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Statistics 0.1 : Density Fitting

⌫data

We collect data

⌫data =
1

N

NX

i=1

�
xi
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Statistics 0.1 : Density Fitting

⌫data

We fit a parametric 
family of densities

{p✓, ✓ 2 ⇥}

We collect data

⌫data =
1

N

NX

i=1

�
xi

p✓0

e.g. ✓ = (m,⌃);p✓ = N (m,⌃)



Density Fitting

⌫data

p✓1



Density Fitting

⌫data

p✓2



Density Fitting

⌫data

p✓
done!

We stop when there 
is a good fit.



Maximum Likelihood Estimation

⌫data

p✓
done!

max

✓2⇥

1

N

NX

i=1

log p✓(xi)



Maximum Likelihood Estimation

⌫data

p✓
done!

max

✓2⇥

1

N

NX

i=1

log p✓(xi)

log 0 = �1
p✓(xi) must be > 0



⌫data

p✓
done!

Equivalent to a KL projection in 
the space of probability measures

{p✓, ✓ 2 ⇥}
⌫data

p✓
done!

p✓1

p✓2

min
✓2⇥

KL(⌫datakp✓)

KL

Maximum Likelihood Estimation



⌫data

p✓
done!

Equivalent to a KL projection in 
the space of probability measures

{p✓, ✓ 2 ⇥}
⌫data

p✓
done!

p✓0
p✓1

p✓2

min
✓2⇥

KL(⌫datakp✓)

KL

Maximum Likelihood Estimation
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In higher dimensional spaces…

⌫data

min
✓2⇥

KL(⌫datakp✓)



p✓

8

In higher dimensional spaces…

⌫data

min
✓2⇥

KL(⌫datakp✓)



p✓
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Data space has dimension
100⇥ 100⇥ 256⇥ 256⇥ 256

⇡ 167⇥ 109

⌫data

In higher dimensional spaces…
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Generative Models

⌫data
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Generative Models
µ

latent  
space

data space

⌫data
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Generative Models
µ

latent  
space

data space

⌫data

f✓ : latent space ! data space
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Generative Models
µ

latent  
space

data space

⌫data

f✓ : latent space ! data space
z

z =

2

666664

.32
.8
.34
...

.01

3

777775
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Generative Models
µ

latent  
space

data space

⌫data

f✓ : latent space ! data space
z

z =

2

666664

.32
.8
.34
...

.01

3

777775

f✓(z)

f✓
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Generative Models
µ

latent  
space

data space

⌫data

f✓ : latent space ! data space
z

z =

2

666664

.32
.8
.34
...

.01

3

777775

f✓(z)

f✓
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Generative Models
µ

latent  
space

data space

⌫data

f✓ : latent space ! data space

f✓]µ
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Generative Models
µ

latent  
space

data space

⌫data

f✓ : latent space ! data space

f✓]µ

Push-forward: 8B ⇢ ⌦,f ]µ(B) := µ(f�1
(B))
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Generative Models
µ

latent  
space

⌫data

f✓ : latent space ! data space

data space
f✓]µ

Goal: find ✓ such that f✓]µ fits ⌫data
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Generative Models
µ

latent  
space

⌫data

f✓ : latent space ! data space

data space
f✓]µ

Goal: find ✓ such that f✓]µ fits ⌫data
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Generative Models
µ

latent  
space

⌫data

f✓ : latent space ! data space

data space

Di↵erence between fitting a push forward

measure f✓]µ vs. a density p✓?

