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Today

e Duality theory, the general case.

o Lagrangian
o Lagrange dual function and optima for the dual.
o Weak and strong duality.

e A closer look at the linear case.

o dual programs for LP’s

o Weak duality and two corollaries
o Strong Duality

o Complementary Slackness

e Examples

o Simple LP.
o Max-flow / min-cut problem.
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Duality

e Duality theory:

o Keep this in mind: only a long list of simple inequalities. . . .

o In the end: very powerful results at low technical /numerical cost.

o A few important, intuitive theorems.

o We provide proofs for LP's here, some more advanced results exist in
convexity.

e In a LP context:

o Dual problem provides a different interpretation on the same problem.

o Essentially assigns cost ( “displeasure” measure) to constraints.

o Allow us to study cheaply the sensitivity of the solution to changes in
constraints.

o Provides alternative algorithms (dual-simplex).
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Duality : the general case
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Optimization problem

e Consider the following mathematical program:

minimize  fo(x)
subject to  fi(x) <0, i=1,....,m
—0. i

where x € D C R" with optimal value p*.

e No particular assumptions on D and the functions f and h (convexity, linearity,
continuity, etc)

e Very generic (includes linear programming and many other problems)
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Lagrangian

We form the Lagrangian of this problem:

L\, 1) +ZA Fi(3) + 3 piha(x)
1=1

as a function of the original variable x € R", and additional variables A € R and
1 € RP, called Lagrange multipliers.

e The Lagrangian is a penalized version of the original objective

e The Lagrange multipliers \;, i1; control the weight of the penalty assigned to
each violation.

e The Lagrangian is a smoothed version of the hard problem, we have turned
x € C' into penalties that take into account the constraints that define C.

e The idea of replacing hard constraints by penalizations or soft constraints
will come again when we will study IPM.
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Lagrange dual function

e We originally have
p
Lz, A, ) ) + Z Aifi(x) + Z pihi(x)
i=1

e The penalized problem is here:

g(A, ) =infzep L(x, A, p)
= infrep fo(z) + D 50, Nifi(z) + D20 pihi(z)

e The function g(\, i) is called the Lagrange dual function.

o Easier to solve than the original one (the constraints are gone)
o Can often be computed explicitly (more later)
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Lower bound

e The function g(\, ;1) produces a lower bound on p*.
e Lower bound property: If A > 0, then g(\, p) < p*

o Why? If z is feasible,
> fz(.f?) < 0 and thus )\zfz(.f?) <0
> hz(ﬂj) = O, and thus ,Lbzhz(jj) =0
o thus by construction of L:

g\ p) = mf Lz, A p) < L(Z, A p) < fol@)

o This is true for any feasible z, so it must be true for the optimal one, which
means g(\, 1) < fo(z*) = p*.
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Lower bound

e We now have a systematic way of producing lower bounds on the optimal
value p* of the original problem:

minimize  fo(x)
subject to  fi(x) <0, i=1,....m
— 0.

e We can look for the best possible one. . .
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Dual problem

e We can define the Lagrange dual problem:

maximize  g(\, )
subjectto A >0

in the variables A € R™ and i € R?.

e Finds the best, that is highest, possible lower bound g(\, ;1) on the optimal
value p* of the original (now called primal) problem.

e We call its optimal value d*
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Dual problem

e For each given z, the function

L(z, A, p1) +Z>\ fi(x +Zﬂihi(5’7)
i=1

is linear in the variables A and L.

e [ his means that the function

g(A p) = inf L(z, A, p)

is @ minimum of linear functions of (A, i), so it must be concave in (A, i)

e This means that the dual problem is always a concave maximization problem,
whatever f, g, h's properties are.
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Weak duality

We have shown the following property called weak duality:

d*<p*

I.e. the optimal value of the dual is always less than the optimal value of the
primal problem.

e We haven't made any further assumptions on the problem
e Weak duality must always hold

e Produces lower bounds on the problem at low cost

What happens when d* = p* 7. ..
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Strong duality

When d* = p* we have strong duality.

e Because d* is a lower bound on the optimal value p*, if both are equal for
some (x, A, i), the current point must be optimal

e The converse is false: (z, A, 1) could be optimal with d* < p*
e For most convex problems, we have strong duality

e The difference p* — d* is called the duality gap and is a measure of how
optimal the current solution (x, \, 1).
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Slater’s conditions
Example of sufficient conditions for strong duality:
e Slater’s conditions. Consider the following problem:
minimize  fo(x)
subject to  fi(x) <0, i=1,...,m
Ar=b, 1=1,...,p
where all the f;(x) are convex and assume that:

there exists t € D: fi(x) <0, Ax=b, i=1,...,m

in other words there is a strictly feasible point, then strong duality holds.

