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Outline of the Talk

Very brief introduction to the Support Vector Machine

e Intuition and computation

e Geometric interpretation

Very brief introduction to kernel methods

e What are kernels in a machine learning context?

Present new work on kernels for time-series

e Inspired by the Dynamic Time Warping Distance

O Cuturi-Vert-Birkenes-Matsui,
A kernel for Time-Series based on Global Alignments (ICASSP 2007)
o Cuturi, Fast Global Alignment Kernels (ICML 2011)
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http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4217433&tag=1
http://www.icml-2011.org/papers/489_icmlpaper.pdf

Support Vector Machines
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Binary Classification Separation Surfaces for Vectors

What is a classification rule?
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Binary Classification Separation Surfaces for Vectors

Classification rule = a partition of R? into two sets
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Classification Separation Surfaces for Vectors

Can be defined by a single surface, e.g. a curved line
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Classification Separation Surfaces for Vectors

Even more simple: using straight lines and halfspaces.
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Classification Separation Surfaces for Vectors

Given two sets of points...

Some slides from now on are taken from Jean-Philippe Vert's lectures
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http://cbio.ensmp.fr/~jvert/teaching/

Classification Separation Surfaces for Vectors

It is sometimes possible to separate them perfectly
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Classification Separation Surfaces for Vectors
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Each choice might look equivalently good on the training set,
but it will have obvious impact on new points
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Classification Separation Surfaces for Vectors

CCE Dept. Colloquium 17/06/11.

11



Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom

Specially close to the border of the classifier
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom

For each different technique, different results, different performance.
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A criterion to select a linear classifier: the margin

|dea: look for the biggest possible “buffer” between red and blue points.
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A criterion to select a linear classifier: the margin
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A criterion to select a linear classifier: the margin
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A criterion to select a linear classifier: the margin
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A criterion to select a linear classifier: the margin
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Largest Margin Linear Classifier ?
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Support Vectors with Large Margin
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Finding the optimal hyperplane
o Consider n labeled points (x;,7;) € R x {—1,1}, withi=1,--- ,n.
e Finding the optimal hyperplane is equivalent to finding (w,b) which minimize:
Iwl®
under the constraints:

Vi=1,...,n, yi(WTx,,;—l—b)—120.

This is a classical quadratic program on R%+!
linear constraints - quadratic objective

CCE Dept. Colloquium 17/06/11. 24



Dual problem
e introduce one dual variable «; for each constraint,

The dual problem is

maximize g¢g(a) = Z?:l oy — %szzl aiajyiij;rxj

such that 0<a,y. . jay; =0.

This is a quadratic program in R", with box constraints.
o can be computed using elementary optimization software
(e.g. built-in matlab function)

e Strong duality holds. KKT gives us «;(y; (WTX7; + b) —1) =0,
..hence, either a; = 0 or y; (wTx; + b) = 1.

e «; # 0 only for points on the support hyperplanes {(x, y)| y;(w!x; +b) = 1}.

CCE Dept. Colloquium 17/06/11.
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The final solution

e With a*, we can recover (w*,b*).

e the decision function is therefore:
FA(x) = (W) 'x+ b

— zn:yiozixiT X + b*.
i=1

e Here the dual solution gives us directly the primal solution.

CCE Dept. Colloquium 17/06/11.
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Interpretation: support vectors

Colloquium 17/06/11.
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Another interpretation: Convex Hulls

go back to 2 sets of points that are linearly separable

CCE Dept. Colloquium 17/06/11.
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Another interpretation: Convex Hulls

.“—___-‘——_
| B
N
®o----- ° | s
/ N \ Sl
4 \ \ ’
// N !
/ . \\ \ !
\
. ® '@ () \
, \
/ ! \ \
/ / \ \
4 @ I \ |
/ . . |
/ \
.\ ! \ ® ‘
\ ! \
\ ! \ //
\ ! | /
. / \
\ /
\ @ ! ® /
\ / \ . /
/
\‘ . ,. \\ /
’ \ /
\ / /
\\ . .\ )
/ AS
\.‘ // \\ //.
‘\“\“ \\ //
./

Linearly separable = convex hulls do not intersect
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Another interpretation: Convex Hulls

