ORF 522

Linear Programming and Convex Analysis

The Simplex Method, Tableaux and Dictionaries

Marco Cuturi

Reminder: Basic Feasible Solutions, Extreme points, Optima

Three fundamental theorems:

- Let x be a basic feasible solution (BFS) to a LP with index set I and objective value z. If ∃e, 1 ≤ e ≤ n, e ∉ I such that c_e z_e > 0 and at least one y_{i,e} > 0, then we can have a better basic feasible solution by replacing an index in I by e with a new objective 2 ≥ z, strictly if x_I is non-degenerate.
- Let x^{*} be a basic feasible solution (BFS) to a LP with index set I and objective value z^{*}. If c_i − z^{*}_i ≤ 0 for all 1 ≤ i ≤ n then x^{*} is optimal.
- Let x be a basic feasible solution (BFS) to a LP with index set *I*. If ∃ an index e ∉ I such that y_e ≤ 0 then the feasible region is unbounded. If moreover for e the reduced cost c_e z_e > 0 then there exists a feasible solution with at most m + 1 nonzero variables and an arbitrary large objective function.

Today

- Visualizing the simplex.
- Example of tableaux in canonical feasible form.

Reflecting on the Algorithm

So far, what is the simplex?

- The simplex is a family of algorithms which do the following:
 - 1. Obtains an initial Basic feasible solution. more on that later.
 - 2. iterates: move from one BFS I to a **better** BFS I':
 - check reduced cost coefficients $c_j c_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} \mathbf{a}_j$, $j \in \mathbf{O}$. if all negative I is *optimal*, **OVER**.
 - $\circ\,$ otherwise, pick one index e for which it is positive. this will enter I.
 - Check coordinates of $\mathbf{y}_{e} = B_{\mathbf{I}}^{-1} \mathbf{a}_{e}$. if all ≤ 0 then optimum is *unbounded*, OVER.
 - otherwise, take the index r such that it achieves the minimum in $\{\frac{x_{i_j}}{y_j, e} | y_{j, e} > 0, 1 \le j \le m\}$, this will ensure feasibility. The rth index of the base I is $i_r \le n$.
 - $\circ \mathbf{I}' = \{\mathbf{I} \setminus \mathbf{i_r}\} \cup \mathbf{e}.$
 - $\circ\,$ We have improved on the objective. If $x_{\mathbf{I}}$ was **not** degenerate, we have **strictly** improved.
 - $\circ \ I \leftarrow I'$
- The loop is on a finite set of extreme points. it either exits early (unbounded), exits giving an answer (optimum I* and corresponding solution x*) or loops indefinitely (degeneracy).

A Matlab Demo With Polyhedrons Containing the Origin

A Matlab Demo With Polyhedrons Containing the Origin

now with the real matlab demo...

Tableaux with Canonical Feasible Form

WHY tableaux ?

- Last time: an example where we move from a base I to a new base I', compute $B_{\mathbf{I}'}^{-1}$, do the multiplications etc.. and reach the optimum. This is the simplex.
- Double issue:
 - **Computational 1**: inverting matrices costs time & money. One column is different between B_{I} and $B_{I'}$, can we do better than inverting everything again?
 - **Computational 2**: multiplying matrices costs time & money. $B_{\mathbf{I}}^{-1}A$ and $B_{\mathbf{I}'}^{-1}A$ are related.

WHY tableaux ?

• Down to what we really need at each iteration:

- reduced cost coefficients vector $(c_i z_i)$ of \mathbf{R}^n to pick an index \mathbf{e} and check optimality,
- All column vectors of A in the base I, that is Y, to check boundedness and choose \boldsymbol{r} , namely all coordinates of $\mathbf{y}_{\boldsymbol{e}} = B_{\mathbf{I}}^{-1}a_{\boldsymbol{e}}$ in particular.
- The current basic solution vector, $B_{\mathbf{I}}^{-1}\mathbf{b}$ both to choose \boldsymbol{r} and on exit.
- Having also the objective $c_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} \mathbf{b}$ would help.
- Summing up, we need something that keeps track of

