Generative Models and Optimal Transport

Marco Cuturi

Joint work / work in progress with
G. Peyré, A. Genevay (ENS), F. Bach (INRIA),
G. Montavon, K-R Müller (TU Berlin)

Statistics 0.1 : Density Fitting

Statistics 0.1 : Density Fitting

> We collect data
> $\boldsymbol{\nu}_{\text {data }}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\boldsymbol{x}_{i}}$

We fit a parametric family of densities

$$
\left\{p_{\theta}, \theta \in \Theta\right\}
$$

$$
\text { e.g. } \theta=(m, \Sigma) ; p_{\theta}=\mathcal{N}(m, \Sigma)
$$

Density Fitting

$\boldsymbol{p}_{\theta_{1}}$
$\nu_{\text {data }}$
$\boldsymbol{P}_{\boldsymbol{\theta}_{2}}$

Density Fitting

Maximum Likelihood Estimation

ON AN ABSOLUTE CRITERION FOR FITTING FREQUENCY CURVES.

By R. A. Fisher, Gonville and Caius College, Cambridge.

1. If we set ourselves the problem, in its frequent occurrence, of finding the arbitrary function of known form, which best suit a observations, we are met at the outset by an which appears to invalidate any results we ma

Maximum Likelihood Estimation

ON AN ABSOLUTE CRITERION FOR FITTING FREQUENCY CURVES.

By R. A. Fisher, Gonville and Caius College, Cambridge.

1. If we set ourselves the problem, in its frequent occurrence, of finding the arbitrary function of known form, which best suit a observations, we are met at the outset by an which appears to invalidate any results we ma

$\log 0=-\infty$
$p_{\theta}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$ must be >0

Maximum Likelihood Estimation

Equivalent to a KL projection in the space of probability measures
$\min _{\boldsymbol{\theta} \in \Theta} \mathrm{KL}\left(\boldsymbol{\nu}_{\text {data }} \| \boldsymbol{p}_{\boldsymbol{\theta}}\right)$

Maximum Likelihood Estimation

Equivalent to a KL projection in the space of probability measures
$\min _{\boldsymbol{\theta} \in \Theta} \mathrm{KL}\left(\boldsymbol{\nu}_{\text {data }} \| \boldsymbol{p}_{\boldsymbol{\theta}}\right)$

In higher dimensional spaces...

In higher dimensional spaces...

In higher dimensional spaces...

Generative Models

Generative Models

latent
space

Generative Models

Push-forward: $\forall B \subset \Omega, f_{\sharp} \mu(B):=\mu\left(f^{-1}(B)\right)$

Generative Models

Goal: find θ such that $f_{\theta \sharp} \boldsymbol{\mu}$ fits $\boldsymbol{\nu}_{\text {data }}$

Generative Models

Goal: find θ such that $f_{\theta \sharp} \boldsymbol{\mu}$ fits $\boldsymbol{\nu}_{\text {data }}$

Generative Models

Difference between fitting a push forward measure $f_{\theta \sharp} \mu$ vs. a density p_{θ} ?

Generative Models

MLE $\max _{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}\left(x_{i}\right)=\min _{\theta \in \Theta} \mathrm{KL}\left(\nu_{\text {data }} \| p_{\theta}\right)$

Generative Models

MLE $\quad \max _{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \log \underline{f_{\theta \sharp} \mu\left(x_{i}\right)} \min _{\theta \in \Theta} K L\left(\boldsymbol{\nu}_{\text {data }} \| \underline{f_{\theta \sharp} \mu}\right)$

Generative Models

ALE
$\max _{\boldsymbol{\theta} \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \log \boldsymbol{f}_{\boldsymbol{\theta} \sharp} \boldsymbol{\mu}\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \quad \min _{\boldsymbol{\theta} \in \Theta} \operatorname{KL}\left(\boldsymbol{\nu}_{\text {data }} \| \boldsymbol{f}_{\boldsymbol{\theta} \sharp \boldsymbol{\mu}}\right)$

Generative Models

Need a more flexible discrepancy function to compare $\nu_{\text {data }}$ and $\boldsymbol{f}_{\boldsymbol{\theta}} \boldsymbol{\mu}$

Workarounds?