f✓]µ
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Generative Models
µ

latent  
space

⌫data

f✓ : latent space ! data space

max

✓2⇥

1

N

NX

i=1

log p✓(xi)MLE

data space

min
✓2⇥

KL(⌫datakp✓)

f✓]µ

=
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Generative Models
µ

latent  
space

⌫data

f✓ : latent space ! data space

max

✓2⇥

1

N

NX

i=1

log f✓]µ(xi)MLE

data space

min
✓2⇥

KL(⌫datakf✓]µ)

f✓]µ
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Generative Models
µ

latent  
space

⌫data

f✓ : latent space ! data space

max

✓2⇥

1

N

NX

i=1

log f✓]µ(xi)MLEMLE

data space

min
✓2⇥

KL(⌫datakf✓]µ)

f✓]µ
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Generative Models
µ

latent  
space

⌫data

f✓ : latent space ! data space

data space

Need a more flexible discrepancy

function to compare ⌫data and f✓]µ

f✓]µ
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Workarounds?µ

latent  
space

⌫data

data 
space

• Formulation as adversarial problem [GPM…’14] 

• Use a richer metric     for probability measures, 
able to handle measures with non-overlapping 
supports:

min

✓2⇥
max

classifiers g
Accuracyg ((f✓]µ,+1), (⌫data,�1))

min
✓2⇥

�(⌫data,p✓), notmin
✓2⇥

KL(⌫datakp✓)

�



Minimum     Estimation

17

l1

�



Minimum Kantorovich Estimation

18

• Use optimal transport theory, namely Wasserstein 
distances to define discrepancy    .  

• Optimal transport? fertile field in mathematics.

Monge Kantorovich Dantzig Brenier McCann VillaniOttoKoopmans

�

Nobel ’75 Fields ’10

min
✓2⇥

W (⌫data, f✓]µ)



What is Optimal Transport?
A geometric toolbox to  

compare probability measures  
supported on a metric space.

19

Empirical 
Measures, 
i.e. data

µ

⌫

h1

Color Histograms

h2

Bags  
of features

d

p✓

p✓0

Statistical Models Brain Activation Maps



h2

Bags  
of features

d

Brain Activation Maps

What is Optimal Transport?
A geometric toolbox to  

compare probability measures  
supported on a metric space.

20

p✓

p✓0

Statistical Models

µ

⌫

Color Histograms

Empirical 
Measures, 
i.e. data
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A powerful geometric toolbox to  
compare probability measures.

What is Optimal Transport?

[SDPC..’15]
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A powerful geometric toolbox to  
compare probability measures.

Wasserstein  
Barycenters 
[Agueh’11]

What is Optimal Transport?

[SDPC..’15]
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A powerful geometric toolbox to  
compare probability measures.

Wasserstein  
Barycenters 
[Agueh’11]

What is Optimal Transport?

[SDPC..’15]
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Origins: Monge’s Problem
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Origins: Monge’s Problem
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Origins: Monge’s Problem
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Origins: Monge’s Problem

x
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Origins: Monge’s Problem

x
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Origins: Monge’s Problem

x

y = T (x)
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Origins: Monge’s Problem

x

y = T (x)

D(x, T (x))
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⌦ a probability space, c : ⌦⇥ ⌦ ! R.
µ,⌫ two probability measures in P(⌦).

x

T (x)

[Monge’81] problem: find a map T : ⌦ ! ⌦

inf
T ]µ=⌫

Z

⌦
c(x,T (x))µ(dx)

Origins: Monge’s Problem
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⌦ a probability space, c : ⌦⇥ ⌦ ! R.
µ,⌫ two probability measures in P(⌦).

x

T (x)

If ⌦ = Rd, c = k ·� · k2,
µ,⌫ a.c., then T = ru, u convex.
[Brenier’87] 
[Monge’81] problem: find a map T : ⌦ ! ⌦

Origins: Monge’s Problem
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[Monge’81] problem: find a map T : ⌦ ! ⌦

x

T (x)

⌦ a probability space, c : ⌦⇥ ⌦ ! R.
µ,⌫ two probability measures in P(⌦).

inf
T ]µ=⌫

Z

⌦
c(x,T (x))µ(dx)

Monge’s Problem
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[Monge’81] problem: find a map T : ⌦ ! ⌦

�
x

⌦ a probability space, c : ⌦⇥ ⌦ ! R.
µ,⌫ two probability measures in P(⌦).

inf
T ]µ=⌫

Z

⌦
c(x,T (x))µ(dx)