· · .	• • •	•••	:
:	$B_{\mathbf{I}}^{-1}A$:	$B_{\mathbf{I}}^{-1}\mathbf{b}$
•••	• • •	•••	:
• • •	$(\mathbf{c} - \mathbf{z})'$	• • •	$c_{\mathbf{I}}^{T}B_{\mathbf{I}}^{-1}\mathbf{b}$

Canonical Feasible Form: We know an initial BFS to corresponding Standard Form

• let's standardize a feasible $(i.e.b \ge 0)$ canonical form:

$$\begin{array}{lll} \text{maximize} & \alpha^T \mathbf{u} \\ \text{subject to} & \begin{cases} M \mathbf{u} & \leq \mathbf{b} \\ \mathbf{u} & \geq \mathbf{0} \end{cases} \end{array}$$

• We assume that $\mathbf{u}, \alpha \in \mathbf{R}^d$ for a d dimensional objective and $M \in \mathbf{R}^{m \times d}$ and $\mathbf{b} \in \mathbf{R}^m$ for m constraints.

Canonical Feasible Form: We know an initial BFS to corresponding Standard Form

• Slack variables
$$x_{d+1}, \dots, x_{d+m}$$
 can be added so that $[A, I_m] \begin{bmatrix} x_{d+1}^{\mathbf{u}} \\ \vdots \\ x_{d+m} \end{bmatrix} = \mathbf{b}$ and
the problem is now with $\mathbf{c} = [\alpha, \underbrace{0, \dots, 0}_{m}] \in \mathbf{R}^{d+m}$
maximize $x_0 = \mathbf{c}^T \mathbf{x}$
subject to $\begin{cases} [M, I_m] \mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge 0 \end{cases}$

- $\mathbf{x}, \mathbf{c} \in \mathbf{R}^{m+d}$, $\mathbf{c} = \begin{bmatrix} \alpha \\ \mathbf{0} \end{bmatrix}$, $A = \begin{bmatrix} M, I_m \end{bmatrix} \in \mathbf{R}^{m \times (m+d)}$ and same $\mathbf{b} \in \mathbf{R}^m$.
- The dimensionality of the problem is now n = d + m.

Simplex Method: Tableau

Let us represent this by an (annotated) tableau:

	0				Ι								
	x_1	x_2	• • •	x_e	• • •	x_d	x_{d+1}	x_{d+2}	• • •	x_{d+r}	• • •	x_{d+m}	b
x_{d+1}	m_{11}	m_{12}	• • •	m_{1e}	• • •	m_{1d}	1	0	• • •	0	• • •	0	b_1
x_{d+2}	m_{21}	m_{22}	• • •	m_{2e}	• • •	m_{2d}	0	1	•••	0	• • •	0	b_2
:	:	÷	· · .	÷	· · .	÷	÷	÷	· · .	÷	· · .	:	:
x_{d+r}	m_{r1}	m_{r2}	• • •	m_{re}	• • •	m_{rd}	0	0	• • •	1	• • •	0	b_r
:	:	÷	·•.	÷	· · .	÷	÷	:	· · .	:	· · .	:	:
x_{d+m}	m_{m1}	m_{m2}	• • •	m_{me}	• • •	m_{md}	0	0	• • •	0	• • •	1	b_m
x_0	c_1	c_2	• • •	c_e	• • •	c_d	0	0	• • •	0	• • •	0	0

• Since
$$\mathbf{b} \ge 0$$
, take an original BFS as $\left[\underbrace{0, \cdots, 0}_{d}, b_1, b_2, \cdots, b_m\right]^T$

• Why:

• **basic**:
$$I = \{d + 1, ..., d + m\}$$

• **feasible**: $[0, ..., 0, b_1, b_2, ..., b_m]^T \ge 0.$

Simplex Method: Tableau

• the structure of the tableau so far,

A	b
\mathbf{c}^{T}	0

- The index set I so far $\{d+1, d+2, \cdots, d+m\}$.
- $B_{\mathbf{I}} = I_m$, $B_{\mathbf{I}}^{-1}\mathbf{b} = \mathbf{b}$, $B_{\mathbf{I}}^{-1}A = A$ etc..
- The lower-right coincides with the objective so far... 0
- ${\bf c}$ is actually equal to $({\bf c}-{\bf z}_{{\bf I}})$ when ${\bf I}$ only describes slack variables.

