ORF 522

Linear Programming and Convex Analysis

The Simplex Method

Marco Cuturi

Reminder: Basic Feasible Solutions, Extreme points, Optima

- Some important theorems last time for **standard forms**:
 - (i) Existence of one feasible solution \Rightarrow Existence of a **basic feasible** solution;
- (ii) **basic feasible** solutions \Leftrightarrow **extreme** points of the feasible region;
- (iii) **Optimum** of an LP occurs at an **extreme** point of the feasible region;
- Extreme points in canonical and corresponding standard form are equivalent.

Today

- The simplex algorithm with an initial feasible solution,
- How to check for optimality,
- How to check for unboundedness of the feasible set and/or the objective in that feasible region.

Golden slide. Always remember

- A Linear Program is a program with linear constraints and objectives.
- Equivalent formulations for LP's: **canonical** (inequalities) and **standard** (equalities) form.
- Both have feasible **convex** sets that are **bounded from below**.
- **Simplex Algorithm** to solve LP's works in standard form.
- In standard form, the optimum occurs on an extreme point of this polyhedron.
- All extreme points are basic feasible solutions.
- That is, all extreme points are of the type $\mathbf{x}_{\mathbf{I}} = B_{\mathbf{I}}^{-1}\mathbf{b}$ for a subset \mathbf{I} of coordinates, zero elsewhere.
- Looking for an optimum? only need to check extreme points/BFS
- Looking for an optimum? there exists a basis I which realizes that optimum.

Improving a Basic Feasible Solution

Improving a BFS

• Remember that a standard form LP is

 $\begin{array}{ll} \text{maximize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & \mathbf{A} \mathbf{x} = \mathbf{b}, \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$

- Given $\mathbf{I} = (i_1, \dots, i_m)$, the base $B_{\mathbf{I}} = [\mathbf{a}_{i_1}, \mathbf{a}_{i_2}, \dots, \mathbf{a}_{i_m}]$, suppose we have a **basic feasible solution** where $\mathbf{x}_{\mathbf{I}} = B^{-1}\mathbf{b}$, that is an **extreme** point of the feasible polyhedron.
- We know that the optimum is reached on an optimal $\mathbf{I}^\star.$
- There is finite number of families $\{I|B_I \text{ is invertible}, x_I \text{ is feasible}\}$.
- How can we find a family I' such that $\mathbf{x}_{\mathbf{I}'}$ is still feasible and $\mathbf{c}_{\mathbf{I}'}^T \mathbf{x}_{\mathbf{I}'} > \mathbf{c}_{\mathbf{I}}^T \mathbf{x}_{\mathbf{I}}$?
- The simplex algorithm provides an answer, where an index of I is replaced by a new integer in $\mathbf{O} = [1, \dots, n] \setminus \mathbf{I}$.
- Note that we only have methods that change **one index at a time**.

The simplex does three things

Given a BFS I

- shows how to select a base \mathbf{I}' by changing one index in \mathbf{I} (an index goes out, an index goes in)
- check how to select an **improved basic** solution by telling which index to include.
- check how we can select a **improved basic feasible** solution linked to \mathbf{I}' by telling which index to remove.

In practice, given a BFS I, the 3 steps of the simplex

- 1. Look for an index that would **improve** the objective.
- 2. check we can **improve** and obtain a valid **base** \mathbf{I}' by incorporating that index and checking there is at least one we can remove.
- 3. **basic** & **improve** objective accomplished, ensure now $\mathbf{x}_{\mathbf{I}'}$ is **feasible** by choosing the index we remove.

Initial Setting

- Let $\mathbf{I} = (i_1, \dots, i_m)$, the base $B_{\mathbf{I}} = [\mathbf{a}_{i_1}, \mathbf{a}_{i_2}, \dots, \mathbf{a}_{i_m}]$ and suppose we have a basic feasible solution $\mathbf{x}_{\mathbf{I}} = B_{\mathbf{I}}^{-1}\mathbf{b}$.
- The column vectors of B are l.i., and can thus be used as a basis of R^m. Thus ∃Y ∈ R^{m×n} | A = BY, namely Y = B⁻¹A, the coordinates of all vectors of A in base B.

or individually $\mathbf{a}_j = \sum_{k=1}^m y_{k,j} \mathbf{a}_{i_k}$. We write $\mathbf{y}_j = \begin{bmatrix} y_{1,j} \\ \vdots \\ y_{m,j} \end{bmatrix}$ and $\mathbf{a}_j = B\mathbf{y}_j$.