\ ‘\
®- - D) |
7 \ \ ~
4 \ \ ’
// N !
/ . \\ \
7 \
, ) O \
// \ \
/ . / \ \
/ / \ |
/ . . |
! \
.\ ! \ ® ‘
\ ! \
\ ! \ //
\ ! | /
. ! \
\ /
\ @ ! ® /
\ / \ . /
/
\‘ . ,. \\ /
/ /
\ ’ \ Y
\ // .\ /
\ /
| // \\ /.
- 4 N -
. ‘\“\“ \\ ///
@

Find two closest points, one in each convex hull
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Another interpretation: Convex Hulls

The SVM = bisection

of that segment

CCE Dept. Colloquium 17/06/11.
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Another interpretation: Convex Hulls

support vectors = extreme points of the faces on which the two points lie
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The non-linearly separable case

(when convex hulls intersect)

CCE Dept. Colloquium 17/06/11.

33



What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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Soft-margin SVM ?

e Find a trade-off between large margin and few errors.

e Mathematically:

mfin { ! + C' % errors(f)}

margin(f)

e (' is a parameter

CCE Dept. Colloquium 17/06/11.
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Dual formulation of soft-margin SVM

The dual program corresponding to this “softer” formulation is

maximize g(a)=>" , o; — %Zijl QO Y Y XS X
such that 0< ;< C, fori=1,...,n,

CCE Dept. Colloquium 17/06/11. 39



Interpretation: bounded and unbounded support vectors

0<o<C

Y

CCE Dept. Colloquium 17/06/11.
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What about the convex hull analogy?

e Remember the separable case

e Here we consider the case where the two sets are not linearly separable, i.e.
their convex hulls intersect.

Class B Class A

CCE Dept. Colloquium 17/06/11. 41



What about the convex hull analogy?
Definition 1. Given a set of n points A, and 0 < C < 1, the set of finite

combinations N N
D dixi 1SN <Gy ANi=1,
i=1 i=1

is the (C') reduced convex hull of A

e Using C = 1/2, the reduced convex hulls of A and B,

Class B Class A

e Soft-SVM with C' = closest two points of C-reduced convex hulls.

Images taken from Duality and geometry in SVM classifiers, Bennett and Bredensteiner

CCE Dept. Colloquium 17/06/11. 42


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.9635&rep=rep1&type=pdf

The Kernel Trick in SVM'’s

CCE Dept. Colloquium 17/06/11.
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Kernel trick for SVM'’s

e use a mapping ¢ from X to a feature space,

e which corresponds to the kernel k:

Vx,x' € X, k(x,x') = (¢(x),p(x'))

o Example: if ¢(x) = ¢ ([“D = [x%] then

i) ZC%

k(x,x') = (p(x), o(x) ) = (21)*(21)" + (w2)*(2)".

CCE Dept. Colloquium 17/06/11.
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Training a SVM in the feature space

Replace each xTx’ in the SVM algorithm by (¢(x), ¢(x’) ) = k(x,x’)

e [he dual problem becomes
n 1 n
gla) = Z g — 2 Z a; o y; Yj k(Xiy Xj),
i=1 ij=1
under the constraints:

0<a; <C, fori=1,...,n
Z?:;[aiyizo-

e [he decision function becomes:
F(x) = (w,¢(x)) + b*

= Z yio;k(x;,x) + b™.

1=1

CCE Dept. Colloquium 17/06/11.
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The Kernel Trick ?

The explicit computation of ¢(x) is not necessary.
The kernel k(x,x") is enough.

e the SVM optimization for o works implicitly in the feature space.

e the SVM is a kernel algorithm: only need to input K and y:

maximize g(a) =a’l - ta”(K ©yy")a
suchthat 0<q; <C, fori=1,...,n
Z?:l o;yi = 0.

e K's positive definite == K © yy! < problem is convex

n

e the decision function is f(:) = > ._; o; k(x;,-) + .

CCE Dept. Colloquium 17/06/11.
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Kernel example: polynomial kernel

e For x = [?] € R?, let ¢(x) = (21, V2x129,23) € R?:
2

/ 2 12 ! 2 12
K (x,x") = z72]" + 2z12227 25 + 2575

2
= (r12] + x275)

— (xTx')2 .

CCE Dept. Colloquium 17/06/11.



