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Today

• Duality theory, the general case.

◦ Lagrangian
◦ Lagrange dual function and optima for the dual.
◦ Weak and strong duality.

• A closer look at the linear case.

◦ dual programs for LP’s
◦ Weak duality and two corollaries
◦ Strong Duality
◦ Complementary Slackness

• Examples

◦ Simple LP.
◦ Max-flow / min-cut problem.
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Duality

• Duality theory:

◦ Keep this in mind: only a long list of simple inequalities. . . .
◦ In the end: very powerful results at low technical/numerical cost.
◦ A few important, intuitive theorems.
◦ We provide proofs for LP’s here, some more advanced results exist in

convexity.

• In a LP context:

◦ Dual problem provides a different interpretation on the same problem.
◦ Essentially assigns cost (“displeasure” measure) to constraints.
◦ Allow us to study cheaply the sensitivity of the solution to changes in

constraints.
◦ Provides alternative algorithms (dual-simplex).
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Duality : the general case
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Optimization problem

• Consider the following mathematical program:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where x ∈ D ⊂ Rn with optimal value p⋆.

• No particular assumptions on D and the functions f and h (convexity, linearity,
continuity, etc)

• Very generic (includes linear programming and many other problems)
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Lagrangian

We form the Lagrangian of this problem:

L(x, λ, µ) = f0(x) +
m

∑

i=1

λifi(x) +

p
∑

i=1

µihi(x)

as a function of the original variable x ∈ Rn, and additional variables λ ∈ Rm and
µ ∈ Rp, called Lagrange multipliers.

• The Lagrangian is a penalized version of the original objective

• The Lagrange multipliers λi, µi control the weight of the penalty assigned to
each violation.

• The Lagrangian is a smoothed version of the hard problem, we have turned
x ∈ C into penalties that take into account the constraints that define C.

• The idea of replacing hard constraints by penalizations or soft constraints
will come again when we will study IPM.
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Lagrange dual function

• We originally have

L(x, λ, µ) = f0(x) +
m

∑

i=1

λifi(x) +

p
∑

i=1

µihi(x)

• The penalized problem is here:

g(λ, µ) = infx∈D L(x, λ, µ)
= infx∈D f0(x) +

∑m

i=1 λifi(x) +
∑p

i=1 µihi(x)

• The function g(λ, µ) is called the Lagrange dual function.

◦ Easier to solve than the original one (the constraints are gone)
◦ Can often be computed explicitly (more later)
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Lower bound

• The function g(λ, µ) produces a lower bound on p⋆.

• Lower bound property: If λ ≥ 0, then g(λ, µ) ≤ p⋆

◦ Why? If x̃ is feasible,
⊲ fi(x̃) ≤ 0 and thus λifi(x̃) ≤ 0
⊲ hi(x) = 0, and thus µihi(x̃) = 0

◦ thus by construction of L:

g(λ, µ) = inf
x∈D

L(x, λ, µ) ≤ L(x̃, λ, µ) ≤ f0(x̃)

◦ This is true for any feasible x̃, so it must be true for the optimal one, which
means g(λ, µ) ≤ f0(x

⋆) = p⋆.
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Lower bound

• We now have a systematic way of producing lower bounds on the optimal
value p⋆ of the original problem:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• All it takes is a feasible point x̃ ∈ D, which satisfies:

fi(x̃) ≤ 0, i = 1, . . . , m
hi(x̃) = 0, i = 1, . . . , p

• We can look for the best possible one. . .

Princeton ORF-522 9



Dual problem

• We can define the Lagrange dual problem:

maximize g(λ, µ)
subject to λ ≥ 0

in the variables λ ∈ Rm and µ ∈ Rp.

• Finds the best, that is highest, possible lower bound g(λ, µ) on the optimal
value p⋆ of the original (now called primal) problem.

• We call its optimal value d⋆
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Dual problem

• For each given x, the function

L(x, λ, µ) = f0(x) +
m

∑

i=1

λifi(x) +

p
∑

i=1

µihi(x)

is linear in the variables λ and µ.

