ORF 522

Linear Programming and Convex Analysis

Duality

Marco Cuturi

Princeton ORF-522

Today

- Duality theory, the general case.
 - \circ Lagrangian
 - Lagrange dual function and optima for the dual.
 - $\circ~$ Weak and strong duality.
- A closer look at the linear case.
 - $\circ\,$ dual programs for LP's
 - $\circ~$ Weak duality and two corollaries
 - \circ Strong Duality
 - Complementary Slackness
- Examples
 - Simple LP.
 - $\circ\,$ Max-flow / min-cut problem.

Duality

• Duality theory:

- Keep this in mind: only a long list of **simple** inequalities. . . .
- $\circ\,$ In the end: very powerful results at low technical/numerical cost.
- A few important, intuitive theorems.
- We provide proofs for LP's here, some more advanced results exist in convexity.

• In a LP context:

- Dual problem provides a different **interpretation** on the same problem.
- Essentially assigns cost ("displeasure" measure) to constraints.
- Allow us to study cheaply the sensitivity of the solution to changes in constraints.
- Provides alternative algorithms (dual-simplex).

Duality : the general case

Optimization problem

• Consider the following **mathematical program**:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

where $x \in \mathcal{D} \subset \mathbf{R}^n$ with optimal value p^* .

- No particular assumptions on \mathcal{D} and the functions f and h (convexity, linearity, continuity, etc)
- Very generic (includes linear programming and many other problems)

Lagrangian

We form the Lagrangian of this problem:

$$L(\mathbf{x}, \lambda, \mu) = f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \mu_i h_i(\mathbf{x})$$

as a function of the original variable $\mathbf{x} \in \mathbf{R}^n$, and additional variables $\lambda \in \mathbf{R}^m$ and $\mu \in \mathbf{R}^p$, called Lagrange multipliers.

- The Lagrangian is a **penalized** version of the original objective
- The Lagrange multipliers λ_i, μ_i control the weight of the penalty assigned to each violation.
- The Lagrangian is a smoothed version of the hard problem, we have turned $x \in C$ into penalties that take into account the constraints that **define** C.
- The idea of replacing **hard** constraints by **penalizations** or **soft** constraints will come again when we will study IPM.

Lagrange dual function

• We originally have

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f_0(\boldsymbol{x}) + \sum_{i=1}^m \boldsymbol{\lambda}_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \boldsymbol{\mu}_i h_i(\boldsymbol{x})$$

• The penalized problem is here:

$$g(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{x \in \mathcal{D}} f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x)$$

- The function $g(\lambda, \mu)$ is called the Lagrange dual function.
 - \circ Easier to solve than the original one (the constraints are gone)
 - Can often be computed explicitly (more later)

Lower bound

- The function $g(\lambda, \mu)$ produces a lower bound on p^{\star} .
- Lower bound property: If $\lambda \ge 0$, then $g(\lambda, \mu) \le p^{\star}$
 - Why? If \tilde{x} is feasible, $f_i(\tilde{x}) \leq 0$ and thus $\lambda_i f_i(\tilde{x}) \leq 0$ $h_i(x) = 0$, and thus $\mu_i h_i(\tilde{x}) = 0$ • thus by construction of L:

$$g(\lambda,\mu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\mu) \le L(\tilde{x},\lambda,\mu) \le f_0(\tilde{x})$$

• This is true for any feasible \tilde{x} , so it must be true for the optimal one, which means $g(\lambda, \mu) \leq f_0(x^*) = p^*$.

Lower bound

 We now have a systematic way of producing lower bounds on the optimal value p* of the original problem:

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

• All it takes is a **feasible point** $\tilde{x} \in \mathcal{D}$, which satisfies:

$$f_i(\tilde{x}) \le 0, \quad i = 1, \dots, m$$

$$h_i(\tilde{x}) = 0, \quad i = 1, \dots, p$$

• We can look for the best possible one. . .