Monge’s Problem



[Kantorovich’42] Relaxation

27

⇧(µ,⌫)
def
= {P 2 P(⌦⇥ ⌦)| 8A,B ⇢ ⌦,

P (A⇥ ⌦) = µ(A),

P (⌦⇥B) = ⌫(B)}

• Instead of maps                  , consider 
probabilistic maps, i.e. couplings                        :            

T : ⌦ ! ⌦
P 2 P(⌦⇥ ⌦)
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⇧(µ,⌫)
def
= {P 2 P(⌦⇥ ⌦)| 8A,B ⇢ ⌦,

P (A⇥ ⌦) = µ(A),P (⌦⇥B) = ⌫(B)}

Joint Probabilities of (µ, ν)

For P ∈ Π(µ,ν),
P ({x},Ω) = µ({x}) and P (Ω, {y}) = ν({y})

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

0.6
µ(x) ν(y)

x y

P

0

0.1

0.2

0.3

P (x, y)

[Kantorovich’42] Relaxation
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⇧(µ,⌫)
def
= {P 2 P(⌦⇥ ⌦)| 8A,B ⇢ ⌦,

P (A⇥ ⌦) = µ(A),P (⌦⇥B) = ⌫(B)}

Joint Probabilities of (µ, ν)

For P ∈ Π(µ,ν),
P ({x},Ω) = µ({x}) and P (Ω, {y}) = ν({y})

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

0.6
µ(x) ν(y)

x y

P

0

0.1

0.2

0.3

P (x, y)

Joint Probabilities of (µ, ν)

Π(µ,ν) = probability measures on Ω2

with marginals µ and ν.

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

0.6
µ(x) ν(y)

x y

P

0

5 · 10−2

0.1

0.15

P (x, y)

Joint Probabilities of (µ, ν)

For P ∈ Π(µ,ν),
P ({x},Ω) = µ({x}) and P (Ω, {y}) = ν({y})

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

0.6
µ(x) ν(y)

x y

P

0

0.1

0.2

0.3

P (x, y)

[Kantorovich’42] Relaxation



Wasserstein Distances

29

Def. For p � 1, the p-Wasserstein distance

between µ,⌫ in P(⌦), defined by a metric

D on ⌦,

W

p
p (µ,⌫)

def
= inf

P2⇧(µ,⌫)

ZZ
D(x, y)pP (dx, dy).

PRIMAL
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Wasserstein Distances

29

Def. For p � 1, the p-Wasserstein distance

between µ,⌫ in P(⌦), defined by a metric

D on ⌦,

W

p
p (µ,⌫)

def
= inf

P2⇧(µ,⌫)

ZZ
D(x, y)pP (dx, dy).

PRIMAL

W p

p

(µ,⌫) = sup
'2L1(µ), 2L1(⌫)
'(x)+ (y)Dp(x,y)

Z
'dµ+

Z
 d⌫.

DUAL



W is versatile

30

Discrete - Continuous 

Continuous - Continuous 

Discrete - Discrete



W is versatile

30

Discrete - Continuous 

Continuous - Continuous 

Discrete - Discrete

Stochastic  
Optimization

- Network flow solvers 
- Entropic regularization

[GCPB’16]

low dim.
[M’11][KMB’16] [L’15]
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Minimum Kantorovich Estimators

min
✓2⇥

W (⌫data, f✓]µ)

• [Bassetti’06] 1st reference discussing this approach. 

• [MMC’16] use regularization in a finite setting. 

• [ACB’17] (WGAN) [BJGR’17] (Wasserstein ABC). 
• Hot topics: approximate & differentiate W efficiently. 
• Today: ideas from our recent preprint [GPC’17]
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(⌦,D)

Wasserstein on Empirical Measures

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj



Wasserstein on Empirical Measures

33

U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}
MXY

def
= [D(xi,yj)

p]ij

Consider µ =

nX

i=1

a
i

�
xi and ⌫ =

mX

j=1

b
j

�
yj .