• This means that the function

g(λ, µ) = inf
x∈D

L(x, λ, µ)

is a minimum of linear functions of (λ, µ), so it must be concave in (λ, µ)

• This means that the dual problem is always a concave maximization problem,
whatever f, g, h’s properties are.
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Weak duality

We have shown the following property called weak duality:

d⋆ ≤ p⋆

i.e. the optimal value of the dual is always less than the optimal value of the
primal problem.

• We haven’t made any further assumptions on the problem

• Weak duality must always hold

• Produces lower bounds on the problem at low cost

What happens when d⋆ = p⋆ ?. . .
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Strong duality

When d⋆ = p⋆ we have strong duality.

• Because d⋆ is a lower bound on the optimal value p⋆, if both are equal for
some (x, λ, µ), the current point must be optimal

• The converse is false: (x, λ, µ) could be optimal with d⋆ < p⋆

• For most convex problems, we have strong duality

• The difference p⋆ − d⋆ is called the duality gap and is a measure of how
optimal the current solution (x, λ, µ).
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Slater’s conditions

Example of sufficient conditions for strong duality:

• Slater’s conditions. Consider the following problem:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b, i = 1, . . . , p

where all the fi(x) are convex and assume that:

there exists x ∈ D : fi(x) < 0, Ax = b, i = 1, . . . ,m

in other words there is a strictly feasible point, then strong duality holds.

• Many other versions exist. . .

• Often easy to check.

• Let’s see for linear programs.
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Duality: linear programming
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Duality: linear programming

• Take a linear program in standard form:

minimize cTx

subject to Ax = b

x ≥ 0(−x ≤ 0)

• We can form the Lagrangian:

L(x, λ, µ) = cTx − λTx + µT (Ax − b)

• and the Lagrange dual function:

g(λ, µ) = infx L(x, λ, µ)

= infx cTx − λTx + µT (Ax − b)
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Duality: linear programming

• For linear programs, the Lagrange dual function can be computed explicitly:

g(λ, µ) = infx cTx − λTx + µT (Ax − b)

= infx(c − λ + ATµ)Tx− bTµ

• This is either −bTµ or −∞, so we finally get:

g(λ, µ) =

{

−bTµ if c − λ + ATµ = 0
−∞ otherwise

• If g(λ, µ) = −∞ we say that (λ, µ) are outside the domain of the dual.
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Duality: linear programming

• With g(λ, µ) given by:

g(λ, µ) =

{

−bTµ if c − λ + ATµ = 0
−∞ otherwise

• we can write the dual program as:

maximize g(λ, µ)
subject to λ ≥ 0

• which is again, writing the domain explicitly:

maximize −bTµ

subject to c − λ + ATµ = 0
λ ≥ 0
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Duality: linear programming

• After simplification:

{

c − λ + ATµ = 0
λ ≥ 0

⇐⇒ c + ATµ ≥ 0

• we conclude that the dual of the linear program:

minimize cTx

subject to Ax = b (primal)
x ≥ 0

• is given by:
maximize −bTµ

subject to −ATµ ≤ c (dual)

• equivalently:
maximize bTµ

subject to ATµ ≤ c
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Dual Linear Program

Up to now, what have we introduced?

• A vector of parameters µ ∈ Rm, one coordinate by constraint.

• For any µ and any feasible x of the primal = a lower bound on the primal.

• For some µ the lower bound is −∞, not useful.

• The dual problem computes the biggest lower bound.

• We discard values of µ which give −∞ lower bounds.

• This the way dual constraints are defined.

• The dual is another linear program in dimensions Rn×m, that is n

constraints and m variables.
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From Primal to Dual for general LP’s

• Some notations: for A ∈ Rm×n we write

◦ aj for the n column vectors
◦ Ai for the m row vectors of A.