Dual problem

• We can define the Lagrange dual problem:

 $\begin{array}{ll} \text{maximize} & g(\lambda,\mu) \\ \text{subject to} & \lambda \geq 0 \end{array}$

in the variables $\lambda \in \mathbf{R}^m$ and $\mu \in \mathbf{R}^p$.

- Finds the best, that is highest, possible lower bound g(λ, μ) on the optimal value p^{*} of the original (now called primal) problem.
- We call its optimal value d^{\star}

Dual problem

• For each given x, the function

$$L(x,\lambda,\mu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \mu_i h_i(x)$$

is **linear** in the variables λ and μ .

• This means that the function

$$g(\lambda,\mu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\mu)$$

is a minimum of linear functions of (λ, μ) , so it must be **concave** in (λ, μ)

• This means that the dual problem is always a **concave maximization** problem, whatever *f*, *g*, *h*'s properties are.

Weak duality

We have shown the following property called **weak duality**:

 $d^\star \le p^\star$

i.e. the optimal value of the dual is always less than the optimal value of the primal problem.

- We haven't made any further assumptions on the problem
- Weak duality must always hold
- Produces lower bounds on the problem at low cost

What happens when $d^{\star} = p^{\star}$?...

Strong duality

When $d^{\star} = p^{\star}$ we have strong duality.

- Because d^{\star} is a lower bound on the optimal value p^{\star} , if both are equal for some (x, λ, μ) , the current point must be optimal
- The converse is false: (x,λ,μ) could be optimal with $d^\star < p^\star$
- For most convex problems, we have strong duality
- The difference $p^* d^*$ is called the **duality gap** and is a measure of how optimal the current solution (x, λ, μ) .

Slater's conditions

Example of sufficient conditions for **strong duality**:

• **Slater's conditions**. Consider the following problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = \mathbf{b}$, $i = 1, ..., p$

where all the $f_i(x)$ are **convex** and assume that:

there exists
$$x \in \mathcal{D}$$
: $f_i(x) < 0, \ Ax = \mathbf{b}, \quad i = 1, \dots, m$

in other words there is a **strictly feasible point**, then strong duality holds.

- Many other versions exist. . .
- Often easy to check.
- Let's see for linear programs.

• Take a **linear program** in standard form:

$$\begin{array}{ll} \text{minimize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq 0 (-\mathbf{x} \leq 0) \end{array}$$

• We can form the **Lagrangian**:

$$L(\mathbf{x}, \lambda, \mu) = \mathbf{c}^T \mathbf{x} - \lambda^T \mathbf{x} + \mu^T (A\mathbf{x} - \mathbf{b})$$

• and the Lagrange dual function:

$$g(\lambda, \mu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \mu)$$
$$= \inf_{\mathbf{x}} \mathbf{c}^T \mathbf{x} - \lambda^T \mathbf{x} + \mu^T (A\mathbf{x} - b)$$

• For linear programs, the Lagrange dual function can be computed explicitly:

$$g(\lambda, \mu) = \inf_{\mathbf{x}} \mathbf{c}^T \mathbf{x} - \lambda^T \mathbf{x} + \mu^T (A\mathbf{x} - b)$$
$$= \inf_{\mathbf{x}} (c - \lambda + A^T \mu)^T \mathbf{x} - \mathbf{b}^T \mu$$

• This is either $-\mathbf{b}^T \mu$ or $-\infty$, so we finally get:

$$g(\lambda,\mu) = \begin{cases} -\mathbf{b}^T \mu & \text{if } c - \lambda + A^T \mu = 0\\ -\infty & \text{otherwise} \end{cases}$$

• If $g(\lambda, \mu) = -\infty$ we say that (λ, μ) are outside the domain of the dual.

