Mean Reversion with a Variance Threshold

Marco Cuturi¹, Alexandre d'Aspremont² ¹ Kyoto University (Japan), ² CNRS - Ecole Polytechnique (France)

Motivation: Makes a lot of sense in financial applications. We expect it can also be applied to other fields, such as anomaly detection.

Approach: Formulate natural criteria that take into account **both** mean-reversion and variance.

Optimization: These criteria are **not convex**. We approximate them (and solve them exactly in some cases) using semidefinite programming and the *S*-lemma.

Experiments: We illustrate that, on stock volatility data, **Mean-reversion** \rightarrow **statistical arbitrage** opportunities. Sufficient variance \rightarrow lower transaction costs.

1. Mean-Reversion & Cointegration

Loose Definition of Mean Reversion: Tendency of a

Large variance \rightarrow larger arbitrage expected per trade.

Both problems lead to more leverage = higher risk.

Both issues are not addressed by classic cointegration methods, which focus exclusively on stationarity.

When $n \gg 1$, when estimating y from finite samples, small variance can also mean overfitting.

3. Criteria

- $\mathcal{A}_k = \mathbf{E}[x_t x_{t+k}^T], k \ge 0$ when finite.
- When $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_T)$ and each $\mathbf{x}_t \in \mathbb{R}^n$,

To **quantify mean-reversion**, three different proxies:

1. Portmanteau (Ljung and Box, 1978)

 $\int \det \left(\frac{1}{y} \right) = \frac{1}{y} \left(\frac{y^T \mathcal{A}_i y}{y} \right)$

minimize $\operatorname{Tr}(A_1Y) + \mu \sum_{i=2}^{p} \operatorname{Tr}(A_iY)^2$ subject to $\operatorname{Tr}(BY) \ge \nu$ $\mathbf{Tr}(Y) = 1, Y \succeq 0$

> minimize Tr(MY)subject to $\operatorname{Tr}(BY) \ge \nu$ $\mathbf{Tr}(Y) = 1, Y \succeq 0,$

(SDP3)

(SDP2)

Exact solutions when p = 1, **approximation** (randomization, leading eigenvector) when p > 1.

5. Experiments

Data: implied volatility data for 217 stocks. **Sample Trade Episode**: using our approach and OLS

stochastic process to revert (pull back) to its mean.

Mean-reversion = Statistical Arbitrage Opportunity

Which assets are mean-reverting?

- **Stationary** processes are mean-reverting,
- Arbitraging stationary assets is therefore desirable.

In practice, very few assets are stationary. Those who are tend to revert to their means very slowly.

$$\phi_p(y) \stackrel{\text{def}}{=} \operatorname{por}_p(y^T \mathbf{x}_t) = -\frac{1}{p} \sum_{i=1}^{\infty} \left(\frac{y^T \mathcal{A}_0 y}{y^T \mathcal{A}_0 y} \right) ,$$

2. Crossing Stats (Kedem and Yakowitz, 1994) Number of times $y^T x_t$ crosses its mean is a decreasing function of $y^T \mathcal{A}_1 y$ assuming $y^T \mathcal{A}_k y \approx 0, k > 1$.

3. Predictability (Box and Tiao, 1977) Suppose

where \hat{x}_{t-1} is a predictor of x_t ; ε_t i.i.d. Gaussian $(0, \Sigma)$.

n=1: $\mathbf{E}[x_t^2] = \mathbf{E}[\hat{x}_{t-1}^2] + \mathbf{E}[\varepsilon_t^2], \text{ thus } 1 = \frac{\hat{\sigma}^2}{\sigma^2} + \frac{\Sigma}{\sigma^2},$ Box and Tiao measure the *predictability* of x_t by the ratio

 $\lambda \stackrel{\text{def}}{=} \frac{\sigma^2}{-2}$

n>1: Consider the process $(y^T x_t)_t$ with $y \in \mathbb{R}^n$. We can measure the predicability of $y^T x_t$ as

$$\lambda(y) \stackrel{\text{def}}{=} rac{y^T \hat{\mathcal{A}}_0 y}{y^T \mathcal{A}_0 y},$$

However, combining assets can result in stationarity: "pair-trades" when n = 2, "baskets" when $n \ge 3$.

