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Reminder: Basic Feasible Solutions, Extreme points, Optima

e Some important theorems last time for standard forms:

(i) Existence of one feasible solution = Existence of a basic feasible solution;
(ii) basic feasible solutions < extreme points of the feasible region;
(iii) Optimum of an LP occurs at an extreme point of the feasible region;

e Extreme points in canonical and corresponding standard form are equivalent.
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Today

e The simplex algorithm with an initial feasible solution,

e How to check for optimality,

e How to check for unboundedness of the feasible set and/or the objective in
that feasible region.
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Golden slide. Always remember

e A Linear Program is a program with linear constraints and objectives.

e Equivalent formulations for LP’s: canonical (inequalities) and standard
(equalities) form.

e Both have feasible convex sets that are bounded from below.

e Simplex Algorithm to solve LP's works in standard form.

e In standard form, the optimum occurs on an extreme point of this
polyhedron.

e All extreme points are basic feasible solutions.

e That is, all extreme points are of the type x1 = BI_lb for a subset I of
coordinates, zero elsewhere.

e Looking for an optimum? only need to check extreme points/BFS

e Looking for an optimum? there exists a basis I which realizes that
optimum.
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Improving a Basic Feasible Solution
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Improving a BFS

e Remember that a standard form LP is

T

maximize c'x
subject to Ax = b,
x > 0.
e Given I = (i1,--- ,%y,), the base By = |a;,,a;,, - ,a;,,|, suppose we have a

basic feasible solution where x; = B~ 'b, that is an extreme point of the
feasible polyhedron.

e We know that the optimum is reached on an optimal I*.
e There is finite number of families {I| By is invertible, xy is feasible}.
e How can we find a family I such that xy is still feasible and ¢/ xp > ¢f x1?.

e The simplex algorithm provides an answer, where an index of I is replaced by
a new integerin O =[1,--- ,n|\ L

e Note that we only have methods that change one index at a time.
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The simplex does three things

Given a BFS 1

In

shows how to select a base I’ by changing one index in I (an index goes out,
an index goes in)

check how to select an improved basic solution by telling which index to
include.

check how we can select a improved basic feasible solution linked to I’ by
telling which index to remove.

practice, given a BFS I, the 3 steps of the simplex

. Look for an index that would improve the objective.

. check we can improve and obtain a valid base I’ by incorporating that index

and checking there is at least one we can remove.

. basic & improve objective accomplished, ensure now xy is feasible by

choosing the index we remove.
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Initial Setting

o Let I = (i1, - ,ip), the base By = [a;,,a;,, - ,a;,,] and suppose we have a
basic feasible solution x; = By 'b.

e The column vectors of B are l.i., and can thus be used as a basis of R™.
Thus 3Y € R™*" | A = BY, namely Y = B! A, the coordinates of all

vectors of A in base B.

- n o m _ n
N P a;-l N 1 S V.
\ ) ] o -
Y15
or individually a; = >~ | yk; a;,. We write y; = [ym ] and a; = By,.
»J

e Hence y; = B 'a; and B~ ! is a change of coordinate matrix from the
canonical base to the base in B.
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Change an element in the basis and still have a basic solution

e Change an index in I? everything depends on

oooooo

oooooo

e Claim: if y, . # 0 for two indices, 7 < m, e <n and not in I,

o r for remove, e for enter,
o one can substitute the rth column of B, a;, ., for the eth column of A, a..
o That is we can select the basis I = (I\ 4,) U e and we are sure that

> Bj is invertible,

> Xj Is a basic solution.
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basic solution

. 1 yk,'
o Proof if y, . # 0,9c = Yreas, + D Yrjai, = a;, = o e — >, ——la; .

hr r,e k#ryr,e
Thus
Bixy = E T A, = T;.a;, + g r;a; =Db
k=1 k=1,k#r
is replaced by
T = Y
2 k.e
r Ae + E (,CEZk — wir—) a;, = b
Yr,e —1 Yr,e
and we have a new solution X with I = (i1, -+ ,ép_1,€, %0101, ,%m,) and
. — . . ke
Tiy, = Tiy, — Tipy e for 1<k<m, (k#r)
£, =2
€ Yr,e

note that z; = 0 and we still have a basic solution.
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e The objective value, c¢f x1 becomes c’