Kernels are Trojan Horses onto Linear Models

e With kernels, complex structures can enter the realm of linear models

CCE Dept. Colloquium 17/06/11.
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A few words about Kernel Methods
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Kernel Methods

e Popular in machine learning now

Automatic
Speech

and Speaker
Recognition

in Compatational Bislogy

e Gained momentum in the late 90's with the support vector machine,

e Cross-disciplinary: Statistics, Optimization, Functional Analysis, Linear Algebra
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http://www.asakura.co.jp/books/isbn/978-4-254-12808-6/

A kernel on a set X is...

any function

k: XA XX +—— R
(X7Y) — k(X,y),

which is symmetric

k(x,y) = k(y,x),

and positive-definite:

for any family of points x4, --- ,x,, of X', the matrix

_k(xl, X1) - k(xy,x;) - k(xq, xn)_
K= |k(x;,x1) -+ k(x,x%x;) - k(Xi,x,) | =0
k(Xn,Xx1) -+ k(Xn, X)) -+ k(Xn,Xp)

is positive (semi)definite (has nonnegative eigenvalues).

CCE Dept. Colloquium 17/06/11.
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The general framework of kernel methods

database {x;,7 = 1,

1 Qg X,,,,

kernel definition

f(x) =

weights o estimated
with a kernel machine

Kernel methods optimize weights a to
avoid overfitting & improve performance
by using convex optimization

CCE Dept. Colloquium 17/06/11.
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Positive Definiteness of X' = Convex Optimization

dataset

*3
X4N
X
N .
5 Krs 5, kernel matrix

N

convex optimization

Il Important remark !!

convex optimization only works

because the kernel is positive definite

CCE Dept. Colloquium 17/06/11.
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Kernels for Time Series
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very Few Kernels on Time Series

Kernels for structured objects

e Large literature:

o Kernels for images,

o Kernels for graphs,

o Kernels for histograms, Bags-of-Words representations
o Kernels for sequences: DNA, proteins: discrete symbols.

What about time-series?

e Important task: Ubiquitous in science and engineering

e Room for improvement: very few proposals in literature so far

CCE Dept. Colloquium 17/06/11.



Time-series: a collection of objects indexed by time

e Images

Vi

Fhotographs by Eaduwe ard I'u1|.|1,rl:-ri|:lge1

CCE Dept. Colloquium 17/06/11.
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e Univariate time-series (google stock on a day)

5E17.5
.
hﬂ ﬁ"F/\'\/“/m'jrfhh'uﬁa-'_=r15r:|
f ’\_ﬂ \ 5125
10am 11 12 1 2 3 4pm

century!)

Objective: propose positive definite kernels between
two time-series X = (21, -+ ,Zn) Y= (Y1, " , Ym)
where the x;,y, belong to the same arbitrary set X

CCE Dept. Colloquium 17/06/11.
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Measuring similarity between time-series

e Time-series look like vectors, yet, in most cases:

o neighboring coefficients x; and z;,1 are not independent (smoothness)
o causality: early observations x; condition ulterior observations x; ..
o time-series in a dataset have different lengths.

e Even if we assume n = m, the Euclidean distance is blind to these subtleties:

Van EEcli{iian .
. 10RRT g ‘ M\

dEucllde X y Zd :Ezayz

image taken from http://www.markcorbyn.com
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Dynamic Time Warping (1971)

e First proposed by Japanese researchers in Japan: H. Sakoe & S. Chiba
e Huge impact in engineering: first in speech, now all domains of science

e idea: find a good alignment between x and y before computing dg,ciide-

dptw(x,y) = min d (xm(z'), y7r2(z')) = Wefﬁi(ily) deuciide(Xr > Yrry)

image taken from http://www.markcorbyn.com

CCE Dept. Colloquium 17/06/11.
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Alignments

e Here are two sequence aligned

e An alignment is an increasing path on a grid.

1 I 1l
i oeoe

Sequence B |10 0@

CCE Dept. Colloquium 17/06/11.




Optimal Alighment

L5

L4

T3

L2

L1

U1 Y2 Y3 Y4

Y5

Y6 yr

We first “lay out” the n x m grid,
,x5) Y = (Y1,

corresponding to x = (1, - - -

CCE Dept. Colloquium 17/06/11.
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Optimal Alighment

x5
- Dij =d(wi,y;)
3 X 5
)
x1

U1 Y2 Y3 Y4 Y5 Y6 yr

The grid is filled with pairwise distances.

CCE Dept. Colloquium 17/06/11.