2

66664

b1 ... bm

a1 · · · · · · · · ·
... · · · P1m = a · · ·

an · · · · · · · · ·

3

77775

2

66664

y1 ... ym

x1 · · ·
.

.

. · D(x
i

,y
j

)p ·

xn · · ·

3

77775



Wasserstein on Empirical Measures

33

U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}
MXY

def
= [D(xi,yj)

p]ij

Consider µ =

nX

i=1

a
i

�
xi and ⌫ =

mX

j=1

b
j

�
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2

66664

b1 ... bm

a1

...
...

...

...
... P T1n = b

...

an

...
...

...

3

77775

2
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y1 ... ym

x1 · · ·
.

.

. · D(x
i

,y
j

)p ·

xn · · ·
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Wasserstein on Empirical Measures

33

U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}
MXY

def
= [D(xi,yj)

p]ij

Def. Optimal Transport Problem

W p
p (µ,⌫) = min

P2U(a,b)
hP ,MXY i

Consider µ =

nX

i=1

a
i

�
xi and ⌫ =

mX

j=1

b
j

�
yj .



Discrete OT Problem

34

MXY

U(a, b)



Discrete OT Problem

35

MXY

U(a, b)

P ?



Discrete OT Problem

35

Def. Dual OT problem
W p

p (µ,⌫) = max

↵2Rn,�2Rm

↵i+�jD(xi,yj)
p

↵Ta+ �T b

MXY

U(a, b)

P ?



Discrete OT Problem

35

MXY

U(a, b)

P ?

O(n3
log(n))

network flow solver 
used in practice.

Note: flow/PDE formulations [Beckman’61]/[Benamou’98] can be 
used for p=1/p=2 for a sparse-graph metric/Euclidean metric. 



Discrete OT Problem
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MXY

U(a, b)

P ?

O(n3
log(n))

network flow solver 
used in practice.
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O(n3
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used in practice.

P ?Solution       unstable 
and not always unique.
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MXY

U(a, b)

O(n3
log(n))

network flow solver 
used in practice.

P ?Solution       unstable 
and not always unique.{P ?}



Discrete OT Problem
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MXY

U(a, b)

O(n3
log(n))

network flow solver 
used in practice.

{P ?}
P ?Solution       unstable 

and not always unique.
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Discrete OT Problem

37

MXY

U(a, b)

O(n3
log(n))

network flow solver 
used in practice.

P ?

P ?Solution       unstable 
and not always unique.

W p
p (µ,⌫) not di↵erentiable.



Entropic Regularization [Wilson’62]

38

Note: Unique optimal solution because of strong concavity of Entropy

E(P )

def
= �

nmX

i,j=1

Pij(logPij)

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P )



Entropic Regularization [Wilson’62]

38

EMD Entropy

Discrete analog:  Cuturi, NIPS 2013

�
µ

⌫

P�

Note: Unique optimal solution because of strong concavity of Entropy

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P )



Fast & Scalable Algorithm

39

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P )

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�



Fast & Scalable Algorithm

39

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P )

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

L(P,↵,�) =
X

ij

PijMij + �Pij logPij + ↵T
(P1� a) + �T

(PT1� b)

@L/@Pij = Mij + �(logPij + 1) + ↵i + �j

(@L/@Pij = 0) )Pij = e
↵i
� +

1
2 e

�
Mij

� e
�j

� +
1
2
= ui KKijvj



Fast & Scalable Algorithm

39

• [Sinkhorn’64] fixed-point iterations for           

•               complexity, GPGPU parallel [C’13] . 
•                if                           and       separable.

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P )

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

(u,v)

O(nm)

Dp

[S..C..’15]
⌦ = {1, . . . , n}dO(nd+1)

u a/KKv, v  b/KKTu
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Sinkhorn Divergence

Prop. W�(µ,µ) > 0

Def. Normalized Sinkhorn Divergence

¯W�(µ,⌫)
def
= W�(µ,⌫)�

1

2

(W�(µ,µ) +W�(⌫,⌫))

Def. For � > 0, let W�(µ,⌫)
def
= hP� ,MXY i

Prop. If p = 1, W̄�(µ,⌫) !
�!1

ED(µ,⌫)
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Algorithmic Formulation

Prop.