Thus

basic & better: restriction on ¢

z

T
I

cI X; = Zk# Ci, i), + Cele
. . . . yk,e m’l:'r-
D ket Cig (a:z T, ) + Cey ™

’Lr . m’ir
Zkz Czkajzk Y Zk Ci Yk,e + Ceyr,

where z, = C{ye = Cg I'B—l1a,.

o 2>z ify,.>0and ce

O Co— Ze >0

o there exists y; . > 0

— ze > 0, hence we choose a column e such that

e Important Remark if xj is non-degenerate, z; > 0 and hence z > z.

e Much better than £ > z as it implies convergence.
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basic & better & feasible: restriction on r

e We require 2; > 0 for all 7. In particular, for basic variables we need that

By, = iy — Tipps >0 for 1<k <m (k#7)
Fp = > ()

r.,e

e Let r be chosen such that

~ — min { S Y e > O}
Yr.e k=1,...m Yk.e
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From one basic feasible solution to a better one

Theorem 1. Let x be a basic feasible solution (BFS) to a LP with index
set I and objective value z. If there exists e ¢ 1,1 < e < n such that

(i) a reduced cost coefficient c. — z. > 0,

(1i) at least one coordinate of y. is positive, 3i such that y; e > 0,

then it is possible to obtain a new BFS by replacing an index in I by e, and
the new value of the objective value z is such that z > z, strictly if xy is
non-degenerate.
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From one basic feasible solution to a better one

e Remark: coefficients c¢. — z. are called reduced cost coefficients.

e Remark “e ¢ I" is redundant: if e € I, that is 3k, ix = e then c. — z. = 0.
Indeed, c. — ze = ¢. — ¢{ B~ 'a, = ¢, — c{ e;, = ce — cc. = 0 where e; is the

ith canonical vector of R™. Indeed, if Bx = a and a is the kth vector of B

then necessarily x = eg.

e Remember: if k € I then necessarily the reduced cost (¢, — z;) is 0.
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Testing for Optimality
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Optimality: ¢; — z; <0 for all ¢

Theorem 2. Let x* be a basic feasible solution (BFS) to a LP with index
set I* and objective value z*. If ¢; —zF <0 for all 1 < ¢ <n then x* is

optimal.

e Proof idea: the conditions ¢; — zX < 0 allow us to write that ) ¢;x; is smaller
than ) z’x; for all x in RI'. Moreover, 2z integrates information about the
base I* and we show that the point that realizes Y z*z; = ¢!x is necessarily
x* and thus every c¢’'x is smaller than c’x*.
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Proof

e For any feasible solution x we have Y ;' cpxr <> ,_, zfxk. Yet,

n

mn ™m mn

* T
E 2Lk = E CixYE T = S S Cz Yie | Tk = E Ci; E Yi kT
k=1 j=1 k=1

e We have found a maxima of ¢! x with base I*...

def —n *
o The terms u; = ), y; k<) are actually equal to 27 . Indeed, remember

> e z; a;; = b and that since x is feasible, > v zrag = b. Yet,

n m m

Zl‘k Bryr) = S‘ S:yk,jaij Tk = ) S‘ykack & Zujaij:b
J=1 j=1 \k=1 j=1

k=1

Hence

m
*x K
< E czja:ij—z.
J=1
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Testing for Boundedness
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(un)boundedness

e Sometimes programs are trivially unbounded

maximize  17x
subject to x > 0.

e Here both the feasible set and the objective on that feasible set are
unbounded.

e Feasible set is bounded = objective is bounded.

e Feasible set is unbounded, optimum might be bounded or unbounded, no
implication.

e [wo different issues.

e Can we check quickly?
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(un)boundedness of the feasible set and/or of the objective.