Optimal Alighment

To | Ps1 i DPs2 0 Ds3 @ Dsq : Dss  Dsg : Ds7

Ty | D1 Dgg : Dgg i Dag : Das  Dye : Dary

T3 | P31 DPa2 - D33 i D3a - D35 - Dae : Dar

zy | D21 Dap Doy Dag  Dgs  Dgg Doy

1 | Dyp @ Dig @ Dig i Dig @ Dis @ Dig | Dy

This rectangular matrix is the only thing we need.

CCE Dept. Colloquium 17/06/11.
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Optimal Alighment

x5 | D51 : Dsg @ D53 : Dsg : D55 Dsg @ Dsy

Ty | Dg1  Dgg  Dgg i Dag @ Das  Dye : Dary

T3 | P31 DPa2 D33 i D3a - D35 - Dae : Dar

zy | D21 Dap Doy . Dag  Dgs  Dgg Doy

x1 | D11 D12 D3 @ Dig 0 Dis = Dig  Diy

An alignment is a path that starts from (1, 1) to reach (5,7)

CCE Dept. Colloquium 17/06/11.
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L5

L4

T3

L2

L1

The only admissible moves from one cell to the next are —,71 and ~

CCE Dept. Colloquium 17/06/11.

Optimal Alighment
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Optimal Alighment

L5

L4

T3

L2

z1 | D11

The cost of a path is the sum of contributions D;; it walks through.

CCE Dept. Colloquium 17/06/11.
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Optimal Alighment

L5

L4

T3

L2

z1 | D11

So far,

C — D11.

CCE Dept. Colloquium 17/06/11.



Optimal Alighment

L5

L4

T3

z2 | Doy !

z1 | D11

Moving up,

C = D11+ Da;.

CCE Dept. Colloquium 17/06/11.



Optimal Alighment

L5

L4

x3 - D32

z2 | Doy !

z1 | D11

U1 Y2 Y3 Y4 Y5 Y6 yr

Moving diagonally,

C = D11+ Doy + Dss.

CCE Dept. Colloquium 17/06/11.



Optimal Alighment

L5

L4

x3 . D3z | D33

z2 | Doy !

z1 | D11

Moving right,

C = D11+ Doy + D3z + Dss.

CCE Dept. Colloquium 17/06/11.



Optimal Alighment

z5 Dz ¢ D53 | Dsa | Dss | Ds | A
4 Das - Das
x3 - D3z : D33 : D34 @ D35 .

z2 | Doy !

z1 | D11

etc., until we reach the upper right corner

C = D11+ Doy + D3s + D33+ D3y + D3s + Dys 4+ Dyg + Dsy.

CCE Dept. Colloquium 17/06/11.
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Optimal Alighment

z5 - Dsz i Pssof Dsa Dy | Dsg | g
T4 - D45 Dag
x3 - D3z : D33 : D34 @ D35 .

z2 | Doy !

z1 | D11

A path is uniquely defined by 2 rows vectors:

C = D11+ Doy + D3y + D33 + D3y + D35 + Dys + Das + Dsr.

CCE Dept. Colloquium 17/06/11.
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Optimal Alighment

& D2 § Do i Daad Dss ) Ds | g

4 Das - Das

x3 - D3z : D33 : D34 @ D35 .

z2 | Doy !

z1 | D11

A path is uniquely defined by 2 rows vectors:

(m\ (1 2 3 3 3 3 4 4 5
"™\m,) " \1 1 2 3 455 6 7

CCE Dept. Colloquium 17/06/11.



Optimal Alighment

z5 - Dsz i Pssof Dsa Dy | Dsg | g
T4 - D45 Dag
x3 - D3z : D33 : D34 @ D35 .

z2 | Doy !

z1 | D11

Given a path 7, we call C(7) the sum of distances:

C(m) = D11+ D21 + D3y + D33 + D3y + Dss + Dys + Dys + Dsr.

CCE Dept. Colloquium 17/06/11.
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L5

L4

T3

L2

L1

CCE Dept. Colloquium 17/06/11.

Optimal Alighment

min ‘ d (xﬂ'l(z’)ayﬂz(z’)) — Wefilli(l)zly) Cx,y(ﬂ)-
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Optimal Alighment

L5

x4  Dyg i Dyz}i Dag | i

vy s}t Rg) i M8 | Dss | D3 |

.| eo®o®®

U1 Y2 Y3 Y4 Y5 Y6 yr

A(x,y) < the set of all paths on this grid.
Only depends on the |x| and |y|, 5 and 7 here.
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Optimal Alighment

L5

2 Dy Do A0 A

vy s}t Rg) i M8 | Dss | D3 |

.| eo®o®®

U1 Y2 Y3 Y4 Y5 Y6 yr

To clarify this, we write A(|x|,|y|) for the set of all alignments between x and y.

