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Outline

Distances and Positive Definite Kernels are crucial ingredients
in many popular ML algorithms

.

• When observations are in R
n

◦ Distances and Positive Definite Kernels share many properties

◦ At their interface lies the family of Negative Definite Kernels
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Outline

Distances and Positive Definite Kernels are crucial ingredients
in many popular ML algorithms
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• When observations are in R
n

D p.d.K

(note: intersection not to be taken literally)
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Outline

Distances and Positive Definite Kernels are crucial ingredients
in many popular ML algorithms

.

• When observations are in R
n

p.d.Kn.d.KD

• Hilbertian metrics are a sweet spot, both in theory and practice.
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Outline

Distances and Positive Definite Kernels are crucial ingredients
in many popular ML algorithms

.

• When comparing structured data (constrained subsets of Rn, n very large)

◦ Classical distances on R
n that ignore such constraints perform poorly

◦ Combinatorial distances (to be defined) take them into account
(string, tree) Edit-distances, DTW, optimal matchings, transportation distances

◦ Combinatorial distances are not negative definite (in the general case)
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• When comparing structured data (constrained subsets of Rn, n very large)
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Outline

Distances and Positive Definite Kernels are crucial ingredients
in many popular ML algorithms

.

• When comparing structured data (constrained subsets of Rn, n very large)

p.d.Kn.d.KD

Main message of this talk:

we can recover p.d. kernels from combinatorial distances
through generating functions.
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Distances and Kernels
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Distances

A bivariate function defined on a set X ,

d : X × X → R+

(x, y) 7→ d(x, y)

is a distance if ∀ x, y, z ∈ X ,

• d(x, y) = d(y, x), symmetry

• d(x, y) = 0 ⇔ x = y, definiteness

• d(x, z) ≤ d(x, y) + d(y, z), triangle inequality

z

d(x, z)

x

y

d(y, z)

d(x, y)
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Kernels (Symmetric & Positive Definite)

A bivariate function defined on a set X

k : X × X → R+

(x, y) 7→ k(x, y)

is a positive definite kernel if ∀ x, y ∈ X ,

• k(x, y) = k(y, x), symmetry

and ∀n ∈ N, {x1, · · · , xn} ∈ Xn, c ∈ R
n

•
∑n

i=1 ci cj k(xi, xj) ≥ 0
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Matrices

Convex cone of n× n distance matrices - dimension n(n−1)
2

Mn = {X ∈ R
n×n |xii = 0; for i < j, xij > 0;xik + xkj − xij ≥ 0}

3
(

3
n

)

+
(

2
n

)

linear inequalities; n equalities
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Matrices

Convex cone of n× n distance matrices - dimension n(n−1)
2

Mn = {X ∈ R
n×n |xii = 0; for i 6= j, xij > 0;xik + xkj − xij ≥ 0}

3
(

3
n

)

+
(

2
n

)

linear inequalities; n equalities

Convex cone of n× n p.s.d. matrices - dimension n(n+1)
2

S+
n = {X ∈ R

n×n |X = XT ; ∀z ∈ R
n, zTXz ≥ 0}

∀z ∈ R
n, 〈X, zzT 〉 ≥ 0: infinite number of inequalities;

(

2
n

)

equalities
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Cones





0 x y
x 0 z
y z 0





[

α β
β γ

]

∂S2+ image: Dattoro
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Functions & Matrices

d distance ⇔ ∀n ∈ N, {x1, · · · , xn} ∈ Xn
[

d(xi, xj)
]

∈ Mn

k kernel ⇔ ∀n ∈ N, {x1, · · · , xn} ∈ Xn
[

k(xi, xj)
]

∈ S+
n
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Extreme Rays & Facets

Mn is a polyhedral cone.

• Facets = 3
(

3
n

)

hyperplanes dik + dkj − dij = 0.

• Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics
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Extreme Rays & Facets

Mn is a polyhedral cone.

• Facets = 3
(

3
n

)

hyperplanes dik + dkj − dij = 0.

• Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

1

2
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3

d12

d45

d34d14

d23

d13 = min(d12 + d23, d14 + d34)

Kernel & RKHS Workshop 24

http://cgm.cs.mcgill.ca/~avis/doc/avis/Av80c.pdf


Extreme Rays & Facets

Mn is a polyhedral cone.

• Facets = 3
(

3
n

)

hyperplanes dik + dkj − dij = 0.

• Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

• Let Gn,p a random graph with n points and edge probability P (ij ∈ Gn,p = p).