• Hence $\mathbf{y}_j = B^{-1} \mathbf{a}_j$ and B^{-1} is a change of coordinate matrix from the canonical base to the base in B.

Change an element in the basis and still have a basic solution

• Change an index in ${\bf I}?$ everything depends on

$$Y = \begin{bmatrix} \vdots & \vdots & \cdots & \vdots \\ \mathbf{y}_1 & \mathbf{y}_2 & \cdots & \mathbf{y}_n \\ \vdots & \vdots & \cdots & \vdots \end{bmatrix} \in \mathbf{R}^{m \times n}$$

• Claim: if
$$y_{r,e} \neq 0$$
 for two indices, $r \leq m$, $e \leq n$ and not in I,

- $\circ r$ for remove, e for enter,
- \circ one can substitute the r^{th} column of B, \mathbf{a}_{i_r} , for the e^{th} column of A, \mathbf{a}_e .
- That is we can select the basis $\hat{\mathbf{I}} = (\mathbf{I} \setminus i_r) \cup e$ and we are sure that
 - $\triangleright B_{\hat{\mathbf{I}}}$ is invertible,
 - $\triangleright \ x_{\hat{I}}$ is a basic solution.

basic solution

• **Proof** if
$$y_{r,e} \neq 0$$
, $\mathbf{a}_{e} = \mathbf{y}_{r,e} \mathbf{a}_{i_{r}} + \sum_{k \neq r} y_{k,j} \mathbf{a}_{i_{k}} \Rightarrow \mathbf{a}_{i_{r}} = \frac{1}{\mathbf{y}_{r,e}} \mathbf{a}_{e} - \sum_{k \neq r} \frac{y_{k,j}}{\mathbf{y}_{r,e}} \mathbf{a}_{i_{k}}$.
Thus

$$B_{\mathbf{I}}\mathbf{x}_{\mathbf{I}} = \sum_{k=1}^{m} x_{i_k} \mathbf{a}_{i_k} = \mathbf{x}_{i_r} \mathbf{a}_{i_r} + \sum_{k=1, k \neq r}^{m} x_{i_k} \mathbf{a}_{i_k} = \mathbf{b}$$

is replaced by

$$\frac{\boldsymbol{x_{i_r}}}{\boldsymbol{y_{r,e}}} \mathbf{a_e} + \sum_{k=1}^m \left(x_{i_k} - \boldsymbol{x_{i_r}} \frac{y_{k,e}}{\boldsymbol{y_{r,e}}} \right) \mathbf{a}_{i_k} = \mathbf{b}$$

and we have a new solution $\hat{\mathbf{x}}$ with $\hat{I} = (i_1, \cdots, i_{r-1}, e, i_{r+1}, \cdots, i_m)$ and

$$\begin{array}{ll} \hat{x}_{i_k} &= x_{i_k} - \boldsymbol{x}_{i_r} \frac{y_{k,e}}{\boldsymbol{y}_{r,e}} & \text{for } 1 \leq k \leq m, \ (k \neq r) \\ \hat{x}_e &= \frac{\boldsymbol{x}_{i_r}}{\boldsymbol{y}_{r,e}} \end{array}$$

note that $\hat{x}_{i_r} = 0$ and we still have a **basic** solution.

basic & better: restriction on e

• The objective value, $\mathbf{c}_{\mathbf{I}}^T \mathbf{x}_{\mathbf{I}}$ becomes $\mathbf{c}_{\hat{I}}^T \hat{\mathbf{x}}_{\hat{I}}$ with $\hat{c}_{i_k} = c_{i_k}$ for $k \neq r$ and $\hat{c}_e = \mathbf{c}_e$. Thus