e Many other versions exist. . .
e Often easy to check.

e Let's see for linear programs.
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Duality: linear programming

e Take a linear program in standard form:

minimize c¢lx

subjectto Ax=Db
x > 0(—x < 0)

e \We can form the Lagrangian:

L(x,\p) =c'x — M'x+ pu!'(Ax — b)

e and the Lagrange dual function:

g\, p)  =infx L(x, A, 1)

= infyclx — Mx+ pul'(Ax —b)
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Duality: linear programming

e For linear programs, the Lagrange dual function can be computed explicitly:
g\ p) =infyclx — Mx+p!f(Ax —0b)

= infy(c — A+ AT p)Ix —bly
e This is either —b’'j1 or —00, so we finally get:

—bly ife—A+ATpu=0
—00 otherwise

g(A, p) = {

o If g(\, 1) = —o0 we say that (A, ) are outside the domain of the dual.
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Duality: linear programming
e With g(\, i) given by:

—bly ife—A+ATp=0
—00 otherwise

o) = {

e we can write the dual program as:

maximize  g(\, i)
subjectto A >0

e which is again, writing the domain explicitly:

maximize —bl
subjectto c— A+ AT =0
A>0

Princeton ORF-522

18



e After simplification:

c— A+ At u=0
A>0

Duality: linear programming

— c+A'u>0

e we conclude that the dual of the linear program:

e is given by:

e equivalently:
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minimize c'x

subjectto Ax=Db (primal)
x >0

maximize —bly

subject to —ATu<c¢  (dual)

maximize b’ L
subject to AT < c
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Dual Linear Program
Up to now, what have we introduced?

e A vector of parameters u € R™, one coordinate by constraint.

e For any 1 and any feasible x of the primal = a lower bound on the primal.
e For some 1 the lower bound is —oo, not useful.

e [he dual problem computes the biggest lower bound.

e We discard values of 1 which give —oo lower bounds.

e This the way dual constraints are defined.

e The dual is another linear program in dimensions R"*™, that is n
constraints and m variables.
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From Primal to Dual for general LP’s

Rm><n

e Some notations: for A € we write

o a; for the n column vectors
o A, for the m row vectors of A.

e Following a similar reasoning we can flip from primal to dual changing

o the constraints linear relationships A,
o the constraints constants b,
o the constraints directions (<, >, =)
o non-negativity conditions,
o the objective
minimize clx maximize u''b
subject to Al x >b;, i€ M subjectto  u; >0 i€ M,
AZTXSb,L', 1 € Mo wi <0 1 € My
A;-FX = bi, 1 € M3 47 free 1€ M3
x; >0 7€ Ny ,LLTajSCj 7€ Ny
ZEJSO 7€ Ny ,LLTajZCj 7 € Ny
X j free 7€ Nq ,uTaj = Cj 7 € N3
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Dual Linear Program

e In summary, for any kind of constraint,

primal minimize maximize dual
> b; >0

constraints < b; <0 variables
— b; free
>0 < ¢;

variables <0 > cj constraints
free = ¢;j

e For simple cases and in matrix form,

minimize clx maximize X
subject to Ax =Db cubiect to AT <’LCL
x>0 J M=
. - maximize b’
minimize c’' X cubiect to  AT1 — ¢
subjectto Ax > b ) H
p =0
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Dual Linear Program: Equivalence Theorems

Theorem 1. If we transform the dual problem into an equivalent minimization

problem and the form its dual, we obtain a problem that is equivalent to the
original problem

e The dual of the dual of a given primal LP is the primal LP itself.

e Linear programs are self-dual.

e Not true in the general case. The dual of the dual is called the bi-dual
problem.

e The tables before can be used in both directions indifferently.
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Dual Linear Program: Equivalence Theorems

Theorem 2. If we transform a LP (1) into another LP (2) through any of the
following operations:

e replace free variables with the difference of two nonnegative variables;

e replace inequality constraints by an equality constraint with a surplus/slack
variable;

e remove redundant (colinear) rows of the constraint matriz for standard
forms;

then the duals of (1) and (2) are equivalent, i.e. they are either both infeasible
or have the same optimal objective.