◦ If for some 0 < ε < 1/5, n−1/5+ε ≤ p ≤ 1− n−1/4+ε,

◦ then the distance induced by G is an extreme ray of Mn with probability
1− o(1).
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Extreme Rays & Facets

Mn is a polyhedral cone.

• Facets = 3
(

3
n

)

hyperplanes dik + dkj − dij = 0.

• Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

• Let Gn,p a random graph with n points and edge probability P (ij ∈ Gn,p = p).

◦ If for some 0 < ε < 1/5, n−1/5+ε ≤ p ≤ 1− n−1/4+ε,

◦ then the distance induced by G is an extreme ray of Mn with probability
1− o(1).

• Grishukin (2005) characterizes the extreme rays of M7 (≥ 60.000)
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Extreme Rays & Facets

Mn is a polyhedral cone.

• Facets = 3
(

3
n

)

hyperplanes dik + dkj − dij = 0.

• Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

S+
n

is a self-dual, homogeneous cone. Overall far easier to study:

• Facets are isomorphic to S+
k for k < n

• Extreme rays exactly the p.s.d matrices of rank 1, zzT .

Kernel & RKHS Workshop 27

http://cgm.cs.mcgill.ca/~avis/doc/avis/Av80c.pdf


Extreme Rays & Facets

Mn is a polyhedral cone.

• Facets = 3
(

3
n

)

hyperplanes dik + dkj − dij = 0.

• Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

S+
n

is a self-dual, homogeneous cone. Overall far easier to study:

• Facets are isomorphic to S+
k for k < n

• Extreme rays exactly the p.s.d matrices of rank 1, zzT .

◦ → Eigendecomposition: if K ∈ S+
n then K =

∑n
i=1 λiziz

T
i .

◦ → Integral representations for p.d. kernels themselves (Bochner theorem)
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Checking, Projection, Learning

Optimizing in Mn is relatively difficult.

• Check if X is in Mn requires up to 3
(

3
n

)

comparisons.

• Projection: triangle fixing algorithms (Brickell et al. (2008)), no convergence
speed guarantee.

• No simple barrier function

Optimizing in S+
n

is relatively easy.

• Check if X is in S+
n only requires finding minimal eigenvalue (eigs).

• Projection: threshold negative eigenvalues.

• log det barrier, semidefinite programming
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Checking, Projection, Learning

Optimizing in Mn is relatively difficult.

• Check if X is in Mn requires up to 3
(

3
n

)

comparisons.

• Projection: triangle fixing algorithms (Brickell et al. (2008)), no convergence
speed guarantee.

• No simple barrier function

Optimizing in S+
n is relatively easy.

• Check if X is in S+
n only requires finding minimal eigenvalue (eigs).

• Projection: threshold negative eigenvalues.

• log det barrier, semidefinite programming

“Real” metric learning in Mn is difficult, Mahalanobis learning in S+
n is easier
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Negative Definite Kernels

Convex cone of n× n negative definite kernels - dimension n(n+1)
2

Nn = {X ∈ R
n×n |X = XT , ∀z ∈ R

n, zT1 = 0, zTXz≤0}

infinite linear inequalities;
(

2
n

)

equalities
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Negative Definite Kernels

Convex cone of n× n negative definite kernels - dimension n(n+1)
2

Nn = {X ∈ R
n×n |X = XT , ∀z ∈ R

n, zT1 = 0, zTXz≤0}

infinite linear inequalities;
(

2
n

)

equalities

ψ n.d. kernel ⇔ ∀n ∈ N, {x1, · · · , xn} ∈ Xn
[

ψ(xi, xj)
]

∈ Nn
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A few important results on Negative Definite Kernels

If ψ is a negative definite kernel on X then

• ∃ a Hilbert space H, a mapping x 7→ ϕx ∈ H, a real valued function f on X s.t.

ψ(x, y) = ‖ϕx − ϕy‖2 + f(x) + f(y)

• If ∀x ∈ X ,ψ(x, x) = 0, then f = 0 and
√
ψ is a semi-distance.

• If {ψ = 0} = {(x, x), x ∈ X}, then
√
ψ is a distance.

• If ψ(x, x) ≥ 0, then 1 < α < 0, ψα is negative definite.

• k def
= e−tψ is positive definite for all t > 0.
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A Rough Sketch

We can now give a more precise meaning to

p.d.Kn.d.KD
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A Rough Sketch

using this diagram

Hilbertian
   metrics

vanishing
diagonal

pseudo−hilbertian
   metrics infinitely 

divisible kernels

D(X )

d(x, y) =
√

ψ(x, y) − ψ(x,x)+ψ(y,y)
2

N (X )

k = exp(−ψ)

P∞(X )

P(X )

ψ = d2

ψ = − log k

d =
√
ψ
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Importance of this link

• One of the biggest practical issues with kernel methods is that of diagonal
dominance.