• With $g(\lambda, \mu)$ given by:

$$g(\lambda,\mu) = \begin{cases} -\mathbf{b}^T \mu & \text{if } c - \lambda + A^T \mu = 0 \\ -\infty & \text{otherwise} \end{cases}$$

• we can write the dual program as:

 $\begin{array}{ll} \mbox{maximize} & g(\lambda,\mu) \\ \mbox{subject to} & \lambda \geq 0 \end{array}$

• which is again, writing the domain explicitly:

$$\begin{array}{ll} \mbox{maximize} & -\mathbf{b}^T \mu \\ \mbox{subject to} & c-\lambda+A^T\mu=0 \\ & \lambda\geq 0 \end{array}$$

• After simplification:

$$\begin{cases} c - \lambda + A^T \mu = 0\\ \lambda \ge 0 \end{cases} \iff c + A^T \mu \ge 0$$

• we conclude that the dual of the linear program:

$$\begin{array}{ll} \mbox{minimize} & \mathbf{c}^T \mathbf{x} \\ \mbox{subject to} & A \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq 0 \end{array} \qquad \mbox{(primal)}$$

• is given by:

$$\begin{array}{ll} \text{maximize} & -\mathbf{b}^T \mu \\ \text{subject to} & -A^T \mu \leq c \end{array} \quad \text{(dual)} \end{array}$$

• equivalently:

$$\begin{array}{ll} \text{maximize} & \mathbf{b}^T \mu \\ \text{subject to} & A^T \mu \leq c \end{array}$$

Dual Linear Program

Up to now, what have we introduced?

- A vector of parameters $\mu \in \mathbf{R}^m$, one coordinate by constraint.
- For any μ and any feasible x of the primal = a lower bound on the primal.
- For some μ the lower bound is $-\infty$, not useful.
- The **dual problem** computes the **biggest** lower bound.
- We discard values of μ which give $-\infty$ lower bounds.
- This the way **dual constraints** are defined.
- The dual is another linear program in dimensions $\mathbb{R}^{n \times m}$, that is *n* constraints and *m* variables.

From Primal to Dual for general LP's

- Some notations: for $A \in \mathbf{R}^{m \times n}$ we write
 - \circ **a**_{*i*} for the *n* column vectors
 - \mathbf{A}_i for the m row vectors of A.
- Following a similar reasoning we can flip from primal to dual changing
 - $\circ\,$ the constraints linear relationships A ,
 - $\circ\,$ the constraints constants ${\bf b}$,
 - $\circ\,$ the constraints directions ($\leq,\geq,=$)
 - non-negativity conditions,
 - the objective

minimize	$\mathbf{c}^T \mathbf{x}$		maximize	$\mu^T \mathbf{b}$]
subject to	$\mathbf{A}_i^T \mathbf{x} \ge b_i,$	$i \in M_1$	subject to	$\mu_i \ge 0$	$i \in M_1$	
	$\mathbf{A}_i^T \mathbf{x} \le b_i,$	$i \in M_2$		$\mu_i \le 0$	$i \in M_2$	
	$\mathbf{A}_i^T \mathbf{x} = b_i,$	$i \in M_3$		μ_i free	$i \in M_3$	(1)
	$x_j \ge 0$	$j \in N_1$		$\mu^T \mathbf{a}_j \le c_j$	$j \in N_1$	
	$x_j \le 0$	$j \in N_1$		$\mu^T \mathbf{a}_j \ge c_j$	$j \in N_2$	
	x_j free	$j \in N_1$		$\mu^T \mathbf{a}_j = c_j$	$j \in N_3$	

Dual Linear Program

• In summary, for any kind of constraint,

primal	minimize	maximize	dual
constraints	$ \begin{array}{l} \geq b_i \\ \leq b_i \\ = b_i \end{array} $	$\begin{array}{l} \geq 0 \\ \leq 0 \\ \text{free} \end{array}$	variables
variables	$\begin{array}{l} \geq 0 \\ \leq 0 \\ \text{free} \end{array}$	$\begin{vmatrix} \leq c_j \\ \geq c_j \\ = c_j \end{vmatrix}$	constraints

