\min } \quad c(\tau)
$$

$e^{-\delta}$ has been proved to be positive definite in all known cases

$$
e^{-\delta(\mathbf{x}, \mathbf{y})}=\sum_{\tau \in T(\mathbf{x}, \mathbf{y})} e^{-\langle\tau, \theta\rangle}=G_{T(\mathbf{x}, \mathbf{y})}(\theta)
$$

$G_{T(\mathbf{x}, \mathbf{y})}$ is the generating function of the set of all mappings between \mathbf{x} and \mathbf{y}.

Example: Optimal assignment distance between two sets

- Input: $\mathbf{x}=\left\{x_{1}, \cdots, x_{n}\right\}, \mathbf{y}=\left\{y_{1}, \cdots, y_{n}\right\} \in \mathcal{X}^{n}$

Example: Optimal assignment distance between two sets

- Input: $\mathbf{x}=\left\{x_{1}, \cdots, x_{n}\right\}, \mathbf{y}=\left\{y_{1}, \cdots, y_{n}\right\} \in \mathcal{X}^{n}$

- cost parameter: distance d on \mathcal{X}. mapping variable: permutation σ in S_{n}
- cost: $\sum_{i=1}^{n} d\left(x_{i}, y_{\sigma(i)}\right.$.

Example: Optimal assignment distance between two sets

- Input: $\mathbf{x}=\left\{x_{1}, \cdots, x_{n}\right\}, \mathbf{y}=\left\{y_{1}, \cdots, y_{n}\right\} \in \mathcal{X}^{n}$

- cost parameter: distance d on \mathcal{X}. mapping variable: permutation σ in S_{n}.
- cost: $\sum_{i=1}^{n} d\left(x_{i}, y_{\sigma(i)}\right)=\left\langle P_{\sigma}, D\right\rangle$ where $D=\left[d\left(x_{i}, y_{j}\right)\right]$

$$
d_{\text {Assig. }}(\mathbf{x}, \mathbf{y})=\min _{\sigma \in S_{n}} \sum_{i=1}^{n} d\left(x_{i}, y_{\sigma(i)}\right)=\min _{\sigma \in S_{n}}\left\langle P_{\sigma}, D\right\rangle
$$

Example: Optimal assignment distance between two sets

$$
d_{\text {Assig. }}(\mathbf{x}, \mathbf{y})=\min _{\sigma \in S_{n}} \sum_{i=1}^{n} d\left(x_{i}, y_{\sigma(i)}\right)=\min _{\sigma \in S_{n}}\left\langle P_{\sigma}, D\right\rangle
$$

$$
\text { define } k=e^{-d} \text {. If } k \text { is positive definite on } \mathcal{X} \text { then }
$$

$$
k_{\text {Perm }}(\mathbf{x}, \mathbf{y})=\sum_{\sigma \in S_{n}} e^{-\left\langle P_{\sigma}, D\right\rangle}=\operatorname{Permanent}\left[k\left(x_{i}, y_{j}\right)\right]
$$

is positive definite (C. 2007). $e^{-d_{\text {Assig. }}}$ is not (Frohlich et al. 2005, Vert 2008).

Example: Optimal alignment between two strings

- Input: $x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{m}\right) \in \mathcal{X}^{n}, \mathcal{X}$ finite

$$
\mathbf{x}=\text { DOING, } \mathbf{y}=\text { DONE }
$$

Example: Optimal alignment between two strings

- Input: $x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{m}\right) \in \mathcal{X}^{n}, \mathcal{X}$ finite

$$
\mathbf{x}=\text { DOING, } \mathbf{y}=\text { DONE }
$$

- mapping variable: alignment $\pi=\left(\begin{array}{lll}\pi_{1}(1) & \cdots & \pi_{1}(q) \\ \pi_{2}(1) & \cdots & \pi_{2}(q)\end{array}\right)$. (increasing path)