◦ Cauchy Schwartz: k(x, y) ≤
√

k(x, x)k(y, y)
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Importance of this link

• One of the biggest practical issues with kernel methods is that of diagonal
dominance.

◦ Cauchy Schwartz: k(x, y) ≤
√

k(x, x)k(y, y)

◦ Diagonal dominance: k(x, y) ≪
√

k(x, x)k(y, y)

• If k is infinitely divisible, kα with small α is

◦ positive definite

◦ less diagonally dominant

• This explain the success of

◦ Gaussian kernels e−t‖x−y‖2

◦ Laplace kernels e−t‖x−y‖

• and arguably, the failure of many non-infinitely divisible kernels, because too
difficult to tune.
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Questions Worth Asking

Two questions:

Let d be a distance that is not negative definite.
is it possible that e−t1d is positive definite for some t1 ∈ R?

ε-infinite divisibility.
a distance d such that e−td is positive definite for t > ε?
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Questions Worth Asking

Two questions:

Let d be a distance that is not negative definite.
is it possible that e−t1d is positive definite for some t1 ∈ R?

yes.
Examples exist. Stein distance (Sra, 2011) and Inverse generalized variance (C. et

al., 2005) kernel for p.s.d matrices.

“ε-infinite divisibility”.
a distance d such that e−td is positive definite for t > ε?

?
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Positivity & Combinatorial Distances
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Structured Objects

• Objects in a countable set

◦ variable length strings, trees, graphs, permutations

• Constrained vectors

◦ Positive vectors, histograms

• Vectors of different sizes

◦ variable length time series
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Structured Objects

• Objects in a countable set

◦ variable length strings, trees, graphs, sets

• Constrained vectors

◦ Positive vectors, histograms

• Vectors of different sizes

◦ variable length time series

How can we define a kernel or a distance on such sets?

in most cases, applying standard distances on R
n or even N

n is meaningless
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Back to fundamentals

• Distances are optimal by nature, and quantify shortest length paths.

◦ Graph-metrics are defined that way

1

2

5

4

3

d12

d45

d34d14

d23

◦ Triangle inequalities are defined precisely to enforce this optimality

d(x, y) ≤ d(x, z) + d(z, y)
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Back to fundamentals

• Distances are optimal by nature, and quantify shortest length paths.

◦ Graph-metrics are defined that way

1

2

5

4

3

d12

d45

d34d14

d23

◦ Triangle inequalities are defined precisely to enforce this optimality

d(x, y) ≤ d(x, z) + d(z, y)

→ many distances on structured objects rely on optimization
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Back to fundamentals

• p.d. kernels are additive by nature

◦ k is positive definite ⇔ ∃ϕ : X → H such that

k(x, y) = 〈ϕ(x), ϕ(y)〉H.

• X ∈ S+
n
⇔ ∃L ∈ R

n×n|X = LTL.
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Back to fundamentals

• p.d. kernels are additive by nature

◦ k is positive definite ⇔ ∃ϕ : X → H such that

k(x, y) = 〈ϕ(x), ϕ(y)〉H.

• X ∈ S+
n ⇔ ∃L ∈ R

n×n|X = LTL.

→ many kernels on structured objects
rely on defining explicitly (possibly infinite) feature vectors

very large literature on this subject which we will not address here.
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Combinatorial Distances

• To define a distance, an approach which has been repeatedly used is to,

◦ Consider two inputs x, y,

◦ Define a countable set of mappings from x to y, T (x, y)

◦ Define a cost c(τ) for each element τ of T (x, y).

◦ Define a distance between x, y as

d(x, y) = min
τ∈T (x,y)

c(τ)
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Combinatorial Distances

• To define a distance, an approach which has been repeatedly used is to,

◦ Consider two inputs x, y,

◦ Define a countable set of mappings from x to y, T (x, y)

◦ Define a cost c(τ) for each element τ of T (x, y).

◦ Define a distance between x, y as

d(x, y) = min
τ∈T (x,y)

c(τ)

• Symmetry, definiteness and triangle inequalities depend on c and T .
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Combinatorial Distances

• To define a distance, an approach which has been repeatedly used is to,

◦ Consider two inputs x, y,

◦ Define a countable set of mappings from x to y, T (x, y)

◦ Define a cost c(τ) for each element τ of T (x, y).