- Formulation as adversarial problem [GPM...'14]
$\min _{\theta \in \Theta \text { classifiers }} \max$ Accuracy $_{g}\left(\left(f_{\theta \sharp} \mu,+1\right),\left(\nu_{\text {data }},-1\right)\right)$
- Use a richer metric Δ for probability measures, able to handle measures with non-overlapping supports:
$\min _{\theta \in \Theta} \Delta\left(\boldsymbol{\nu}_{\text {data }}, \boldsymbol{p}_{\theta}\right), \quad \operatorname{not} \min _{\theta \in \Theta} \mathrm{KL}\left(\boldsymbol{\nu}_{\text {data }} \| \boldsymbol{p}_{\theta}\right)$

Minimum Δ Estimation

By Joseph Berkson
Mayo Clinic, Rochester, Minnesota

COMPUTATIONAL
STATISTICS
\& DATA ANALYSIS

Minimur Hellinger listance estimation for Poisson mixtures

Dimitris Karlis, Evdokia Xekalaki*

Deparment of Suairics. Athens Liniversiny of Econowicz and Bushness. 76 Parizsion Siry., 10434 Athens, Greece

STATISTICS \& PROBABILITY LETTERS

Statistics \& Probahility Tetlers 76 (2006) 1298-1302

Federico Bassetti ${ }^{\mathrm{a}}$, Antonella Bodini ${ }^{\mathrm{b}}$, Eugenio Regazzini ${ }^{\mathrm{a}, *}$

Minimum Kantorovich Estimation

- Use optimal transport theory, namely Wasserstein distances to define discrepancy Δ.

$$
\min _{\boldsymbol{\theta} \in \Theta} W\left(\boldsymbol{\nu}_{\text {data }}, f_{\boldsymbol{\theta} \sharp} \boldsymbol{\mu}\right)
$$

- Optimal transport? fertile field in mathematics.

Monge

Dantzig

Brenier

Otto

McCann

Villani

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

What is Optimal Transport?

A geometric toolbox to compare probability measures supported on a metric space.

What is Optimal Transport?

A powerful geometric toolbox to compare probability measures.

What is Optimal Transport?

A powerful geometric toolbox to compare probability measures.

Wasserstein
Barycenters [Agueh'11]

What is Optimal Transport?

A powerful geometric toolbox to compare probability measures.

Wasserstein
Barycenters [Agueh'11]

[SDPC..'15]

Origins: Monge’s Problem

666. Memoires de l'Academie Royale

$$
\begin{aligned}
& \text { MEMOIRE } \\
& \text { SUR LA } \\
& \text { THEORIE DES DÉBLAIS } \\
& \text { ET DES REMBLAIS. } \\
& \text { Par M. M o N G e. }
\end{aligned}
$$

T orsqu'on doit tranfporter des terres d'un lieu dans un 1 autre, on a coutume de donner le nom de Déblai au volume des terres que l'on doit tranfporter, \& le nom de Remblai à l'efpace qu'elles doivent occuper après le tranfport.

Origins: Monge’s Problem

$$
y=T(x)
$$

Origins: Monge’s Problem

$$
y=T(x)
$$

$$
\mathbf{D}(x, T(x))
$$

Origins: Monge’s Problem

Ω a probability space, $c: \Omega \times \Omega \rightarrow \mathbb{R}$. μ, ν two probability measures in $\mathcal{P}(\Omega)$.
[Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$

$$
\inf _{T_{\sharp} \mu=\nu} \int_{\Omega} c(x, T(x)) \mu(d x)
$$

Origins: Monge’s Problem

Ω a probability space, $c: \Omega \times \Omega \rightarrow \mathbb{R}$. μ, ν two probability measures in $\mathcal{P}(\Omega)$.
[Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$ [Brenier'87] If $\Omega=\mathbb{R}^{d}, c=\|\cdot-\cdot\|^{2}$, μ, ν a.c., then $T=\nabla u, u$ convex.

Monge's Problem

Ω a probability space, $c: \Omega \times \Omega \rightarrow \mathbb{R}$. μ, ν two probability measures in $\mathcal{P}(\Omega)$.
[Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$

$$
\inf _{T_{\sharp} \mu=\nu} \int_{\Omega} c(x, T(x)) \mu(d x)
$$

Monge's Problem

Ω a probability space, $c: \Omega \times \Omega \rightarrow \mathbb{R}$. μ, ν two probability measures in $\mathcal{P}(\Omega)$.
[Monge'81] problem: find a map $T: \Omega \rightarrow \Omega$