Princeton ORF-522 24



Duality for LP’s : Weak Duality

We proved weak duality for general programs. Although LP’s are a particular
case the arguments are here explicit:

Theorem 3. If x is a feasible solution to a primal LP and pn is a feasible
solution to the dual problem then

wIb <clx

e Proof idea check what is called the complementary slackness variables
wi(Alx —b;) and (¢; — p''a;)x; and use the primal/dual relationships.
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Weak Duality Proof

Proof. e Let x € R" and 1 € R™ and define

w; = i (Alx—b;) i=1,..m
v, =(c;—pla))x; j=1,.,n

e Suppose x and u are primal and dual feasible for an LP involving A, b and c.

e Check Equations [Il. Whatever the constraints are,

o u; and (Alx — b;) have the same sign or their product is zero.
o The same goes for (¢; — u''a;) and x;.

e Hence u;,v; > 0.
e Furthermore 3 7" u; = ' (Ax —b) and 3 " v; = (¢! — p" A)x
o Hence 0 <> "+ v =c'x—pu'b

Princeton ORF-522
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Weak Duality

e Not a very strong result at first look.

e Specially since we already discussed strong duality...

e Yet weak duality provides us with the two simple yet important corollaries.
e |n the following we assume that the primal is a minimization.

e As usual, results can be easily proved the other way round.
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Weak Duality Corollary 1

Corollary 1. e If the objective in the primal can be arbitrarily small then the
dual problem must be infeasible.

o [f the objective in the primal can be arbitrarily big then the dual problem
must be infeasible.

Proof. e By weak duality, 1’ b < ¢’'x for any two feasible points x, /.

e If the objective for feasible x can be set arbitrarily low, then a feasible u
cannot exist.

e The same applies for a feasible x if the dual objective can be arbitrarily high.
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Weak Duality Corollary 2

Corollary 2. Let x* and p* be two feasz'ble solutions to the primal and dual
respectively. Suppose that p*'b = c!'x*. Then x* and u* are optimal
solutions for the primal and dual 'respectzvely.
Proof. For every feasible point of the primal y, ¢’
optimal. Same thing for u*. =

x* = *'b < ¢’y hence x* is

e Let's check whether strong duality holds or not for linear programs...
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Strong Duality

e For linear programs, strong duality is always ensured.
e We use the simplex’s convergence to the optimal solution in this proof.

e \We will cover a more geometric approach in the next lecture.

Theorem 4. if an LP has an optima, so does its dual, and their respective
optimal objectives are equal.

e Proof strategy:

o prove it first for a standard form LP, showing that the reduced cost
coefficient can be used to define a dual feasible solution..
o For a general LP, use Theorem
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Strong Duality: Proof 1

Proof. e Consider the standard form

minimize clx
subjectto Ax=Db
x >0

e Let's use the simplex with the lexicographic rule for instance. Let x be the
optimal solution with basis I and objective z.

e The reduced costs must be nonnegative (here we have a min problem) hence

c' —ci By 'A>0"

o Let u¥' =cI'B;y*. Then uTA > T coordinate wise.
e . is a feasible solution to the dual problem.
e Furthermore uTb = c¢{ By 'b = ci'x1 = 2.

e ;i is thus optimal w.r.t to the dual following the previous corollary.
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Strong Duality: Proof 2

e Suppose now that we have a general LP (1).

e Through operations as described in Theorem [2 the program is changed into an

equivalent standard program (2). They share the same optimal cost.
e The dual of program (D2) has the same optimal cost in turn.
e Both (D2) and (D1) have the same optimal cost by Theorem 2.

e Hence (1) and (D1) have the same optimal cost.
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Complementary slackness

e Another important result that links both optima:

Theorem 5. Let x and u be feasible solutions to the primal and dual

problems respectively. The vectors for x and p are optimal solutions for the
two respective problems if and only if

wi(Alx—b) =0, i=1,..,m;
O (Cj — ,uTaj)Xj = O, ] — 1, s N

Proof. In the proof of the weak duality we showed that u;,v; > 0. Moreover

OS zm:ui—l—znjvj :CTX—,MTb.
i J

Hence, x, 1 optimal < u; = v; = 0 through strong duality (=) and the second
corollary of weak duality («<=). =
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Duality

e A simple example with the following linear program:
minimize  3x1 + X9

subject to xo — 221 =1
L1, X2 2 0

e Two inequality constraints, one equality constraint. The Lagrangian is written:
Lz, \, ) = 3x1 + 22 — M1 — Aoxo + (1 — 20 + 221)

in the (dual variables) A1, Ao > 0 and pu (free).
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Duality

e The dual function is then:
g(Ap) = inf L{x, A, p)
= ir}if 3x1 + T2 — Ay — Ao + (1l — 29 + 221)
= ir}if(S — M F2u)rr+ (1= Ao — p)zo +

e \We minimize a linear function of x1, x2, only two possibilities:

(w3 —M+2u=1-A—p=0
9(A 1) = { —o0 otherwise

e The dual problem is finally:

maximize U

subjectto 3 — A1 +2u=20
1 —>\2 —,LLZO
A>0
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Network flow: Max-flow / Min-cut

e m nodes, Ny, -, N,,.

e d directed edges (arrows) to connect some nodes. Each edge is a pair
(Nj, Ni). The set is V

o Each edge carries a flow f; its flow.
o Each edge has a bounded capacity (pipe width) f; < u;

e Relating edges and nodes: the network'’s incidence matrix A € {—1,0, 1}m><d:

1 if edge j starts at node ¢
A;; = ¢ —1 if edge j ends at node i
0 otherwise

e For a node 7,

> Ji= > Ji

js.t. edge ends ati js.t. edge starts at:

e In matrix form: Af =0
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First problem: Maximal Flow

We consider a constant flow from node 1 to node m.
What is the maximal flow that can go through the system?

A way to model this is to close the loop with an artificial edge numbered
d+ 1.

if ug11 = 0o, what would be the maximal flow f;.1 of that edge?

Namely solve

minimize cl'f = —fd+1,
subject to [A ,e]f =0,
Oéfl SUl,"' 7O§fd§ud7

0 < far1 < Ug1,

with e = (—=1,0,...,0,1) and ¢ = (0,...,0,—1) and ug4y1 a very large
capacity for fgi1.
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Second problem: Minimal Cut

e Suppose you are a plumber and you want to completely stop the flow from
node Ny to N,,.

e You have to remove edges (pipes). What the minimal capacity you have to
remove to make sure no flow goes from Ny to IV,,,?

e Goal: cut the set of nodes into two disjoint sets .S and 7.

e Suppose we remove a set C C V of edges. We want to minimize the total
capacity of C under the constraint that the flow is now zero.

o y;; € {0,1} will keep track of cuts. For each node N; there is a variable z;
which is 0 if N; is in the set S or 1 in the set 1. We arbitrarily set z; = 0 and
ZN — 1.

minimize Z YijWij
subjectto y; ;+2 —2; >0

21 = 17275:0722' 207
yij Z Oa (7’7.]) cV
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Duality: example

e Let us form the Lagrangian:
L(f,y,z) = c'f +z' [Ae]f +y'(f —u)

for £ > 0 here.

e The Lagrange dual function is defined as
9(y,2z) =infeso L(f,y,2)

T
= infp>o 7 (c—l—y—l— [ ?T ]z) —uly

e but this minimization yields either —oo or —u'y, so:

AT
—uly if <C+Y+[€T ]z) >0

— 00 otherwise

9(y,z) =
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Duality: example

This means that the dual of the maximum flow problem is written:

minimize uly

subjectto c+y + [ . ]zzO

Compare the following dual with changed notations

minimize Z YijWij
(i,j)€EV

subject to yn1+2y — 21 > 1
yz-j+zz-—zj20, (Z,])GV
vi; > 0

to the minimum cut problem. The two problems are identical.
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Duality: example

e The objective is to minimize:

Z Ui5Yij, (yw > ()),

(i,7)€V

where ug11 = un,1 = M (very large), which means yx 1 = 0.

e The first equation then becomes:
N — 21> 1

so we can fix zy =1 and z; = 0.
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Duality: example

e The equations for all the edges starting from z; = O:

Y1 — 25 =0

e Then, two scenarios are possible (no proof here):

o y1; = 1 with z; =1 and all the following zj, will be ones in the next
equations (at the minimum cost):

yjk—l—Zj—ZkZO, (],k)EV

o y1; = 0 with z; = 0 and we get the same equation for the next node:

yjk_zkzoa (j,k)EV
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Duality: example
Interpretation?

e |f a node has z; = 0, all the nodes preceding it in the network must have
z: = 0.
J

e If a node has z; = 1, all the following nodes in the network must have
zi=1...
j

e This means that z; effectively splits the network in two partitions

e The equations:
Yij — 2i + 2 2 0

mean for any two nodes with z; = 0 and z; = 1, we must have y;; = 1.

e The objective minimizes the total capacity of these edges, which is also the
capacity of the cut.
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e Geometric viewpoint on duality

e Sensitivity Analysis.

Princeton ORF-522

Next time

45