CCE Dept. Colloquium 17/06/11. 77



Optimal Alighment

L5

x4 z RN z z 8

z3 RUTHE SCRR VR RIS NI

.| eo®o®®

U1 Y2 Y3 Y4 Y5 Y6 yr

card A(n, m) is equal to the Delannoy number Delannoy(n, m).

CCE Dept. Colloquium 17/06/11.
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Optimal Alighment

L5

x4  Dyg i Dyz}i Dag | i

vy s}t Rg) i M8 | Dss | D3 |

.| eo®o®®

U1 Y2 Y3 Y4 Y5 Y6 yr

Delannoy (5,7) = 2241

Delannoy(20,20) = 4.53e + 13

CCE Dept. Colloquium 17/06/11.



Optimal Alighment

L5

L4

T3

L2

L1

U1 Y2 Y3 Y4 Y5 Y6 yr

DTW finds the minimum among all paths: discrete optimization.
Obviously, checking each would be computationally intractable.

CCE Dept. Colloquium 17/06/11.



L5

L4

T3

L2

L1

Key idea: use Bellman’s Dynamic programming

CCE Dept. Colloquium 17/06/11.

Optimal Alighment

U1 Y2 Y3 Y4 Y5 Y6 yr
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Optimal Alighment

L5

. Ch

T3

L2

L1

U1 Y2 Y3 Y4 Y5 Yo yr

Define C7; as the cost of the optimal sub-path
up to the i-th symbol of x and the j-th symbol of y.

Cr= min C,; j;(m).

J
Y reAG,y) W

CCE Dept. Colloquium 17/06/11.



Optimal Alighment

57
L4
L3

Obviously CZ is the quantity we want to compute.

CCE Dept. Colloquium 17/06/11. 83



Optimal Alighment

s * *
56 57
*x Y%
x4 46 | ~47
L3

Relationship between C?. its neighbours CZ,, C7

* 7
56’ 46 ! C47‘

CCE Dept. Colloquium 17/06/11.



Optimal Alighment

D57
m5 * : *
06 o7
* YK
T4 46 | 47
L3

C5; = min(Cg, Cf, CF7) + D5y

CCE Dept. Colloquium 17/06/11.



Optimal Alighment

________________________________ 1+1,7+1
* *
Ti Cii  Cigt
Y Yj+1

More generally, forall : <n—1,5 <m —1,

* ol * * * ) )
Ciirjt1 = min( i1, Cijo Ci,j-|—1) + Dit1,5+41

CCE Dept. Colloquium 17/06/11.
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L5

L4

T3

L2

L1

CCE Dept. Colloquium 17/06/11.

Optimal Alighment

We first compute CT
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Optimal Alighment

x5
Ty
T3
)
D11
1 oty

U1 Y2 Y3 Y4 Y5 Y6 yr

. .
Easy, since C1,1 = D1,

CCE Dept. Colloquium 17/06/11.



Optimal Alighment

x5
T4
3

D2y
T2 1oy
1 ch

U1 Y2 Y3 Y4 Y5 Y6 yr

* S
We now compute C’z,1 =C7,+ D, 4

CCE Dept. Colloquium 17/06/11.



L5

L4

T3

L2

L1

CCE Dept. Colloquium 17/06/11.

Optimal Alighment

Y2 Y3 Y4 Y5 Y6 yr

Same for CX, ...
3,1
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Optimal Alighment

Ts

Dy
Ylen
Colew
2 o5
1

U1 Y2 Y3

CCE Dept. Colloquium 17/06/11.

Y4 Y5 Y6 yr

*
4,1---
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Optimal Alighment

D51
Cley
Ylew
Cley
T2 1e5
1oy

U1 Y2 Y3 Y4 Y5 Y6 yr

*
. and C5,1...

CCE Dept. Colloquium 17/06/11.



L5

L4

T3

L2

L1

CCE Dept. Colloquium 17/06/11.