[Kantorovich'42] Relaxation

- Instead of maps $T: \Omega \rightarrow \Omega$, consider probabilistic maps, i.e. couplings $P \in \mathcal{P}(\Omega \times \Omega)$:

$$
\begin{gathered}
\Pi(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\{\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega \\
\boldsymbol{P}(\boldsymbol{A} \times \Omega)=\boldsymbol{\mu}(\boldsymbol{A}), \\
\boldsymbol{P}(\Omega \times \boldsymbol{B})=\boldsymbol{\nu}(\boldsymbol{B})\}
\end{gathered}
$$

[Kantorovich'42] Relaxation

$$
\begin{aligned}
& \Pi(\mu, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\{\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\
& \boldsymbol{P}(\boldsymbol{A} \times \Omega)=\mu(\boldsymbol{A}), \boldsymbol{P}(\Omega \times \boldsymbol{B})=\boldsymbol{\nu}(\boldsymbol{B})\}
\end{aligned}
$$

[Kantorovich'42] Relaxation

$$
\begin{aligned}
& \Pi(\mu, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\{\boldsymbol{P} \in \mathcal{P}(\Omega \times \Omega) \mid \forall \boldsymbol{A}, \boldsymbol{B} \subset \Omega, \\
& \boldsymbol{P}(\boldsymbol{A} \times \Omega)=\mu(\boldsymbol{A}), \boldsymbol{P}(\Omega \times \boldsymbol{B})=\boldsymbol{\nu}(\boldsymbol{B})\}
\end{aligned}
$$

Wasserstein Distances

Def. For $p \geq 1$, the p-Wasserstein distance between μ, ν in $\mathcal{P}(\Omega)$, defined by a metric D on Ω,
$W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \inf _{\boldsymbol{P} \in \Pi(\mu, \boldsymbol{\nu})} \iint \boldsymbol{D}(x, y)^{p} \boldsymbol{P}(d x, d y)$.

Wasserstein Distances

Def. For $p \geq 1$, the p-Wasserstein distance

 between $\boldsymbol{\mu}, \boldsymbol{\nu}$ in $\mathcal{P}(\Omega)$, defined by a metric D on Ω,$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \inf _{P \in \Pi(\mu, \boldsymbol{\nu})} \iint D(x, y)^{p} \boldsymbol{P}(d x, d y)
$$

THE DISTRIBUTION OF A PRODUCT FROM SEVERAL SOURCES TO NUMEROUS LOCALITIES

By Frank L. Hitchcock

1. Statement of the problem. When several factories supply a product to a number of cities we desire the least costly manner of distribution. Due to freight rates and other matters the cost of a ton of product to a particular city will vary according to which factory supplies it, and will also vary from city to city.

MATEMATИЧECHИE МЕТОДЫ
ОРГАнНつАムин И noartpoquer9 ПРОНЗВОДСТВА

Wasserstein Distances

Def. For $p \geq 1$, the p-Wasserstein distance between $\boldsymbol{\mu}, \boldsymbol{\nu}$ in $\mathcal{P}(\Omega)$, defined by a metric D on Ω,
$\left.W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \inf _{P \in \Pi(\mu, \nu)} \iint \boldsymbol{D}(x, y)^{p} \boldsymbol{P}(d x, d y).\right]$

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\sup _{\substack{\varphi \in L_{1}(\mu), \boldsymbol{\psi} \in L_{1}(\boldsymbol{\nu}) \\ \varphi(x)+\boldsymbol{\psi}(y) \leq D^{p}(x, y)}} \int \varphi d \mu+\int \boldsymbol{\psi} d \boldsymbol{\nu}
$$

W is versatile

W is versatile

Minimum Kantorovich Estimators

$$
\min _{\boldsymbol{\theta} \in \Theta} W\left(\boldsymbol{\nu}_{\text {data }}, f_{\boldsymbol{\theta} \sharp} \boldsymbol{\mu}\right)
$$

[Bassetti'06] 1st reference discussing this approach.