• For simple cases and in matrix form,

minimize subject to	$\mathbf{c}^T \mathbf{x}$ $A\mathbf{x} = \mathbf{b}$ $\mathbf{x} \ge 0$	\Rightarrow	maximize subject to	$\mathbf{b}^T \boldsymbol{\mu} \\ A^T \boldsymbol{\mu} \le c$
minimize subject to	$\mathbf{c}^T \mathbf{x} \\ A \mathbf{x} \ge \mathbf{b}$	\Rightarrow	maximize subject to	$\mathbf{b}^{T} \boldsymbol{\mu} \\ A^{T} \boldsymbol{\mu} = c \\ \boldsymbol{\mu} \ge 0$

Dual Linear Program: Equivalence Theorems

Theorem 1. If we transform the dual problem into an equivalent minimization problem and the form its dual, we obtain a problem that is equivalent to the original problem

- The dual of the dual of a given primal LP is the primal LP itself.
- Linear programs are **self-dual**.
- Not true in the general case. The dual of the dual is called the **bi-dual** problem.
- The tables before can be used in both directions indifferently.

Dual Linear Program: Equivalence Theorems

Theorem 2. If we transform a LP (1) into another LP (2) through any of the following operations:

- replace free variables with the difference of two nonnegative variables;
- replace inequality constraints by an equality constraint with a surplus/slack variable;
- remove redundant (colinear) rows of the constraint matrix for standard forms;

then the duals of (1) and (2) are equivalent, i.e. they are either both infeasible or have the same optimal objective.

Duality for LP's : Weak Duality

We proved weak duality for general programs. Although LP's are a **particular case** the arguments are here explicit:

Theorem 3. If \mathbf{x} is a feasible solution to a primal LP and μ is a feasible solution to the dual problem then

$$\mu^T \mathbf{b} \le \mathbf{c}^T \mathbf{x}$$

• **Proof idea** check what is called the complementary slackness variables $\mu_i(\mathbf{A}_i^T \mathbf{x} - b_i)$ and $(c_j - \mu^T \mathbf{a}_j)\mathbf{x}_j$ and use the primal/dual relationships.

Weak Duality Proof

Proof. • Let $\mathbf{x} \in \mathbf{R}^n$ and $\mu \in \mathbf{R}^m$ and define

$$u_i = \mu_i (\mathbf{A}_i^T \mathbf{x} - b_i) \quad i = 1, ..., m$$

$$v_j = (c_j - \mu^T \mathbf{a}_j) \mathbf{x}_j \quad j = 1, ..., n$$

- Suppose x and μ are primal and dual feasible for an LP involving A, b and c.
- Check Equations 1. Whatever the constraints are,
 - μ_i and $(\mathbf{A}_i^T \mathbf{x} b_i)$ have the same sign or their product is zero. • The same goes for $(c_j - \mu^T \mathbf{a}_j)$ and \mathbf{x}_j .
- Hence $u_i, v_j \ge 0$.
- Furthermore $\sum_{i=1}^{m} u_i = \mu^T (A\mathbf{x} \mathbf{b})$ and $\sum_{j=1}^{n} v_j = (\mathbf{c}^T \mu^T A)\mathbf{x}$

• Hence
$$0 \leq \sum_{i=1}^{m} u_i + \sum_{j=1}^{n} v_j = \mathbf{c}^T \mathbf{x} - \mu^T \mathbf{b}$$

Weak Duality

- Not a very strong result at first look.
- Specially since we already discussed **strong duality**...

- Yet weak duality provides us with the two simple yet **important corollaries**.
- In the following we assume that the **primal** is a **minimization**.
- As usual, results can be easily proved the other way round.

Weak Duality Corollary 1

Corollary 1. • If the objective in the primal can be arbitrarily small then the dual problem must be infeasible.

• If the objective in the primal can be arbitrarily big then the dual problem must be infeasible.

Proof. • By weak duality, $\mu^T \mathbf{b} \leq \mathbf{c}^T \mathbf{x}$ for any two feasible points \mathbf{x}, μ .