Optimal Alighment

U1 Y2 Y3 Y4 Y5 Y6 yr

* *
1.2 depends only on C1,1 and D »
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Optimal Alighment

x5 *
2 O N R s S
Cap o
T3 *
C3q

T2 13 C5

1 ey Cio

U1 Y2 Y3 Y4 Y5 Y6 yr

We now apply Bellmans recurrence for the first time:

*x : *
= min(C7J,,

22 ( Cl,,Cl,) + Do

CCE Dept. Colloquium 17/06/11.



Optimal Alighment

L5

L4

T3

T2 1c3) C3

T1 ¢t iChy

U1 Y2 Y3 Y4 Y5 Y6 yr
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Optimal Alighment

L5

L4

T3

T2 |cy C3

T1 ¢t iCchy

U1 Y2 Y3 Y4 Y5 Y6 yr
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Optimal Alighment

. D52
x5 * Lok
Cs1 iCs2
T4 x ek
Car Caz
T3 * 5 *
C31 Cs3a

T2 |cy C3

T1 ¢t iChy

U1 Y2 Y3 Y4 Y5 Y6 yr
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L5

L4

T3

L2

L1

CCE Dept. Colloquium 17/06/11.

Optimal Alighment

U1 Y2 Y3 Y4 Y5 Y6 yr
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Optimal Alighment

x5
T4 xx

Ca Ca2
T3 * 5 *

C31 Cs3a

T2 |05 G5 GOl

T1 |cf, iCly, iCYg

U1 Y2 Y3 Y4 Y5 Y6 yr
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Optimal Alighment

L5

L4

T3

T2 |Ccy; C3y Ol

T1 |ct, Cly, CYg

U1 Y2 Y3 Y4 Y5 Y6 yr
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L5

L4

T3

L2

L1
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Optimal Alighment

U1 Y2 Y3 Y4 Y5 Y6 yr

until we recover the final value ;7
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Optimal Alighment

5 * * *
C51 Cs2 0 i b b Cs7
Cun C €tC ................................

. . [ )

ZL’3 :

T2 1c3; C3y Ca

1 Cﬁ,écﬁ ;Cﬁ

U1 Y2 Y3 Y4 Y5 Y6 yr

Complexity: nm operations
. substantial improvement over Delannoy(n,m)x cost per path ...
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DTW distance
To recapitulate
e Sakoe & Chiba defined the distance

d d 7T 1 7T 1 9
orw(X, y) ﬁeﬁ?&ﬁﬂynz (1) Yreai))

where d(x,y) is usually d(z,y) = ||z — y||.
e Can be computed in O(nm) iterations.

e Can be proved to be a distance (triangular inequality, etc...)

What are the strengths & weaknesses of the DTW?
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Strengths of the DTW distance

e Intuitive, works well for simple examples in practice.

/

\\g\\\\\ \

e Can be easily generalized to time-series in metric spaces - just need d(z;,y;)

Euclidean |

e Used extensively in information retrieval / nearest neighbour search:

o Given x, scan in a large database and return its closest matches
o Clever approaches to speed up these searches

Image taken from http://www.eng.chula.ac.th/ (Chulalongkorn University)
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Weaknesses of the DTW distance

e The distance DTW is NOT a negative definite kernel. The similarity
kprw(x,y) = e~ oWy,

is NOT positive-definite in general.
o You can use it with a SVM... but you have to tweak it or be lucky

e More worryingly, DTW is a very arbitrary choice:

Given x and y, DTW quantifies their similarity by
looking at the set of all costs

{Cxy(m), m € A(lx], ly])}

but only considers its minimum!.

o This leads to unexpected and counter-intuitive behavior in some cases:
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Weaknesses of the DTW distance

Plot of all 1683 costs CX Y(1'[) (ordered), when offset=-1

20

151

10

MIN C: 5

\ \ \ \ \ \
200 400 600 800 1000 1200 1400 1600
Alignments from 1 to D(n,m)

min Ci as a function of the offset

X and Y time series

DTW score

4.5}
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A different idea, more robust

e Rather than the minimum, consider the consider the soft-minimum of Cx y:

soft-minimum(Cy y) = — log Z e~ Cxy(T)
meA(Ix],|yl)

e Since we need a similarity, we consider exp(—soft-minimum),

kGA — Z e_cx,y(ﬁ)

e A(|x];lyl)

e First proposed here! J.P. Vert, H. Saigo & Prof. Akutsu in a 2004 paper
e Also considered on trees currently (joint work with K.Shin & T. Kuboyama)

e Let's compare kptw = e P™W and k¢a
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6—minC’(7r) VS e—soft—minC(w) _ ZG—CZ-

exp(-C)

sin(ttt)