• Following a similar reasoning we can flip from primal to dual changing

◦ the constraints linear relationships A,
◦ the constraints constants b,
◦ the constraints directions (≤,≥, =)
◦ non-negativity conditions,
◦ the objective

minimize cTx maximize µTb

subject to AT
i x ≥ bi, i ∈ M1 subject to µi ≥ 0 i ∈ M1

AT
i x ≤ bi, i ∈ M2 µi ≤ 0 i ∈ M2

AT
i x = bi, i ∈ M3 µi free i ∈ M3

xj ≥ 0 j ∈ N1 µTaj ≤ cj j ∈ N1

xj ≤ 0 j ∈ N1 µTaj ≥ cj j ∈ N2

xj free j ∈ N1 µTaj = cj j ∈ N3

(1)
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Dual Linear Program

• In summary, for any kind of constraint,

primal minimize maximize dual

constraints
≥ bi ≥ 0

variables≤ bi ≤ 0
= bi free

variables
≥ 0 ≤ cj

constraints≤ 0 ≥ cj

free = cj

• For simple cases and in matrix form,

minimize cTx

subject to Ax = b

x ≥ 0
⇒

maximize bTµ

subject to ATµ ≤ c

minimize cTx

subject to Ax ≥ b
⇒

maximize bTµ

subject to ATµ = c

µ ≥ 0
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Dual Linear Program: Equivalence Theorems

Theorem 1. If we transform the dual problem into an equivalent minimization
problem and the form its dual, we obtain a problem that is equivalent to the
original problem

• The dual of the dual of a given primal LP is the primal LP itself.

• Linear programs are self-dual.

• Not true in the general case. The dual of the dual is called the bi-dual
problem.

• The tables before can be used in both directions indifferently.
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Dual Linear Program: Equivalence Theorems

Theorem 2. If we transform a LP (1) into another LP (2) through any of the
following operations:

• replace free variables with the difference of two nonnegative variables;

• replace inequality constraints by an equality constraint with a surplus/slack
variable;

• remove redundant (colinear) rows of the constraint matrix for standard
forms;

then the duals of (1) and (2) are equivalent, i.e. they are either both infeasible
or have the same optimal objective.
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Duality for LP’s : Weak Duality

We proved weak duality for general programs. Although LP’s are a particular
case the arguments are here explicit:

Theorem 3. If x is a feasible solution to a primal LP and µ is a feasible
solution to the dual problem then

µTb ≤ cTx

• Proof idea check what is called the complementary slackness variables
µi(A

T
i x− bi) and (cj − µTaj)xj and use the primal/dual relationships.
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Weak Duality Proof

Proof. • Let x ∈ Rn and µ ∈ Rm and define

ui = µi(A
T
i x − bi) i = 1, ..,m

vj = (cj − µTaj)xj j = 1, .., n

• Suppose x and µ are primal and dual feasible for an LP involving A, b and c.

• Check Equations 1. Whatever the constraints are,

◦ µi and (AT
i x− bi) have the same sign or their product is zero.

◦ The same goes for (cj − µTaj) and xj.

• Hence ui, vj ≥ 0.

• Furthermore
∑m

i ui = µT (Ax − b) and
∑n

j vj = (cT − µTA)x

• Hence 0 ≤
∑m

i ui +
∑n

j vj = cTx − µTb
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Weak Duality

• Not a very strong result at first look.

• Specially since we already discussed strong duality...

• Yet weak duality provides us with the two simple yet important corollaries.

• In the following we assume that the primal is a minimization.

• As usual, results can be easily proved the other way round.
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Weak Duality Corollary 1

Corollary 1. • If the objective in the primal can be arbitrarily small then the
dual problem must be infeasible.

• If the objective in the primal can be arbitrarily big then the dual problem
must be infeasible.

Proof. • By weak duality, µTb ≤ cTx for any two feasible points x, µ.

• If the objective for feasible x can be set arbitrarily low, then a feasible µ

cannot exist.

• The same applies for a feasible x if the dual objective can be arbitrarily high.
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Weak Duality Corollary 2

Corollary 2. Let x⋆ and µ⋆ be two feasible solutions to the primal and dual
respectively. Suppose that µ⋆Tb = cTx⋆. Then x⋆ and µ⋆ are optimal
solutions for the primal and dual respectively.