- If the objective for feasible ${\bf x}$ can be set arbitrarily low, then a feasible μ cannot exist.
- The same applies for a feasible x if the dual objective can be arbitrarily high.

Weak Duality Corollary 2

Corollary 2. Let \mathbf{x}^* and μ^* be two feasible solutions to the primal and dual respectively. Suppose that $\mu^{*T}\mathbf{b} = \mathbf{c}^T\mathbf{x}^*$. Then \mathbf{x}^* and μ^* are optimal solutions for the primal and dual respectively.

Proof. For every feasible point of the primal \mathbf{y} , $\mathbf{c}^T \mathbf{x}^* = \mu^{*T} \mathbf{b} \leq \mathbf{c}^T \mathbf{y}$ hence \mathbf{x}^* is optimal. Same thing for μ^* .

• Let's check whether strong duality holds or not for linear programs...

Strong Duality

- For linear programs, **strong duality is always ensured**.
- We use the **simplex**'s convergence to the optimal solution in this proof.
- We will cover a more geometric approach in the next lecture.

Theorem 4. *if an LP has an optima, so does its dual, and their* **respective** *optimal objectives are equal.*

• Proof strategy:

- prove it first for a standard form LP, showing that the reduced cost coefficient can be used to define a dual feasible solution..
- $\circ\,$ For a general LP, use Theorem 2

Strong Duality: Proof 1

Proof. • Consider the standard form

 $\begin{array}{ll} \text{minimize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq 0 \end{array}$

- Let's use the simplex with the lexicographic rule for instance. Let x be the optimal solution with basis I and objective z.
- The reduced costs must be nonnegative (here we have a **min** problem) hence

$$\mathbf{c}^T - \mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} A \ge \mathbf{0}^T$$

- Let $\mu^T = \mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1}$. Then $\mu^T A \ge \mathbf{c}^T$ coordinate wise.
- μ is a **feasible** solution to the dual problem.
- Furthermore $\mu^T \mathbf{b} = \mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} \mathbf{b} = \mathbf{c}_{\mathbf{I}}^T \mathbf{x}_{\mathbf{I}} = z.$
- μ is thus optimal w.r.t to the dual following the previous corollary.

Strong Duality: Proof 2

- Suppose now that we have a general LP (1).
- Through operations as described in Theorem 2 the program is changed into an equivalent standard program (2). They share the same optimal cost.
- The dual of program (D2) has the same optimal cost in turn.
- Both (D2) and (D1) have the same optimal cost by Theorem 2.
- Hence (1) and (D1) have the same optimal cost.

Complementary slackness

• Another important result that links both optima:

Theorem 5. Let \mathbf{x} and μ be feasible solutions to the primal and dual problems respectively. The vectors for \mathbf{x} and μ are optimal solutions for the two respective problems if and only if

$$u_{i} = \mu_{i}(\mathbf{A}_{i}^{T}\mathbf{x} - b_{i}) = \mathbf{0}, \quad i = 1, ..., m; v_{j} = (c_{j} - \mu^{T}\mathbf{a}_{j})\mathbf{x}_{j} = \mathbf{0}, \quad j = 1, ..., n.$$

Proof. In the proof of the weak duality we showed that $u_i, v_j \ge 0$. Moreover

$$0 \le \sum_{i}^{m} u_i + \sum_{j}^{n} v_j = \mathbf{c}^T \mathbf{x} - \mu^T \mathbf{b}.$$

Hence, \mathbf{x}, μ optimal $\Leftrightarrow u_i = v_j = 0$ through strong duality (\Rightarrow) and the second corollary of weak duality (\Leftarrow).

Examples for LP's

Duality

• A simple example with the following linear program:

$$\begin{array}{ll} \mbox{minimize} & 3x_1+x_2\\ \mbox{subject to} & x_2-2x_1=1\\ & x_1,x_2\geq 0 \end{array}$$

• Two inequality constraints, one equality constraint. The Lagrangian is written:

$$L(x,\lambda,\mu) = 3x_1 + x_2 - \lambda_1 x_1 - \lambda_2 x_2 + \mu(1 - x_2 + 2x_1)$$

in the (dual variables) $\lambda_1, \lambda_2 \ge 0$ and μ (free).