0.8

0.6

0.4

0.2

Plot of all 1683 exp(—Cx Y(T[)) (ordered), when offset=—-1

k . exp(=_min Ci): 0.082085

DTwW

aaNEAN exp(—Ci): 0.0021171 | | | | I I

200 400 600 800 1000 1200 1400 1600 1800

Alignments from 1 to D(n,m)

Scores: max(exp(—Ci)) and mean(exp(—Ci))

X and Y time series

0.091

kGA

0.08}

I(DTW

0.07}
0.06
0.051
0.04}
0.031
0.021

0.01f

-1 -0.5 0 0.5
Offset
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Minimal-cost alignment vs. all alignments

e Soft-minimum is intuitively more appealing than minimum.

Yet, not enough... two important issues remain:

e Do we have to sum over all A(|x|,|y|) alignments to compute kga?

e kptw iIs NO'T positive definite, what about kga?

These two questions were answered in our ICASSP 2007 paper:

A kernel for Time-Series based on Global Alignments, M.C, J.-P. Vert, O. Birkenes, T. Matsui

CCE Dept. Colloquium 17/06/11.

109



All alignments: cheap to compute

e Do we have to sum over all A(|x|,|y|) alignments to compute kga? NO

o Computing kga has the same complexity than DTW: O(nm).

o Change Bellman recursion C},, ., = min(C;,, ;,C};,C; . |) + Diy1j11

B S i o TV
Lq Kzg gK’i,J—l-l
Yj Yji+1

— D
to Kit1,j41 = (Kija,y + Kij + Ky jq) e 7o

o Recover kernel value as kga(x,y) = Kix|,|y|-
o Similar to the work of Vert-Saigo-Akutsu.
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All alignments: Positive Definite

e kptw is INOT positive definite, what about kga? YES, BUT...

o kga is positive definite if the function f(z,y) Lt e=d(@) is such that

o
1L+ f

is a positive definite kernel.
o Simple trick to define functions f: take a p.d. kernel k < 1, define

def K
f_l—m
o In such a case, ;
T
14+ f 1—|—ﬁ

which is positive definite.
o Very different proof, quite involved... please check the paper.
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Still... a few challenges

The global alignment kernel kga is not without problems

e kca can be diagonally dominant: kga(x,x) > 1 but kga(x,y) =~ 0.
e the condition f/(1+ f) is positive definite is not well-understood.

e the quadratic O(nm) complexity is still too high for large-scale applications.

In more recent work | look at these 3 different problems.

Cuturi, Fast Global Alignment Kernels (ICML 2011)
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http://www.icml-2011.org/papers/489_icmlpaper.pdf

1. Diagonal Dominance

Problem: sometimes kga(x,x) > 1 but kga(x,y) = 0.

e Solution: use a negative definite distance d (< infinitely divisible kernel k),

def

i.e. such that k(z,y) = e ?¥®¥) is positive definite YA > 0

e When d is scaled by A — oo,

kea(x,y) = Z e ACOxy(m) — 1rx=y1 card A(|x], x|)) = 1{x=y3Delannoy(|x|)
meA(|x|,[y[)

yet, when A = 0,

kea(x,y) = Y, e = card A(|x],|y|)) = Delannoy(|x|, |y|)
reA(Jxl.ly))

e Given a database x1,--- , Xy, the Gram matrix varies between

o A = 0 : the matrix [Delannoy(|x;|, |x;])]
o A — oo : the Diagonal matrix diag (Delannoy(|x;|)).
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1. Diagonal Dominance

e if |x;| = |x;|, we can tune X to solve diagonal dominance.
o if X; # X,
o Can prove a bound on the spectrum of the Delannoy D(n,m) matrix,

Lemma 1. zn: D(i,j) > (1— n_1>ZD

i,j=1,i#]
o kea(x,y) with A = 0 is significantly different from 0 if 2 < % < 2.

l- n
10 20 30 40 50

Conclusion: using a scaled n.d. distance \d,
diagonal dominance can be avoided when lengths are not too different.

CCE Dept. Colloquium 17/06/11.
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2. New results: Geometric Divisibility

Definition 2 (Geometric Divisibility). Let f be a nonnegative valued function on
X x X. f is said to be geometrically divisible (g.d.) if f/(1 + f) is positive
definite.

