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Problem: Average /N Probability Measures

v =>3,a 1ll’lj‘[ = 3 bidy,

«* E 3 K
»
w *

(2, D) Vg = ) . Ci0y,

e {{), D} a metric space

e {11, - ,vn} family of empirical probability measures.
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Problem: Average /N Probability Measures

v =>3,a lllll[ = 30 bidy,

»® * R R

(€2, D) Vg = ) ,.C;i0z,

Can we summarize the {r;} as an “average” or a
“barycentric” single empirical probability measure?
interest in ML: empirical measure = dataset,

histogram /bags-of-features, single observation with uncertainty
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Euclidean Means for Vectors

e For vectors {x1,--- ,zn} in a Hilbert, their average is

1 N
N2

S|
|
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Euclidean Means for Vectors

e For vectors {x1,--- ,zn} in a Hilbert, their average is

1 N
N2

S|
|

e behind this formula lies a variational problem

N
_ .1 5
T = argmin —— E |u — ;|5

uERd i=1
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Euclidean Means for Measures

e For probability measures {v;},—; n, we can also use:
| X

M= N 2; Vi,
1=

. : _p?
e as well as, using a smoothing kernel k = e 77/7,

N

MZ%Z(’C*V@)

i=1
(a.k.a RKHS mean map [Gretton’07])
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Other Means for Probabilities

e Other means can be defined using other metrics or
divergences:

N
argmin Y A(u, V).
pneP(9) ;

o KL, Symmetrized KL [Nielsen’12]
o Bregman Divergence [Bhanerjee’05]

o Wasserstein Distance (a.k.a EMD) [Agueh’11]
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Wasserstein Barycenter Problem
e [Agueh’11] defined

N
argmin » WP(u,v;),
peP(Q) ; v

provided theoretical analysis, unicity of solution.
e Simple cases (N = 2, multivariate Gaussians) covered.

e very challenging computational problem.
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Our Contribution

e First computational approach to solve efficiently
variational Wasserstein problems,

e including the Wasserstein barycenter problem,

argmin » WP(u,v;),
peP(§) Z

e that is applicable for arbitrary (£2, D) and p > 0, using
entropy-smoothed optimal transport [Cuturi’'13].
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Our Contribution

e First computational approach to solve efficiently
variational Wasserstein problems,

e including the Wasserstein barycenter problem,

argmin » WP(u,v;),
peP(Q) Z

e that is applicable for arbitrary (£2, D) and p > 0, using
entropy-smoothed optimal transport [Cuturi’'13].

([Rabin’12,Bonneel’14] studied case Q = R?)
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Motivating Examples
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2 Points on the Real Line
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Their Average
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2 Points as Diracs
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Euclidean Mean of Diracs
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Wasserstein Mean of Diracs
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Smoothed Measures (RKHS mean map)

R W

0.3¢

0.2 | k(z,-) k(y, )

JVARWARN
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Euclidean Mean of 2 Gaussians
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Wasserstein Mean of 2 Gaussians
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6 Gaussians
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1.5¢

Euclidean Mean
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1.5¢

Wasserstein Mean
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Motivation in 2D
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Euclidean / Centered / Jeffrey / RKHS
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Euclidean distance / recentered,
Sym. Kullback / RKHS Mean Map
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Wasserstein Barycenter

2-Wasserstein barycenter
(computed with our method)
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Variational Perspective on
the Wasserstein Distance
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Wasserstein for Empirical Measures

— S a6
2-iz1 @i0a, l %

------

~
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e
-
e

(%, D)

e (2, D) metric. p > 1.

e Two empirical measures u, V.

p-Wasserstein distance W,(u, )7
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Computing p Wasserstein Distances

U = Z aiéwi, UV = Z bj5yj,
1=1 j=1

W,(w, v) is the solution of a linear program involving:

det <m
1. Mxy = [D(ZIZZ, yj)p]@-j c R"

def

2. U(a,b) ={T e R | T1,, = a, T"1, = b}.
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Computing the OT Distance

e p-Wasserstein is the solution (primal or dual LP):

primal(a,b, M xy) ' in (T, Mxvy )
TeU(a,b)
WP (1, ) >
) 4 — e
p I dual(a,b, Mxy) ' max ola + BTy

(.B)eCh 5y

where Cyy = {(a, 8) e R | a; + B; < M5}
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Computing the OT Distance

e p-Wasserstein is the solution (primal or dual LP):

primal(a,b, M xy) ' in (T, Mxvy )
TeU(a,b)
WP (1, ) >
) 4 — e
p I dual(a,b, Mxy) ' max ola + BTy

(@.0)€CM 5

where Cyy = {(a, ) € R"™ | o; + B; < M5}

Changes in f(a,,X)déf WP(p,v) as a & X change?

22.06.14 30



Wasserstein (Sub)differentiability

fla,X)= max aola+3'b

(.B)eCh 5+

e 0f|, = a*: the dual optimum o* is a subgradient.

X)= min (T.M
f(a, X) ng%gb)h XY )

o Of|x = YT*!'diag(a™t): primal optimum T*' yields
a subgradient (when D =Euclidean, p = 2).
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Average of Wasserstein Distances

N
def 1
gla, X) = NZ W]];(l'l’a V;)
i=1

N
1
== Z primal(a, b;, M xy,)
1=1

e a — g(a,X) is convex, non-smooth

e X — g(a,X) is not convex, non-smooth
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Wasserstein Barycenter Problem

mmg(a X) Zprlmal(a b;, Mxv,)
1=1

e a — g(a,X) is convex
o subgradient method works (in theory).
o Great if X is fixed (b-o-w or discretized 2)!

o Need to solve {a’} at each subgradient step.
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Wasserstein Barycenter Problem

mm g(a, X) Z primal(a, b;, Mxy;)

1=1

e X — g(a, X) is not convex

o (and

o loca

so far only applicable when € is R%))

minimum with subgradient method

o Need to compute {77} at each subgradient step
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To recapitulate...

i X
min g(a, X)

e convex w.r.t weights a, not locations X.
e only subgradients (g is usually very degenerate).
e computationally intractable (cost of OT ~ n’logn)

e computationally inefficient (hard to parallelize)
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Solution: Entropic Smoothing

Original primal problem gives us T
imal(a,b, Mxy) = min (T, M
primal(a, b, Mxy) ng}l(ﬂl,b)< XY )

Original dual problem gives us o™:

dual(a, b, Mxy) = max ala+ B
(o,8),;+8;<M;;
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Solution: Entropic Smoothing

Smoothed (A > 0) primal problem gives us T%:

1
primal)\(a, b, MXy) — TéI[l]i(Ialb)<T, MXY > — Xh(T)

Smoothed dual problem gives us ay:

—A(mij—ai—B;)

e
dualy(a, b, Mxy) = max o’ a+3" b— Z
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Benefits of Smoothing [Cuturi’13]

e Objective now strongly convex vs. piecewise linear:
infinitely more efficient in practice [Nesterov’05].

e Primal/dual smoothed optima a3, T} can be solved
o In O(n?) with Sinkhorn’s algorithm,
o in parallel on GPGPUs for any metric on finite €,
o millions of time faster than simplex,

o can deal with large dimensions (= 20.000).
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® our approac

To conclude...

n also generalizes k-means

O cah consid

er weight constraints (see paper),

o can quantize simultaneously different datasets

e Versatile and scalable approach for other variational
Wasserstein problems (e.g. Wasserstein

propagation

[Solomon’14])

e Future applications to visualization of measures on

Riemanian manifolds, data-fusion, inference...
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