- [MMC'16] use regularization in a finite setting. - [ACB'17] (WGAN) [BJGR'17] (Wasserstein ABC). Hot topics: approximate \& differentiate W efficiently - Today: ideas from our recent preprint [GPC'17]

Wasserstein on Empirical Measures

Wasserstein on Empirical Measures

$M_{\boldsymbol{X} \boldsymbol{Y}} \stackrel{\text { def }}{=}\left[D\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right)^{p}\right]_{i j}$
$U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text { def }}{=}\left\{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \mid \boldsymbol{P} \mathbf{1}_{m}=\boldsymbol{a}, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}\right\}$
$\left.\left.\begin{array}{c} \\ x_{1} \\ \vdots \\ x_{n}\end{array} \begin{array}{ccc}y_{1} & \cdots & y_{m} \\ \cdot & \cdot & \cdot \\ \cdot & D\left(x_{i}, \boldsymbol{y}_{j}\right)^{p} & \cdot \\ \cdot & \cdot & \cdot\end{array}\right]_{3_{3} a_{n}}^{a_{1}} \begin{array}{c}a_{1} \\ \vdots \\ \cdots \\ \cdots\end{array} \begin{array}{ccc}b_{1} & \cdots & b_{m} \\ \cdots & \cdots & \cdots \\ \cdots\end{array}\right]$

Wasserstein on Empirical Measures

Consider $\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}$ and $\nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}}$.
$M_{\boldsymbol{X} \boldsymbol{Y}} \stackrel{\text { def }}{=}\left[D\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right)^{p}\right]_{i j}$
$U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text { def }}{=}\left\{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \mid \boldsymbol{P} \mathbf{1}_{m}=\boldsymbol{a}, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}\right\}$
$\left.\begin{array}{c} \\ { }_{x_{1}} \\ \vdots \\ x_{n}\end{array} \begin{array}{ccc}y_{1} & \cdots & y_{m} \\ \cdot & \cdot & \cdot \\ \cdot & D\left(x_{i}, \boldsymbol{y}_{j}\right)^{p} & \cdot \\ \cdot & \cdot & \cdot\end{array}{ }_{{ }_{33} a_{n}} \begin{array}{ccc}a_{1} \\ \vdots \\ \vdots & \vdots & b_{1} \\ \vdots & P^{T} \mathbf{1}_{n}=b & \vdots \\ \vdots & \vdots & \vdots\end{array}\right]$

Wasserstein on Empirical Measures

Consider $\mu=\sum_{i=1}^{n} a_{i} \delta_{x_{i}}$ and $\nu=\sum_{j=1}^{m} b_{j} \delta_{y_{j}}$
$M_{\boldsymbol{X} \boldsymbol{Y}} \stackrel{\text { def }}{=}\left[D\left(x_{i}, \boldsymbol{y}_{j}\right)^{p}\right]_{i j}$
$U(\boldsymbol{a}, \boldsymbol{b}) \stackrel{\text { def }}{=}\left\{\boldsymbol{P} \in \mathbb{R}_{+}^{n \times m} \mid \boldsymbol{P} \mathbf{1}_{m}=\boldsymbol{a}, \boldsymbol{P}^{T} \mathbf{1}_{n}=\boldsymbol{b}\right\}$
Def. Optimal Transport Problem

$$
W_{p}^{p}(\boldsymbol{\mu}, \boldsymbol{\nu})=\min _{P \in U(a, b)}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle
$$

Discrete OT Problem

Discrete OT Problem

Discrete OT Problem

Discrete OT Problem

Note: flow/PDE formulations [Beckman'61]/[Benamou'98] can be used for $p=1 / p=2$ for a sparse-graph metric/Euclidean metric.

Discrete OT Problem

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{\boldsymbol{P} \in U(\boldsymbol{a}, \boldsymbol{b})}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})
$$

$$
E(P) \stackrel{\text { def }}{=}-\sum_{i, j=1}^{n m} P_{i j}\left(\log P_{i j}\right)
$$

Note: Unique optimal solution because of strong concavity of Entropy

Entropic Regularization [Wilson'62]

Def. Regularized Wasserstein, $\gamma \geq 0$

$$
W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} \min _{P \in U(a, \boldsymbol{b})}\left\langle\boldsymbol{P}, M_{X \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})
$$

Note: Unique optimal solution because of strong concavity of Entropy

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$

$$
P \in U(a, b)
$$

then $\exists!u \in \mathbb{R}_{+}^{n}, v \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$ $P \in U(a, b)$
then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \stackrel{\text { def }}{=} e^{-M_{X Y} / \gamma}$

$$
\begin{aligned}
L(P, \alpha, \beta) & =\sum_{i j} P_{i j} M_{i j}+\gamma P_{i j} \log P_{i j}+\alpha^{T}(P \mathbf{1}-\boldsymbol{a})+\beta^{T}\left(P^{T} \mathbf{1}-\boldsymbol{b}\right) \\
\partial L / \partial P_{i j} & =M_{i j}+\gamma\left(\log P_{i j}+1\right)+\alpha_{i}+\beta_{j} \\
\left(\partial L / \partial \boldsymbol{P}_{i j}\right. & =0) \Rightarrow P_{i j}=e^{\frac{\alpha_{i}}{\gamma}+\frac{1}{2}} e^{-\frac{M_{i j}}{\gamma}} e^{\frac{\beta_{j}}{\gamma}+\frac{1}{2}}=u_{i} K_{i j} \boldsymbol{v}_{j}
\end{aligned}
$$