Remark 1. If f is g.d. and ke F/(L+ f) then f =50, K" is necessarily

p.d.
Lemma 2. The Gaussian kernel k. is not geometrically divisible.

Lemma 3. For an infinitely divisible kernel k such that 0 < Kk < 1,
k/(1 — K) is both geometrically divisible and infinitely divisible.

Motivated by these results, | propose to use the following distance in kga,
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3. Speeding up kga: old ideas from DTW

L5

vy s}t Rg) i M8 | Dss | D3 |

.| eo®o®®

U1 Y2 Y3 Y4 Y5 Y6 yr

ltakura (75) and Sakoe-Chiba (78)
propose to speed up the DTW computation by ignoring zones in the grid.
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3. Speeding up kga: old ideas from DTW

L5

L4

T3

L2

L1

Decide a-priori that some paths are unlikely to be of interest.
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3. Speeding up kga: old ideas from DTW

L5

L4

T3

L2

L1

Easily done by setting distance D,;; = co when |i — j| > T.
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3. Speeding up kga: old ideas from DTW

L5

L4

T3

L2

L1

Speed up: from O(nm) to O(T min(n,m)).
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3. Speeding up kga: old ideas from DTW

L5

L4

T3

L2

L1

Yet, this can be suboptimal! Not guaranteed to find best path!
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3. Speeding up kga

e In kernel methods, such weighting schemes need to preserve positive
definiteness.

e Consider p.d. kernels w(%,j) that only depend on |i — j],

where v is a real-valued function on N.
e Such kernels on integers are also known as Toeplitz kernels.

Definition 3. A Toeplitz kernel w is compactly supported of order T € N if
for q =2 T,¢(q) =0 and H(T'—1) # 0.
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3. Speeding up kga

e Using such a kernel within GA kernels has obvious advantages

Theorem 2. Let k be a kernel on X X X and w a compactly supported

Toeplitz kernel of order T'. Then using 12— as a local kernel, kga(x,y) can

be computed with O(T min(n, m)) operations. Furthermore, kga(x,y) is

null when |n —m| > T.

e Example: Triangular Kernel

w(i,j) = (1—|i;j‘>+.
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3. Speeding up kga

Using a triangular kernel w and a kernel k, kga is also sped up to
O(T min(n,m))...

(5> 2175)

(47 CE4)

(3> 2173)

(27 CEQ)

(1’ 5171)

(1’ yl) (2a y2) (3’ y3) (4a y4) (5’ y5) (6a y6) (7’ y7)

Here K ; stands for (17) (w®k (2, 2:), (7,95)))
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Experimental Results: Classifying Time Series

Benchmark Datasets (UCI repository) + PEMS database which we assembled

Database d n, med(n) classes # points

Japanese Vowels 12 7-29, 15 ) 640

Libras 2 45 15 945

Handwritten Characters 3 60-182, 122 20 2858

AUSLAN 22 45-136, 55 95 2465

PEMS 963 144 7 440
We consider the DTW kernel kptw and a few more...

Kernel Parameters Parameter Values

kDTW t t e {0.2, 0.5,1, 2, 5} . med(DTW(x, X))

kgc t, T t €{0.2,0.5,1,2,5} - med(DTWgc(x,y)), T € {0.25,0.5} - med(|x]|)

kEDTAK t,o t € {0.2,0.5,1,2,5} - med(—log kpTak(X,y)), o € {0.2,0.5,1,2} - med(||z — y||)

kEGA o o € {0.2,0.5,1,2,5} - med(||lz — y||) - v/med(|x|)

ETGA o, T o €{0.2,0.5,1,2,5} - med(||z — y||) - /med(|x|), T € {0.25,0.5} - med(|x|)
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Experimental Results

0.5 01

0.45
0.4]-

0.35] -
0.3 0.06| -
0.25] -

0.2 0.04]

0.15]

0.1} 0.02]

Mean and stand. dev. of error-rates

0.05]

AUSLAN LIBRAS PEMS

Results averaged on 3-fold 3-repeats cross validations.
Parameters selected within training folds using 3-fold 2-repeats.
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Experimental Results

W AUSLAN LIBRAS HW PENS
— ' 115
016 - — erorrate i
~U —— runtime 2
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Comparing the effect of T" (as fraction of median length) on speed and
classification performance.
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Conclusion

Better not use DTW with a kernel machine (e.g. SVM’s), try kga instead
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