G				
N			\bullet	
I				
O		\bullet		
D	\bullet			
	D	O	N	E

Example: Optimal alignment between two strings

- Input: $x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{m}\right) \in \mathcal{X}^{n}, \mathcal{X}$ finite

$$
\mathbf{x}=\text { DOING, } \mathbf{y}=\text { DONE }
$$

- mapping variable: alignment $\pi=\left(\begin{array}{lll}\pi_{1}(1) & \cdots & \pi_{1}(q) \\ \pi_{2}(1) & \cdots & \pi_{2}(q)\end{array}\right)$. (increasing path)

G				\star
N			\bullet	
I				
O		\bullet		
D	\bullet			
	D	O	N	E

- cost parameter: distance d on $\mathcal{X}+$ gap function $g: \mathbb{N} \rightarrow \mathbb{R}$.
- $c(\pi)=\sum_{i=1}^{|\pi|} d\left(x_{\pi_{1}(i)}, y_{\pi_{2}(i)}\right)+\sum_{i=1}^{|\pi|-1} g\left(\pi_{1}(i+1)-\pi_{1}(i)\right)+g\left(\pi_{2}(i+1)-\pi_{2}(i)\right)$

Example: Optimal alignment between two strings

- Input: $x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{m}\right) \in \mathcal{X}^{n}, \mathcal{X}$ finite

$$
\mathbf{x}=\text { DOING, } \mathbf{y}=\text { DONE }
$$

- mapping variable: alignment $\pi=\left(\begin{array}{lll}\pi_{1}(1) & \cdots & \pi_{1}(q) \\ \pi_{2}(1) & \cdots & \pi_{2}(q)\end{array}\right)$. (increasing path)

G				\star
N			\bullet	
I				
O			\bullet	
D	\bullet			
	D	O	N	E

- cost parameter: distance d on $\mathcal{X}+$ gap function $g: \mathbb{N} \rightarrow \mathbb{R}$.
- $c(\pi)=\sum_{i=1}^{|\pi|} d\left(x_{\pi_{1}(i)}, y_{\pi_{2}(i)}\right)+\sum_{i=1}^{|\pi|-1} g\left(\pi_{1}(i+1)-\pi_{1}(i)\right)+g\left(\pi_{2}(i+1)-\pi_{2}(i)\right)$

$$
d_{\mathrm{align}}(\mathbf{x}, \mathbf{y})=\min _{\pi \in \text { Alignments }} c(\pi)
$$

Example: Optimal alignment between two strings

$$
d_{\mathrm{align}}(\mathbf{x}, \mathbf{y})=\min _{\pi \in \text { Alignments }} c(\pi)
$$

define $k=e^{-d}$. If k is positive definite on \mathcal{X} then

$$
k_{\mathrm{LA}}(\mathbf{x}, \mathbf{y})=\sum_{\pi \in \text { Alignments }} e^{-c(\pi)}
$$

is positive definite (Saigo et al. 2003).

Example: Optimal time warping between two time series

- Input: $x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{m}\right) \in \mathbb{R}^{n}$

Example: Optimal time warping between two time series

- Input: $x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{m}\right) \in \mathbb{R}^{n}$
- mapping variable: $\pi=\left(\begin{array}{lll}\pi_{1}(1) & \cdots & \pi_{1}(q) \\ \pi_{2}(1) & \cdots & \pi_{2}(q)\end{array}\right)$. (increasing contiguous path)

Example: Optimal time warping between two time series

- Input: $x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{m}\right) \in \mathbb{R}^{n}$
- mapping variable: $\pi=\left(\begin{array}{lll}\pi_{1}(1) & \cdots & \pi_{1}(q) \\ \pi_{2}(1) & \cdots & \pi_{2}(q)\end{array}\right)$. (increasing contiguous path)

- cost parameter: distance d on \mathcal{X}. cost: $c(\pi)=\sum_{i=1}^{|\pi|} d\left(x_{\pi_{1}(i)}, y_{\pi_{2}(i)}\right)$

Example: Optimal time warping between two time series

- Input: $x=\left(x_{1}, \cdots, x_{n}\right), y=\left(y_{1}, \cdots, y_{m}\right) \in \mathbb{R}^{n}$
- mapping variable: $\pi=\left(\begin{array}{lll}\pi_{1}(1) & \cdots & \pi_{1}(q) \\ \pi_{2}(1) & \cdots & \pi_{2}(q)\end{array}\right)$. (increasing contiguous path)