Fast \& Scalable Algorithm

Prop. If $P_{\gamma} \stackrel{\text { def }}{=} \operatorname{argmin}\left\langle\boldsymbol{P}, M_{\boldsymbol{X} \boldsymbol{Y}}\right\rangle-\gamma E(\boldsymbol{P})$

$$
P \in U(a, b)
$$

then $\exists!u \in \mathbb{R}_{+}^{n}, \boldsymbol{v} \in \mathbb{R}_{+}^{m}$, such that
$P_{\gamma}=\operatorname{diag}(u) K \operatorname{diag}(v), \quad K \xlongequal{\text { def }} e^{-M_{X Y} / \gamma}$

- [Sinkhorn'64] fixed-point iterations for $(\boldsymbol{u}, \boldsymbol{v})$

$$
u \leftarrow a / K \boldsymbol{v}, \quad \boldsymbol{v} \leftarrow \boldsymbol{b} / K^{T} \boldsymbol{u}
$$

- $O(n m)$ complexity, GPGPU parallel [C'13].
- $O\left(n^{d+1}\right)$ if $\Omega=\{1, \ldots, n\}^{d}$ and D^{p} separable. [S..C... ${ }^{15]}$

Sinkhorn Divergence

Def. For $\gamma>0$, let $W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\left\langle\boldsymbol{P}_{\gamma}, M_{X Y}\right\rangle$

Prop. $W_{\gamma}(\mu, \mu)>0$

Def. Normalized Sinkhorn Divergence
$\bar{W}_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu})-\frac{1}{2}\left(W_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\mu})+W_{\gamma}(\boldsymbol{\nu}, \boldsymbol{\nu})\right)$

$$
\text { Prop. If } p=1, \bar{W}_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) \underset{\gamma \rightarrow \infty}{\rightarrow} \operatorname{ED}(\boldsymbol{\mu}, \boldsymbol{\nu})
$$

Algorithmic Formulation

Def. For $L \geq 1$, define

$$
W_{L}(\boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=}\left\langle\boldsymbol{P}_{L}, M_{X \boldsymbol{Y}}\right\rangle
$$

where $P_{L} \stackrel{\text { def }}{=} \operatorname{diag}\left(u_{L}\right) K \operatorname{diag}\left(v_{L}\right)$,

$$
v_{0}=\mathbf{1}_{m} ; l \geq 0, u_{l} \stackrel{\text { def }}{=} a / K v_{l}, v_{l+1} \stackrel{\text { def }}{=} b / K^{T} u_{l} .
$$

Prop. $\frac{\partial W_{L}}{\partial X}, \frac{\partial W_{L}}{\partial a}$ can be computed recursively, in $O(L)$ kernel $K \times$ vector products.

Proposal: Autodiff OT using Sinkhorn

Approximate W loss by the transport cost \bar{W}_{L} after L Sinkhorn iterations.

Example: MNIST, Learning f_{θ}

	55588888811111
	5558888271111111111
	5558882221111111111
	555888222111111111
	55588822211111
	$555583222+1111111$
	$355333222+1$ 1111111
	$333333222441\|1\| 1111$
	333333644654111917
	3333356666644777777
	3333566666499997977
	3335666664999999999
	30000666699999999999
	00000066499999999999
	00000066499994449497
	00000066499944449777
	00000066499997777777
	00000066497777777777
	00000066977777777777
	100

Example: Generation of Images

MMD-GAN

$T=1000$

$T=10$

- CIFAR 10 images
- In these examples the cost function is also learned adversarially, as a NN mapping onto feature vectors.

Concluding Remarks

- Regularized OT is much faster than OT.
- Regularized OT can interpolate between W and the MMD / Energy distance metrics.
- The solution of regularized OT is "auto-differentiable". - Many open problems remain!

NIPS'17 WORKSHOP

NIPS'17 TUTORIAL