$$\begin{aligned} \hat{z} &= \mathbf{c}_{\hat{I}}^T \hat{\mathbf{x}}_{\hat{I}} = \sum_{k \neq r} c_{i_k} \hat{x}_{i_k} + \mathbf{c_e} \hat{x}_e \\ &= \sum_{k \neq r} c_{i_k} \left(x_{i_k} - \mathbf{x_{i_r}} \frac{y_{k,e}}{y_{r,e}} \right) + \mathbf{c_e} \frac{\mathbf{x_{i_r}}}{y_{r,e}} \\ &= \sum_k c_{i_k} x_{i_k} - \frac{\mathbf{x_{i_r}}}{\mathbf{y_{r,e}}} \sum_k c_{i_k} y_{k,e} + \mathbf{c_e} \frac{\mathbf{x_{i_r}}}{y_{r,e}} \\ &= z - \frac{\mathbf{x_{i_r}}}{\mathbf{y_{r,e}}} \mathbf{c}_{\mathbf{I}}^T \mathbf{y}_e + \mathbf{c_e} \frac{\mathbf{x_{i_r}}}{\mathbf{y_{r,e}}} \\ &= z + \frac{\mathbf{x_{i_r}}}{\mathbf{y_{r,e}}} (\mathbf{c_e} - z_e), \end{aligned}$$

where $z_e = \mathbf{c}_{\mathbf{I}}^T \mathbf{y}_e = \mathbf{c}_{\mathbf{I}}^T B^{-1} \mathbf{a}_e$.

- $\hat{z} > z$ if $y_{r,e} > 0$ and $c_e z_e > 0$, hence we choose a column e such that
 - $c_e z_e > 0$
 - \circ there exists $y_{i,e} > 0$
- Important Remark if $\mathbf{x}_{\mathbf{I}}$ is non-degenerate, $x_{i_r} > 0$ and hence $\hat{z} > z$.
- Much better than $\hat{z} \ge z$ as it implies convergence.

basic & better & feasible: restriction on r

• We require $\hat{x}_i \ge 0$ for all *i*. In particular, for basic variables we need that

$$\begin{cases} \hat{x}_{i_k} = x_{i_k} - \boldsymbol{x}_{i_r} \frac{y_{k,e}}{\boldsymbol{y}_{r,e}} \ge 0 & \text{for } 1 \le k \le m \ (k \ne r) \\ \hat{x}_e = \frac{\boldsymbol{x}_{i_r}}{\boldsymbol{y}_{r,e}} \ge 0 \end{cases}$$

• Let r be chosen such that

$$\frac{x_{i_r}}{y_{r,e}} = \min_{k=1,..,m} \left\{ \frac{x_{i_k}}{y_{k,e}} | \ y_{k,e} > 0 \right\}$$

From one basic feasible solution to a better one

Theorem 1. Let \mathbf{x} be a basic feasible solution (BFS) to a LP with index set \mathbf{I} and objective value z. If there exists $e \notin \mathbf{I}, 1 \leq e \leq n$ such that

(i) a reduced cost coefficient $c_e - z_e > 0$,

(*ii*) at least one coordinate of y_e is positive, $\exists i \text{ such that } y_{i,e} > 0$,

then it is possible to obtain a new BFS by replacing an index in I by e, and the new value of the objective value \hat{z} is such that $\hat{z} \geq z$, strictly if x_{I} is non-degenerate.

From one basic feasible solution to a better one

- **Remark**: coefficients $c_e z_e$ are called reduced cost coefficients.
- Remark "e ∉ I" is redundant: if e ∈ I, that is ∃k, i_k = e then c_e z_e = 0. Indeed, c_e - z_e = c_e - c_I^TB⁻¹a_e = c_e - c_I^Te_{i_k} = c_e - c_e = 0 where e_i is the ith canonical vector of R^m. Indeed, if Bx = a and a is the kth vector of B then necessarily x = e_k.
- **Remember**: if $k \in \mathbf{I}$ then necessarily the reduced cost $(c_k z_k)$ is **0**.

Testing for Optimality

Optimality: $c_i - \boldsymbol{z_i} \leq 0$ for all i

Theorem 2. Let \mathbf{x}^* be a basic feasible solution (BFS) to a LP with index set \mathbf{I}^* and objective value \mathbf{z}^* . If $c_i - \mathbf{z}_i^* \leq 0$ for all $1 \leq i \leq n$ then \mathbf{x}^* is optimal.

Proof idea: the conditions c_i − z_i^{*} ≤ 0 allow us to write that ∑ c_ix_i is smaller than ∑ z_i^{*}x_i for all x in R₊^m. Moreover, z_i^{*} integrates information about the base I^{*} and we show that the point that realizes ∑ z_i^{*}x_i = c^Tx is necessarily x^{*} and thus every c^Tx is smaller than c^Tx^{*}.