- cost parameter: distance d on \mathcal{X}. cost: $c(\pi)=\sum_{i=1}^{|\pi|} d\left(x_{\pi_{1}(i)}, y_{\pi_{2}(i)}\right)$

$$
d_{\mathrm{DTW}}(\mathbf{x}, \mathbf{y})=\min _{\pi \in \text { Alignments }} c(\pi)
$$

Example: Optimal alignment between two strings

$$
d_{\mathrm{DTW}}(\mathbf{x}, \mathbf{y})=\min _{\pi \in \mathrm{Alignments}} c(\pi)
$$

define $k=e^{-d}$. If k is positive definite and geometrically divisible on \mathcal{X} then

$$
k_{\mathrm{GA}}(\mathbf{x}, \mathbf{y})=\sum_{\pi \in \mathrm{Alignments}} e^{-c(\pi)}
$$

is positive definite (C. et al. 2007, C. 2011)

Example: Edit-distance between two trees

- Input: two labeled trees \mathbf{x}, \mathbf{y}.
- mapping variable: sequence of substitutions/deletions/insertions of vertices

- cost parameter: γ distance between labels and cost for deletion/insertion

$$
d_{\text {TreeEdit }}(\mathbf{x}, \mathbf{y})=\min _{\sigma \in \operatorname{EditS} S r i p t s}(\mathbf{x}, \mathbf{y})=\sum \gamma\left(\sigma_{i}\right)
$$

Example: Edit-distance between two trees

- Input: two labeled trees \mathbf{x}, \mathbf{y}.
- mapping variable: sequence of substitutions/deletions/insertions of vertices

- cost parameter: γ distance between labels and cost for deletion/insertion

$$
d_{\text {TreeEdit }}(\mathbf{x}, \mathbf{y})=\min _{\sigma \in \operatorname{EditScripts}(\mathbf{x}, \mathbf{y})} \sum \gamma\left(\sigma_{i}\right)
$$

- Positive definiteness of the generating function (if $e^{-\gamma}$) p.d. proved by Shin \& Kuboyama 2008; Shin, C., Kuboyama 2011.

Example: Transportation distance between discrete histograms

- Input: two integer histograms $\mathbf{x}, \mathbf{y} \in \mathbb{N}^{d}$ such that $\sum_{i=1}^{d} x_{i}=\sum_{i=1}^{d} y_{i}=N$

- mapping: transportation matrices $U(r, c)=\left\{X \in \mathbb{N}^{d \times d} \mid X \mathbf{1}_{d}=\mathbf{x}, X^{T} \mathbf{1}_{d}=\mathbf{y}\right\}$
- cost parameter: M distance matrix in \mathcal{M}_{d}.

$$
d_{W}(\mathbf{x}, \mathbf{y})=\min _{X \in U(r, c)}\langle X, M\rangle
$$

Example: Transportation distance between discrete histograms

$$
d_{W}(\mathbf{x}, \mathbf{y})=\min _{X \in U(r, c)}\langle X, M\rangle
$$

define $k_{i j}=e^{-m_{i j}}$. If $\left[k_{i j}\right]$ is positive definite on \mathcal{X} then

$$
k_{M}(\mathbf{x}, \mathbf{y})=\sum_{X \in U(r, c)} e^{-\langle X, M\rangle}
$$

is positive definite (C., submitted).

To wrap up

$$
e^{-\delta(\mathbf{x}, \mathbf{y})}=\sum_{\tau \in T(\mathbf{x}, \mathbf{y})} e^{-\langle\tau, \theta\rangle}=G_{T(\mathbf{x}, \mathbf{y})}(\theta) \text { is positive definite in many }(\text { all }) \text { cases. }
$$

Open problems

- \exists unified framework?
- Convolution kernels (Haussler, 1998)
- Mapping kernels (Shin \& Kuboyama 2008) were an important addition
- Extension to Countable mapping kernels (Shin 2011)
- Extension to symmetric functions (not just e) (Shin 2011).
- To speed up computations, possible to restrict the sum to subset of $T(\mathbf{x}, \mathbf{y})$?
- C. 2011 with DTW.
- C. submitted with transportation distances