Theorem 3. Consider an LP in standard form and a basic feasible index set
I. If there exists an index e ¢ 1 such that y. < 0 then the feasible region is
unbounded. If moreover for e the reduced cost c. — z. > 0 then there exists a

feasible solution with at most m + 1 nonzero variables and an arbitrary
large objective function.

Proof sketch:

o Take advantage of y. < 0 to modify a BFS b =} | z;.a;, to get a new

nonbasic feasible solution using a., b =) Tia, — fa. + fa.. This solution is
arbitrarily large.

e If for that e, ¢, > z. then it is easy to prove that we can have an arbitrarily
high objective.
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(un)boundedness of the feasible set and/or of the objective.

Proof. e Let 1 be an index set and xy the corresponding BFS.

e Remember that for any index, e in particular, a, = By, = Z;nzl Yj,edi;-

o Let's play witha, : b= Z;f”:l r;.a;; — fa, + fa,.

e b= Z;'nzl (ZCZ'J. — eyj,e> aq;j -+ Hae

e Since y; . < 0 is negative we have a nonbasic & feasible solution with m + 1

nonzero variables.

e () can be set arbitrarily large: x; + fa. is feasible = unboundedness.

e |f moreover c. > z. then writing Z for the objective of the point above,
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z

— Z;n:l(wlj - Hyj,e)cij + 9667
— Z;n:l xijcij T 9 Z;nzl yj,ecz'j —i_ 9667
— CITXI—HCITye+Hce =z — 0z, + Oc,

=24+ 0(ce — ze).
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A simple example
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An example

e Let's consider the following example:
1 2 3 4
A_ll 0 0 1]"’_[

e Let us choose the starting T as (1,4). By =[] {], and we check easily that
x1 = [1] which is feasible (lucky here) with objective

[ b3

oo

z=cfxr=[28][}] = 10.
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An example: 4 out, 2 in

_2
HereBI_lzé[_l1 | the y;; are given byBl_lA:[é 9 11 (1)]
3
namely
2
yl_[(l)]ayQ:[23]7}’3:[_11]73’4—[?]
3

Hence, 2o = [2 8] [

Because I = [1,4], we know 21 —¢; = 24 — ¢4 = 0.
We have cg — z9 = 1; ¢3 — z3 = 0 so only one choice for e, that is 2.

We check y5 and see that y55 is the only positive entry. Hence we remove the
second index of I, io = 4. I' = (1,2) and By = [{ 3]

The corresponding basic solution is xy = H feasible as expected.
2
L , 2
The objective is now 2/ = [25] |5| = 11.5 > 2, better, as expected.
2
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An example: that’s it
e Since B;l = % [Y 2] the new coefficients Yi; in

1 0

—1 L

ojw O
N =
| I |

are given by

o Now03—23:6—[25]{§} = —1.5 and c4—z4:8—[25]{§} = —1.5.

e since all ¢; — z; > 0, the set of indices 1.2 is optimal.
J J 3 P

e [he solution is xX* =

O Ow N
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Nice algorithm but...
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Issues with the previous example

e Clean mathematically, but very heavy notation-wise.

e Worse: lots of redundant computations: we only change one column from Bj

to By but always recompute at each iteration:

o the inverse Bl_l,
o the y;'s, that is the matrix ¥ = BI_lA,

o the 2;'s which can be found through ¢f Y = ¢f By ' A and the reduced costs.

e Plus we assumed we had an initial feasible solution immediately... what if?

e Imagine someone solves the problem (c, A, b) before us and finds x* as the
optimal solution such that c!'x* = 2*.

e He gives it back to us adding the constraint ¢’ x > z*. Finding an initial
feasible solution is as hard as finding the optimal solution itself!
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Next time

e For all these reasons, we look for a

o compact (less redundant variables and notations),
o fast computationally (rank one updates),

methodology: the tableaux and dictionaries methods to go through the simplex
step by step.

e We also study how to find an initial BFS and address additional issues.

e YET The simplex is not just a dictionary or a tableau method.

e The latter are tools. The simplex algorithm is 100% algebraic and
combinatorial.

e The truth is that it is just an “optimization tool in disguise”.

Princeton ORF-522 28