Proof. For every feasible point of the primal y, cTx⋆ = µ⋆Tb ≤ cTy hence x⋆ is
optimal. Same thing for µ⋆.

• Let’s check whether strong duality holds or not for linear programs...
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Strong Duality

• For linear programs, strong duality is always ensured.

• We use the simplex’s convergence to the optimal solution in this proof.

• We will cover a more geometric approach in the next lecture.

Theorem 4. if an LP has an optima, so does its dual, and their respective

optimal objectives are equal.

• Proof strategy:

◦ prove it first for a standard form LP, showing that the reduced cost
coefficient can be used to define a dual feasible solution..

◦ For a general LP, use Theorem 2
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Strong Duality: Proof 1

Proof. • Consider the standard form

minimize cTx

subject to Ax = b

x ≥ 0

• Let’s use the simplex with the lexicographic rule for instance. Let x be the
optimal solution with basis I and objective z.

• The reduced costs must be nonnegative (here we have a min problem) hence

cT − cT
I B−1

I A ≥ 0T

• Let µT = cT
I B−1

I . Then µTA ≥ cT coordinate wise.

• µ is a feasible solution to the dual problem.

• Furthermore µTb = cT
I B−1

I b = cT
I xI = z.

• µ is thus optimal w.r.t to the dual following the previous corollary.
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Strong Duality: Proof 2

• Suppose now that we have a general LP (1).

• Through operations as described in Theorem 2 the program is changed into an
equivalent standard program (2). They share the same optimal cost.

• The dual of program (D2) has the same optimal cost in turn.

• Both (D2) and (D1) have the same optimal cost by Theorem 2.

• Hence (1) and (D1) have the same optimal cost.
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Complementary slackness

• Another important result that links both optima:

Theorem 5. Let x and µ be feasible solutions to the primal and dual
problems respectively. The vectors for x and µ are optimal solutions for the
two respective problems if and only if

ui = µi(A
T
i x − bi) = 0, i = 1, ..,m;

vj = (cj − µTaj)xj = 0, j = 1, .., n.

Proof. In the proof of the weak duality we showed that ui, vj ≥ 0. Moreover

0 ≤
m

∑

i

ui +
n

∑

j

vj = cTx − µTb.

Hence, x, µ optimal ⇔ ui = vj = 0 through strong duality (⇒) and the second
corollary of weak duality (⇐).
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Examples for LP’s
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Duality

• A simple example with the following linear program:

minimize 3x1 + x2

subject to x2 − 2x1 = 1
x1, x2 ≥ 0

• Two inequality constraints, one equality constraint. The Lagrangian is written:

L(x, λ, µ) = 3x1 + x2 − λ1x1 − λ2x2 + µ(1 − x2 + 2x1)

in the (dual variables) λ1, λ2 ≥ 0 and µ (free).
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Duality

• The dual function is then:

g(λ, µ) = inf
x

L(x, λ, µ)

= inf
x

3x1 + x2 − λ1x1 − λ2x2 + µ(1 − x2 + 2x1)

= inf
x

(3 − λ1 + 2µ)x1 + (1 − λ2 − µ)x2 + µ

• We minimize a linear function of x1, x2, only two possibilities:

g(λ, µ) =

{

µ if 3 − λ1 + 2µ = 1 − λ2 − µ = 0
−∞ otherwise

• The dual problem is finally:

maximize µ

subject to 3 − λ1 + 2µ = 0
1 − λ2 − µ = 0
λ ≥ 0
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Network flow: Max-flow / Min-cut

• m nodes, N1, · · · , Nm.

• d directed edges (arrows) to connect some nodes. Each edge is a pair
(Ni, Ni′). The set is V

◦ Each edge carries a flow fj its flow.
◦ Each edge has a bounded capacity (pipe width) fj ≤ uj

• Relating edges and nodes: the network’s incidence matrix A ∈ {−1, 0, 1}
m×d

:

Aij =







1 if edge j starts at node i

−1 if edge j ends at node i

0 otherwise

• For a node i,

∑

j s.t. edge ends at i

fj =
∑

j s.t. edge starts at i

fj

• In matrix form: Af = 0
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First problem: Maximal Flow

• We consider a constant flow from node 1 to node m.