Simplex Method without non-negativity and objectives...

- Remember: a basis I gives a sparse solution \mathbf{x}_{I} .
- there's one basis I^* which is the good one.
- The solution is x such that $\mathbf{x}_{\mathbf{I}}^{\star} = B_{\mathbf{I}^{\star}}^{-1}\mathbf{b}$ and the rest is zero.
- We can start with the **slack variables** as a basis in canonical **feasible** form.
- Under this form, the first matrix basis is $B_{\mathbf{I}} = I_m$ the identity matrix.
- We will **move** from one basis to the other. We've proved this is possible.
- In doing so, we also have to recast the cost.
- Let's check how it looks in practice, without looking at feasibility and objective related concepts.

...the Gauss pivot...

- Consider now taking a variable out of I to replace it by a variable in O.
- The *r*th index of I, i_r leaves the basis, *e* initially in O is removed.

...the Gauss pivot...

- Two ways of looking at the same operation:
 - \circ Through elementary row/column operations transfer a vector $\begin{vmatrix} ec{v} \\ 0 \\ 1 \\ 0 \\ ec{v} \end{vmatrix}$ where the 1

is in position r to get a similar basis vector in the eth column of A.

...the Gauss pivot...

 \circ Consider the equalities $A\mathbf{x} = \mathbf{b}$ written in row form,

$$\mathbf{u}_i^T \mathbf{x} = b_i$$

where the \mathbf{u} 's are the rows of A.

• Putting variable x_e in the basis is equivalent to isolating x_e so that is present in all but one of the m equations, with coefficient 1. On the other hand we let x_{i_r} enter all equations again, that is

$$x_e = \widetilde{b_i} - \sum_{i=1, i \neq e}^n \rho_i x_i$$

and x_e does not appear elsewhere.

...the Gauss pivot

- This is achieved through a pivot in the tableau.
- Once the rth element of basis I, namely column i_r ≤ n, and e ≤ n are agreed upon, the rules to update the tableau are:

(a) in pivot row
$$a_{rj} \leftarrow a_{rj}/a_{re}$$
.

- (b) in pivot column $a_{re} \leftarrow 1, a_{ie} = 0$ for $i = 1, \dots, m, i \neq r$: the *e*th column becomes a matrix of zeros and a one.
- (c) for all other elements $a_{ij} \leftarrow a_{ij} \frac{a_{rj}a_{ie}}{a_{re}}$

The Gauss pivot

Graphically,

Linear system and pivoting

• Consider the linear system

$$\begin{cases} x_1 + x_2 - x_3 + x_4 &= 5\\ 2x_1 - 3x_2 + x_3 &+ x_5 &= 3\\ -x_1 + 2x_2 - x_3 &+ x_6 &= 1 \end{cases}$$

• The corresponding tableau

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 & \mathbf{a}_6 & \mathbf{b} \\ 1 & 1 & -1 & 1 & 0 & 0 & 5 \\ 2 & -3 & 1 & 0 & 1 & 0 & 3 \\ -1 & 2 & -1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Simplex Method: Swapping Indexes

• in the corresponding tableau,

notice the structure:

• And the fact that by taking the obvious basis $I = \{4, 5, 6\}$ we have $B_I = I_3$ and $B_I^{-1} = I_3$

Simplex Method: Let's pivot

• Let's pivot arbitrarily. We put 1 in the base and remove 4.

which yields

•
$$\mathbf{I} = \{1, 5, 6\}$$
, that is $B_{\mathbf{I}} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$. The basic solution is such that $\mathbf{x}_{\mathbf{I}} = B_{\mathbf{I}}^{-1}\mathbf{b}$

Note that all coordinates of a₁, · · · , a₆, b in the table are given with respect to a₁, a₅, a₆. In particular the last column corresponds to B_I⁻¹b...not feasible here BTW.

Simplex Method: again...

• Let's pivot arbitrarily again, this time inserting 2 and removing the **second** variable of the basis, 5.

- Notice how one can keep track of who is in the basis by checking where 0/1's columns are.
- The solution is now feasible... pure luck.