◦ Define a distance between x, y as

d(x, y) = min
τ∈T (x,y)

c(τ)

• Symmetry, definiteness and triangle inequalities depend on c and T .

• In many cases, T is endowed with a dot product, c(τ) = 〈τ, θ〉 for some θ.
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Combinatorial Distances are not Negative Definite

d(x, y) = min
τ∈T (x,y)

c(τ)

• In most cases such distances are not negative definite

p.d.Kn.d.KD

• Can we use them to define kernels?

p.d.Kn.d.KD

• Yes so far, using always the same technique.
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An alternative definition of minimality

for a family of numbers an, n ∈ N,

soft-minan = − log
∑

n

e−an

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2
Min: 0.19 Soft−min: −1.4369

1 2 3 4 5 6 7 8 9 10
0

1

2

3
Min: 0.206 Soft−min: −1.5755
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Soft-min of costs - Generating Functions

d(x, y) = min
τ∈T (x,y)

c(τ)

e−d is not positive definite in the general case
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Soft-min of costs - Generating Functions

d(x, y) = min
τ∈T (x,y)

c(τ)

e−d is not positive definite in the general case

δ(x, y) = soft-min
τ∈T (x,y)

c(τ)

e−δ has been proved to be positive definite in all known cases
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Soft-min of costs - Generating Functions

d(x, y) = min
τ∈T (x,y)

c(τ)

e−d is not positive definite in the general case

δ(x, y) = soft-min
τ∈T (x,y)

c(τ)

e−δ has been proved to be positive definite in all known cases

e−δ(x,y) =
∑

τ∈T (x,y)

e−〈τ,θ〉 = GT (x,y)(θ)

GT (x,y) is the generating function of the set of all mappings between x and y.
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Example: Optimal assignment distance between two sets

• Input: x = {x1, · · · , xn}, y = {y1, · · · , yn} ∈ Xn

x1

x4

x3

x2

y1

y4

y3

y2
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Example: Optimal assignment distance between two sets

• Input: x = {x1, · · · , xn}, y = {y1, · · · , yn} ∈ Xn

x1

x4

x3

x2

y1

y4

y3

y2

d12

d34

d24

d13

• cost parameter: distance d on X . mapping variable: permutation σ in Sn

• cost:
∑n

i=1 d(xi, yσ(i).
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Example: Optimal assignment distance between two sets

• Input: x = {x1, · · · , xn}, y = {y1, · · · , yn} ∈ Xn

x1

x4

x3

x2

y1

y4

y3

y2

d12

d34

d24

d13

• cost parameter: distance d on X . mapping variable: permutation σ in Sn.

• cost:
∑n

i=1 d(xi, yσ(i)) = 〈Pσ,D〉 where D = [d(xi, yj)]

dAssig.(x, y) = minσ∈Sn
∑n

i=1 d(xi, yσ(i)) = minσ∈Sn〈Pσ,D〉
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Example: Optimal assignment distance between two sets

dAssig.(x, y) = minσ∈Sn
∑n

i=1 d(xi, yσ(i)) = minσ∈Sn〈Pσ,D〉

define k = e−d. If k is positive definite on X then

kPerm(x, y) =
∑

σ∈Sn e
−〈Pσ,D〉 = Permanent[k(xi, yj)]

is positive definite (C. 2007). e−dAssig. is not (Frohlich et al. 2005, Vert 2008).
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Example: Optimal alignment between two strings

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ Xn, X finite

x = DOING, y =DONE
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Example: Optimal alignment between two strings

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ Xn, X finite

x = DOING, y =DONE

• mapping variable: alignment π =

(

π1(1) · · · π1(q)
π2(1) · · · π2(q)

)

. (increasing path)

D

N

I

ENOD

O

G
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Example: Optimal alignment between two strings

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ Xn, X finite

x = DOING, y =DONE

• mapping variable: alignment π =

(

π1(1) · · · π1(q)
π2(1) · · · π2(q)

)

. (increasing path)

D

N

I

ENOD

O

G

• cost parameter: distance d on X + gap function g : N → R.

• c(π) =
∑|π|

i=1 d(xπ1(i), yπ2(i))+
∑|π|−1
i=1 g(π1(i+1)−π1(i))+g(π2(i+1)−π2(i))
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Example: Optimal alignment between two strings

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ Xn, X finite

x = DOING, y =DONE

• mapping variable: alignment π =

(

π1(1) · · · π1(q)
π2(1) · · · π2(q)

)

. (increasing path)

D

N

I

ENOD

O

G

• cost parameter: distance d on X + gap function g : N → R.