@WL
@X , @WL

@a can be computed recur-

sively, in O(L) kernelKK⇥vector products.

Def. For L � 1, define

WL(µ,⌫)
def
= hPL,MXY i,

where PL
def
= diag(uL)KKdiag(vL),

v0 = 1m; l � 0,ul
def
= a/KKvl,vl+1

def
= b/KKTul.
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Proposal: Autodiff OT using Sinkhorn

[GPC’17]

C K

` `+ 1

SinkhornGenerative model ` = 1, . . . , L� 1

. . .

✓1
✓2

(c(xi, yj))i,j

. . .

I
n
p
u
t

d
a
t
a

(z
1
,.
..
,z

m
)

(x
1
,
.
.
.
,
x

m
)

(y
1
,.
..
,y

n
) 1m ÊL(✓)1/·

⇥mK>⇥nK

1/·

b`
a`+1

b`+1
. . .. . .

h(C �K)bL, aLi
e�C/"

Approximate W loss by the transport cost

¯WL after L Sinkhorn iterations.
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Example: MNIST, Learning f✓



44

Example: Generation of Images
Manuscript under review by AISTATS 2018

(a) MMD (b) " = 1000 (c) " = 10

Figure 4: Samples from the generator trained on CIFAR 10 for MMD and Sinkhorn loss (coming from the same
samples in the latent space)

Learning the cost With higher-resolution datasets,
such as classical benchmarks CIFAR10 or CelebA, using
the L2 metric between images yields very poor results.
It tends to generate images which are basically a blur
of similar images. The alternative, already outlined
in Algortithm 1 relies on learning another network
wich encodes meaningful feature vectors for the images,
between which can take the euclidean distance.

We compare our loss with different values for the regu-
larization parameter " to the results obtained with an
MMD loss with a gaussian kernel. The experimental
setting is the same as in [24] and we used the same
parameters to carry out a fair comparison.

Table 2 summarizes the inception scores on CIFAR10
for MMD and Sinkhorn loss with varying ". Generative
models are very hard to evaluate and there is no con-
sensus on which metric should be used to assess their
quality. We choose the inception score introduced in
[29] as it is well spread, and also the reference in [11]
agains which we compare our losses. The scores are
evalutated on 20000 random images. Figure 4 displays
a few of the associated samples (generated with the
same seed). Although there is no striking difference in
visual quality, the model with a Sinkhorn loss and a
large regularization is the one with the best score. The
poor scores of models which have a loss closer to the
true OT loss can be explained by two main factors : (i)
the number of iterations required for the convergence of
Sinkhorn with such " might exceed the total iteration
budget that we give the algorithm to compute the loss
(to ensure reasonable training time of the model), (ii) it
reflects the fact that sample complexity worsens when
we get closer to OT metrics, and increasing the batch
size might be beneficial in that case.

MMD " = 1000 " = 100 " = 10

4.04 ± 0.07 4.14 ± 0.06 3.09 ± 0.036 3.11 ± 0.031

Table 2: Inception Scores

Conclusion

In this paper, we presented a new computational tool-
box to train large scale generative models with the
Sinkhorn divergence. Thanks to the combination of
entropic smoothing and automatic differentiation, it
makes optimal transport applicable in arbitrary com-
plex generative model setups. Besides, we proved that
this divergence interpolates between classical OT and
MMD losses, benefiting from advantages of both frame-
works. Future work should focus on theoretical proper-
ties of the Sinkhorn divergence, in particular sample
complexity and positivity.
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• CIFAR 10 images 

• In these examples the cost function is also learned 
adversarially, as a NN mapping onto feature 
vectors.
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Concluding Remarks

• Regularized OT is much faster than OT.  

• Regularized OT can interpolate between W and the 
MMD / Energy distance metrics. 

• The solution of regularized OT is “auto-differentiable”. 
• Many open problems remain!
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