Duality

• The dual function is then:

$$g(\lambda, \mu) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda, \mu)$$

= $\inf_{\mathbf{x}} 3x_1 + x_2 - \lambda_1 x_1 - \lambda_2 x_2 + \mu (1 - x_2 + 2x_1)$
= $\inf_{\mathbf{x}} (3 - \lambda_1 + 2\mu) x_1 + (1 - \lambda_2 - \mu) x_2 + \mu$

• We minimize a linear function of x_1 , x_2 , only two possibilities:

$$g(\lambda,\mu) = \begin{cases} \mu & \text{if } 3 - \lambda_1 + 2\mu = 1 - \lambda_2 - \mu = 0\\ -\infty & \text{otherwise} \end{cases}$$

• The dual problem is finally:

$$\begin{array}{ll} \mbox{maximize} & \mu \\ \mbox{subject to} & 3-\lambda_1+2\mu=0 \\ & 1-\lambda_2-\mu=0 \\ & \lambda\geq 0 \end{array}$$

Network flow: Max-flow / Min-cut

- m nodes, N_1, \cdots, N_m .
- d directed edges (arrows) to connect some nodes. Each edge is a pair $(N_i, N_{i'})$. The set is \mathcal{V}
 - Each edge carries a flow f_j its flow.
 - Each edge has a bounded capacity (pipe width) $f_j \leq u_j$
- Relating edges and nodes: the network's incidence matrix $A \in \{-1, 0, 1\}^{m \times d}$:

$$A_{ij} = \begin{cases} 1 & \text{if edge } j \text{ starts at node } i \\ -1 & \text{if edge } j \text{ ends at node } i \\ 0 & \text{otherwise} \end{cases}$$

• For a node *i*,

$$\sum_{j \text{ s.t. edge ends at } i} f_j = \sum_{j \text{ s.t. edge starts at } i} f_j$$

• In matrix form: $A\mathbf{f} = \mathbf{0}$

Princeton ORF-522

First problem: Maximal Flow

- We consider a **constant flow** from node 1 to node m.
- What is the **maximal flow** that can go through the system?
- A way to model this is to close the loop with an *artificial edge* numbered d+1.
- if $u_{d+1} = \infty$, what would be the maximal flow f_{d+1} of that edge?
- Namely solve

$$\begin{array}{ll} \text{minimize} & \mathbf{c}^T \mathbf{f} = -f_{d+1}, \\ \text{subject to} & [A \ , e] \, \mathbf{f} = 0, \\ & 0 \leq f_1 \leq u_1, \cdots, 0 \leq f_d \leq u_d, \\ & 0 \leq f_{d+1} \leq u_{d+1}, \end{array}$$

with $e = (-1, 0, \dots, 0, 1)$ and $c = (0, \dots, 0, -1)$ and u_{d+1} a very large capacity for f_{d+1} .

Second problem: Minimal Cut

- Suppose you are a plumber and you want to completely stop the flow from node N_1 to N_m .
- You have to remove edges (pipes). What the minimal capacity you have to remove to make sure no flow goes from N_1 to N_m ?
- Goal: cut the set of nodes into two disjoint sets S and T.
- Suppose we remove a set $C \subset V$ of edges. We want to minimize the total capacity of C under the constraint that the flow is now zero.
- y_{ij} ∈ {0,1} will keep track of cuts. For each node N_i there is a variable z_i which is 0 if N_i is in the set S or 1 in the set T. We arbitrarily set z₁ = 0 and z_N = 1.