• c(π) =
∑|π|

i=1 d(xπ1(i), yπ2(i))+
∑|π|−1
i=1 g(π1(i+1)−π1(i))+g(π2(i+1)−π2(i))

dalign(x, y) = minπ∈Alignments c(π)
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Example: Optimal alignment between two strings

dalign(x, y) = minπ∈Alignments c(π)

define k = e−d. If k is positive definite on X then

kLA(x, y) =
∑

π∈Alignments e
−c(π)

is positive definite (Saigo et al. 2003).
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Example: Optimal time warping between two time series

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ R
n

X

x1

y1

y3
y7

x3

x2

x5

y2

y5

y6

x4

y4
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Example: Optimal time warping between two time series

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ R
n

• mapping variable: π =

(

π1(1) · · · π1(q)
π2(1) · · · π2(q)

)

. (increasing contiguous path)

D11x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D57

D32
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Example: Optimal time warping between two time series

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ R
n

• mapping variable: π =

(

π1(1) · · · π1(q)
π2(1) · · · π2(q)

)

. (increasing contiguous path)

D11x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D57

D32

• cost parameter: distance d on X . cost: c(π) =
∑|π|

i=1 d(xπ1(i), yπ2(i))
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Example: Optimal time warping between two time series

• Input: x = (x1, · · · , xn), y = (y1, · · · , ym) ∈ R
n

• mapping variable: π =

(

π1(1) · · · π1(q)
π2(1) · · · π2(q)

)

. (increasing contiguous path)

π⋆

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

D17

D37

D47

D27

D13D12 D14 D15 D16

D51 D53D52 D54 D55 D56

D41 D43D42 D44

D31 D34 D35 D36

D21 D23D22 D24 D25 D26

D33

D45 D46

D57

D32

D11

• cost parameter: distance d on X . cost: c(π) =
∑|π|

i=1 d(xπ1(i), yπ2(i))

dDTW(x, y) = minπ∈Alignments c(π)
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Example: Optimal alignment between two strings

dDTW(x, y) = minπ∈Alignments c(π)

define k = e−d. If k is positive definite and geometrically divisible on X then

kGA(x, y) =
∑

π∈Alignments e
−c(π)

is positive definite (C. et al. 2007, C. 2011)
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Example: Edit-distance between two trees

• Input: two labeled trees x, y.

• mapping variable: sequence of substitutions/deletions/insertions of vertices

• cost parameter: γ distance between labels and cost for deletion/insertion

dTreeEdit(x, y) = minσ∈EditScripts(x,y)

∑

γ(σi)
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Example: Edit-distance between two trees

• Input: two labeled trees x, y.

• mapping variable: sequence of substitutions/deletions/insertions of vertices

• cost parameter: γ distance between labels and cost for deletion/insertion

dTreeEdit(x, y) = minσ∈EditScripts(x,y)

∑

γ(σi)

• Positive definiteness of the generating function (if e−γ) p.d. proved by Shin &
Kuboyama 2008; Shin, C., Kuboyama 2011.
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Example: Transportation distance between discrete histograms

• Input: two integer histograms x, y ∈ N
d such that

∑d
i=1 xi =

∑d
i=1 yi = N

• mapping: transportation matrices U(r, c) = {X ∈ N
d×d|X1d = x, XT1d = y}

• cost parameter: M distance matrix in Md.

dW (x, y) = minX∈U(r,c)〈X,M〉
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Example: Transportation distance between discrete histograms

dW (x, y) = minX∈U(r,c)〈X,M〉

define kij = e−mij . If [kij] is positive definite on X then

kM(x, y) =
∑

X∈U(r,c) e
−〈X,M〉

is positive definite (C., submitted).
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To wrap up

p.d.Kn.d.KD

d(x, y) = min
τ∈T (x,y)

c(τ), δ(x, y) = soft-min
τ∈T (x,y)

c(τ)

e−δ(x,y) =
∑

τ∈T (x,y) e
−〈τ,θ〉 = GT (x,y)(θ) is positive definite in many (all) cases.
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Open problems

• ∃ unified framework?

◦ Convolution kernels (Haussler, 1998)

◦ Mapping kernels (Shin & Kuboyama 2008) were an important addition

◦ Extension to Countable mapping kernels (Shin 2011)

◦ Extension to symmetric functions (not just e·) (Shin 2011).

• To speed up computations, possible to restrict the sum to subset of T (x, y)?

◦ C. 2011 with DTW.

◦ C. submitted with transportation distances
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