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This Poster in 1 Minute
Classic Cointegration Problem: Given a multivariate
time series xt ∈ Rn, find α such that yTxt is stationary.

Our formulation: Find cointegrated relationship such
that yTxt also has fast mean-reversion and sufficient
variance.

Motivation: Makes a lot of sense in financial applica-
tions. We expect it can also be applied to other fields,
such as anomaly detection.

Approach: Formulate natural criteria that take into
account both mean-reversion and variance.

Optimization: These criteria are not convex. We approx-
imate them (and solve them exactly in some cases) using
semidefinite programming and the S-lemma.

Experiments: We illustrate that, on stock volatility data,
Mean-reversion→ statistical arbitrage opportunities.
Sufficient variance→ lower transaction costs.

1. Mean-Reversion & Cointegration
Loose Definition of Mean Reversion: Tendency of a
stochastic process to revert (pull back) to its mean.

Mean-reversion = Statistical Arbitrage Opportunity

Which assets are mean-reverting?

• Stationary processes are mean-reverting,

• Arbitraging stationary assets is therefore desirable.

In practice, very few assets are stationary. Those who are
tend to revert to their means very slowly.

However, combining assets can result in stationarity:
"pair-trades" when n = 2, "baskets" when n ≥ 3.

Finding weights y such that yTxt is stationary
=

cointegration theory (econometrics, VAR modeling)

2. Stationarity is not enough

Problem 1: slow mean-reversion is bad.

Slow mean-reversion→ smaller expected arbitrage.

Problem 2: small variance is bad.

Large variance→ larger arbitrage expected per trade.

Both problems lead to more leverage = higher risk.

Both issues are not addressed by classic cointegration
methods, which focus exclusively on stationarity.

When n � 1, when estimating y from finite samples, small variance
can also mean overfitting.

3. Criteria
• Ak = E[xtx
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To quantify mean-reversion, three different proxies:

1. Portmanteau (Ljung and Box, 1978)

φp(y)
def
= porp(y

T xt) =
1

p

p∑
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(
yTAiy
yTA0y

)2

,

(norm of autocorrelogram)

2. Crossing Stats (Kedem and Yakowitz, 1994)
Number of times yTxt crosses its mean is a decreasing
function of yTA1y assuming yTAky ≈ 0, k > 1.

3. Predictability (Box and Tiao, 1977) Suppose

xt = x̂t−1 + εt,

where x̂t−1 is a predictor of xt; εt i.i.d. Gaussian (0,Σ).

n=1: E[x2
t ] = E[x̂2

t−1] + E[ε2
t ], thus 1 = σ̂2

σ2 + Σ
σ2 ,

Box and Tiao measure the predictability of xt by the ratio

λ
def
=
σ̂2

σ2
.

n>1: Consider the process (yTxt)t with y ∈ Rn. We can
measure the predicability of yTxt as

λ(y)
def
=
yT Â0y

yTA0y
,

where Â0 and A0 are covariance matrices of xt and x̂t−1.

To Quantify variance

var(yTxt) = yTA0y > ν.

Mean Reversion with Variance Threshold

minimize
∑p
i=1

(
yTAiy

)2
subject to yTA0y ≥ ν

‖y‖2 = 1,

(P1)

minimize yTA1y + µ
∑p
k=2

(
yTAky

)2
subject to yTA0y ≥ ν

‖y‖2 = 1,

(P2)

minimize yTMy
subject to yTA0y ≥ ν

‖y‖2 = 1,
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4. SDP Relaxations
SDP Formulation Writing Y = yyT ,

Brickman (1961): when n ≥ 3,{
(yTAy, yTBy) : y ∈ Rn, ‖y‖2 = 1

}
=

{(Tr(AY ),Tr(BY )) : Y ∈ Sn, TrY = 1, Y � 0}

minimize
∑p
i=1 Tr(AiY )2

subject to Tr(BY ) ≥ ν
Tr(Y ) = 1, Y � 0,

(SDP1)

minimize Tr(A1Y ) + µ
∑p
i=2 Tr(AiY )2

subject to Tr(BY ) ≥ ν
Tr(Y ) = 1, Y � 0

(SDP2)

minimize Tr(MY )
subject to Tr(BY ) ≥ ν

Tr(Y ) = 1, Y � 0,
(SDP3)

Exact solutions when p = 1, approximation (randomiza-
tion, leading eigenvector) when p > 1.

5. Experiments
Data: implied volatility data for 217 stocks.
Sample Trade Episode: using our approach and OLS

Results: 20 time windows, results on most
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