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{(i,j)\in\mathcal{V}} y_{ij}u_{ij} \\ \text{subject to} & \displaystyle y_{i,j}+z_i-z_j\geq 0 \\ & \displaystyle z_1=1, z_t=0, z_i\geq 0, \\ & \displaystyle y_{ij}\geq 0, (i,j)\in\mathcal{V} \end{array}$$

• Let us form the **Lagrangian**:

$$L(\mathbf{f}, \mathbf{y}, \mathbf{z}) = \mathbf{c}^T \mathbf{f} + \mathbf{z}^T [Ae] \mathbf{f} + \mathbf{y}^T (\mathbf{f} - \mathbf{u})$$

for $\mathbf{f} \geq 0$ here.

• The Lagrange dual function is defined as

$$g(\mathbf{y}, \mathbf{z}) = \inf_{\mathbf{f} \ge 0} L(\mathbf{f}, \mathbf{y}, \mathbf{z})$$

= $\inf_{\mathbf{f} \ge 0} \mathbf{f}^T \left(\mathbf{c} + \mathbf{y} + \begin{bmatrix} A^T \\ e^T \end{bmatrix} \mathbf{z} \right) - \mathbf{u}^T \mathbf{y}$

• but this minimization yields either $-\infty$ or $-\mathbf{u}^T\mathbf{y}$, so:

$$g(\mathbf{y}, \mathbf{z}) = \begin{cases} -\mathbf{u}^T \mathbf{y} & \text{if } \left(\mathbf{c} + \mathbf{y} + \begin{bmatrix} A^T \\ e^T \end{bmatrix} \mathbf{z} \right) \ge 0 \\ -\infty & \text{otherwise} \end{cases}$$

This means that the **dual** of the maximum flow problem is written:

minimize
$$\mathbf{u}^T \mathbf{y}$$

subject to $\mathbf{c} + \mathbf{y} + \begin{bmatrix} A^T \\ e \end{bmatrix} \mathbf{z} \ge 0$

Compare the following dual with changed notations

$$\begin{array}{ll} \mbox{minimize} & \displaystyle \sum_{(i,j)\in\mathcal{V}} y_{ij} u_{ij} \\ \mbox{subject to} & \displaystyle y_{N,1} + z_N - z_1 \geq 1 \\ & \displaystyle y_{ij} + z_i - z_j \geq 0, \quad (i,j)\in\mathcal{V} \\ & \displaystyle y_{ij} \geq 0 \end{array}$$

to the **minimum cut problem**. The two problems are **identical**.

• The objective is to minimize:

$$\sum_{(i,j)\in\mathcal{V}} u_{ij}y_{ij}, \quad (y_{i,j}\geq 0),$$

where $u_{d+1} = u_{N,1} = M$ (very large), which means $y_{N,1} = 0$.

• The first equation then becomes:

$$z_N - z_1 \ge 1$$

so we can fix $z_N = 1$ and $z_1 = 0$.

• The equations for all the edges starting from $z_1 = 0$:

$$y_{1j} - z_j \ge 0$$

- Then, two scenarios are possible (no proof here):
 - $y_{1j} = 1$ with $z_j = 1$ and all the following z_k will be ones in the next equations (at the minimum cost):

$$y_{jk} + z_j - z_k \ge 0, \quad (j,k) \in \mathcal{V}$$

• $y_{1j} = 0$ with $z_j = 0$ and we get the same equation for the next node:

$$y_{jk} - z_k \ge 0, \quad (j,k) \in \mathcal{V}$$

Interpretation?

- If a node has $z_i = 0$, all the nodes preceding it in the network must have $z_j = 0$.
- If a node has $z_i = 1$, all the following nodes in the network must have $z_j = 1$...
- This means that z_j effectively splits the network in two partitions
- The equations:

$$y_{ij} - z_i + z_j \ge 0$$

mean for any two nodes with $z_i = 0$ and $z_j = 1$, we must have $y_{ij} = 1$.

• The objective minimizes the total capacity of these edges, which is also the capacity of the cut.

Next time

- Geometric viewpoint on duality
- Sensitivity Analysis.