• What is the maximal flow that can go through the system?

• A way to model this is to close the loop with an artificial edge numbered
d + 1.

• if ud+1 = ∞, what would be the maximal flow fd+1 of that edge?

• Namely solve

minimize cT f = −fd+1,

subject to [A , e] f = 0,
0 ≤ f1 ≤ u1, · · · , 0 ≤ fd ≤ ud,

0 ≤ fd+1 ≤ ud+1,

with e = (−1, 0, . . . , 0, 1) and c = (0, . . . , 0,−1) and ud+1 a very large
capacity for fd+1.
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Second problem: Minimal Cut

• Suppose you are a plumber and you want to completely stop the flow from
node N1 to Nm.

• You have to remove edges (pipes). What the minimal capacity you have to
remove to make sure no flow goes from N1 to Nm?

• Goal: cut the set of nodes into two disjoint sets S and T .

• Suppose we remove a set C ⊂ V of edges. We want to minimize the total
capacity of C under the constraint that the flow is now zero.

• yij ∈ {0, 1} will keep track of cuts. For each node Ni there is a variable zi

which is 0 if Ni is in the set S or 1 in the set T . We arbitrarily set z1 = 0 and
zN = 1.

minimize
∑

(i,j)∈V

yijuij

subject to yi,j + zi − zj ≥ 0
z1 = 1, zt = 0, zi ≥ 0,
yij ≥ 0, (i, j) ∈ V
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Duality: example

• Let us form the Lagrangian:

L(f ,y, z) = cT f + zT [Ae] f + yT (f − u)

for f ≥ 0 here.

• The Lagrange dual function is defined as

g(y, z) = inf f≥0 L(f ,y, z)

= inf f≥0 fT

(

c + y +

[

AT

eT

]

z

)

− uTy

• but this minimization yields either −∞ or −uTy, so:

g(y, z) =







−uTy if

(

c + y +

[

AT

eT

]

z

)

≥ 0

−∞ otherwise
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Duality: example

This means that the dual of the maximum flow problem is written:

minimize uTy

subject to c + y +

[

AT

e

]

z ≥ 0

Compare the following dual with changed notations

minimize
∑

(i,j)∈V

yijuij

subject to yN,1 + zN − z1 ≥ 1
yij + zi − zj ≥ 0, (i, j) ∈ V
yij ≥ 0

to the minimum cut problem. The two problems are identical.
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Duality: example

• The objective is to minimize:

∑

(i,j)∈V

uijyij, (yi,j ≥ 0),

where ud+1 = uN,1 = M (very large), which means yN,1 = 0.

• The first equation then becomes:

zN − z1 ≥ 1

so we can fix zN = 1 and z1 = 0.
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Duality: example

• The equations for all the edges starting from z1 = 0:

y1j − zj ≥ 0

• Then, two scenarios are possible (no proof here):

◦ y1j = 1 with zj = 1 and all the following zk will be ones in the next
equations (at the minimum cost):

yjk + zj − zk ≥ 0, (j, k) ∈ V

◦ y1j = 0 with zj = 0 and we get the same equation for the next node:

yjk − zk ≥ 0, (j, k) ∈ V
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Duality: example

Interpretation?

• If a node has zi = 0, all the nodes preceding it in the network must have
zj = 0.

• If a node has zi = 1, all the following nodes in the network must have
zj = 1. . .

• This means that zj effectively splits the network in two partitions

• The equations:
yij − zi + zj ≥ 0

mean for any two nodes with zi = 0 and zj = 1, we must have yij = 1.

• The objective minimizes the total capacity of these edges, which is also the
capacity of the cut.
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Next time

• Geometric viewpoint on duality

• Sensitivity Analysis.
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