Simplex Method: and again...

• once again, pivot inserting **3** and removing the **third** variable of the basis, **6**.

- horrible. moving randomly we have a now non-feasible degenerate basic solution.
- yet we knew that pivoting randomly based only on $y_{r,e} \neq 0$ would lead us nowhere.

Adding the reduced costs

- What happens when we also pivot the last line?
- Remember the last line is equal to $\mathbf{v} \stackrel{\mathrm{def}}{=} (\mathbf{c} \mathbf{z})'$ in the beginning.
- Remember also that

(a) in pivot row
$$a_{rj} \leftarrow a_{rj}/a_{re}$$
.

(b) in pivot column a_{re} ← 1, a_{ie} = 0 for i = 1, · · · , m, i ≠ r: the eth column becomes a matrix of zeros and a one.

(c) for all other elements $a_{ij} \leftarrow a_{ij} - \frac{a_{rj}a_{ie}}{a_{re}}$

- Here, (a) does not apply, we cannot be in the pivot row.
- we have
 - $\circ\,$ in pivot column $v_e=0$: makes sense, reduced cost is zero for basis elements.

$$\circ$$
 for all other elements $v_j \leftarrow v_j - rac{a_{rj}v_e}{a_{re}}$.

Adding the reduced costs

• Recapitulating, at each iteration of the pivot the matrix is exactly

	• • •	• • •	• • •	• • •	• • •	:
:	$B_{\mathbf{I}}^{-1}M$:	÷	$B_{\mathbf{I}}^{-1}$:	$B_{\mathbf{I}}^{-1}\mathbf{b}$
	• • •	• • •	• • •	• • •	• • •	:
•••		(c –	$\cdot \mathbf{z})$		• • •	$-x_0$

- The pivot is thus applied on the $m + 1 \times n + 1$ tableau.
- The tableau contains everything we need, reduced costs, (minus)objective, the coordinates of B_I⁻¹b and B_I⁻¹A

Tableaux with Arbitrary Initial BFS

Working around to go back to previous situation

• Suppose that we are given an arbitrary BFS I for the problem

maximize
$$x_0 = \mathbf{c}^T \mathbf{x}$$

subject to
$$\begin{cases} A\mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq 0 \end{cases}$$

• We try to go back to the previous situation.

Working around to go back to previous situation

- Perform a permutation of columns such that columns in positions i_1, \dots, i_m become in last positions $n m + 1, \dots, n$.
- A is now [N, B] (N for non-basic part) and the system can be written as

$$\begin{cases} N\mathbf{x}_N + B\mathbf{x}_B = \mathbf{b} \\ \mathbf{c}_N^T \mathbf{x}_N + \mathbf{c}_B^T \mathbf{x}_B = x_0 \end{cases}$$

• Multiplying the first line by B^{-1} ,

$$B^{-1}N\mathbf{x}_N + \mathbf{x}_B = B^{-1}\mathbf{b}$$
 thus $\mathbf{x}_B = B^{-1}\mathbf{b} - B^{-1}N\mathbf{x}_N$

which when used for objective x_0 yields

$$x_0 = (\mathbf{c}_N - \mathbf{c}_B^T B - 1N)^T \mathbf{x}_N + c_b^T B^{-1} \mathbf{b}$$

Working around to go back to previous situation

• We can now use the same tableau:

· · · · 	\dots $B^{-1}N$	•••		 I	•••	: b
		•••	• • •	• • •	• • •	:
•••	$\mathbf{c}_N^T - \mathbf{z}_N^T$	• • •	• • •	0	• • •	$-x_0$

• And can apply the simplex as defined for canonical feasible forms.

Short Comment on Dictionaries

• A dictionary is a comparable compact form

where basic variables are kept on the top and non-basic are kept on the left.

- We save space (1/0 columns) but need to keep track of variable names.
- The constants on the left correspond to the last column in tableaux.
- The first line stands for reduced cost coefficients of **nonbasic variables**.
- The lower-right corresponds to minus the $B_{\mathbf{I}}^{-1}A$ matrix for indices in \mathbf{O} .
- Equivalent to Tableaux, rather used for educational purposes.