Proof

• For any feasible solution x we have $\sum_{k=1}^{n} c_k x_k \leq \sum_{k=1}^{n} z_k^{\star} x_k$. Yet,

$$\sum_{k=1}^{n} \boldsymbol{z}_{\boldsymbol{k}}^{\star} \boldsymbol{x}_{k} = \sum_{k=1}^{n} \mathbf{c}_{\mathbf{I}^{\star}}^{T} \mathbf{y}_{\boldsymbol{k}} \boldsymbol{x}_{k} = \sum_{k=1}^{n} \left(\sum_{j=1}^{m} \boldsymbol{c}_{\boldsymbol{i}_{j}} \boldsymbol{y}_{\boldsymbol{j},\boldsymbol{k}} \right) \boldsymbol{x}_{k} = \sum_{j=1}^{m} \boldsymbol{c}_{\boldsymbol{i}_{j}} \left(\sum_{k=1}^{n} \boldsymbol{y}_{\boldsymbol{j},\boldsymbol{k}} \boldsymbol{x}_{k} \right)$$

• We have found a maxima of $\mathbf{c}^T \mathbf{x}$ with base $\mathbf{I}^{\star}...$

• The terms $u_j \stackrel{\text{def}}{=} \sum_{k=1}^n y_{j,k} x_k$ are actually equal to $x_{i_j}^{\star}$. Indeed, remember $\sum_{j=1}^m x_{i_j}^{\star} \mathbf{a}_{i_j} = \mathbf{b}$ and that since \mathbf{x} is feasible, $\sum_{k=1}^n x_k \mathbf{a}_k = \mathbf{b}$. Yet,

$$\sum_{k=1}^{n} x_k(\boldsymbol{B}_{\mathbf{I}^{\star}} \mathbf{y}_k) = \sum_{k=1}^{n} \left(\sum_{j=1}^{m} \boldsymbol{y}_{k,j} \mathbf{a}_{i_j} \right) x_k = \sum_{j=1}^{m} \left(\sum_{k=1}^{n} \boldsymbol{y}_{k,j} x_k \right) \mathbf{a}_{i_j} = \sum_{j=1}^{m} u_j \mathbf{a}_{i_j} = \mathbf{b}.$$

Hence

$$z \leq \sum_{j=1}^{m} c_{i_j} x_{i_j}^{\star} = z^{\star}.$$

Testing for Boundedness

(un)boundedness

• Sometimes programs are trivially unbounded

 $\begin{array}{ll} \text{maximize} & \mathbf{1}^T \mathbf{x} \\ \text{subject to} & \mathbf{x} \geq \mathbf{0}. \end{array}$

- Here **both** the feasible set and the objective on that feasible set are **unbounded**.
- Feasible set is **bounded** \Rightarrow objective is bounded.
- Feasible set is **unbounded**, optimum might be bounded **or** unbounded, no implication.
- Two different issues.
- Can we check quickly?

(un)boundedness of the feasible set and/or of the objective.

Theorem 3. Consider an LP in standard form and a basic feasible index set **I.** If there exists an index $e \notin \mathbf{I}$ such that $\mathbf{y}_e \leq 0$ then the **feasible region** is **unbounded**. If moreover for e the reduced cost $c_e - z_e > 0$ then there exists a feasible solution with at most $\mathbf{m} + \mathbf{1}$ nonzero variables and an **arbitrary large objective function**.

Proof sketch:

- Take advantage of $\mathbf{y}_e \leq 0$ to modify a BFS $\mathbf{b} = \sum x_{ij} \mathbf{a}_{ij}$ to get a new **nonbasic** feasible solution using \mathbf{a}_e , $\mathbf{b} = \sum x_{ij} \mathbf{a}_{ij} \theta \mathbf{a}_e + \theta \mathbf{a}_e$. This solution is arbitrarily large.
- If for that $e, c_e > z_e$ then it is easy to prove that we can have an arbitrarily high objective.

(un)boundedness of the feasible set and/or of the objective.

Proof. • Let I be an index set and \mathbf{x}_{I} the corresponding BFS.

- Remember that for any index, e in particular, $\mathbf{a}_e = B_{\mathbf{I}}\mathbf{y}_e = \sum_{j=1}^m y_{j,e}\mathbf{a}_{i_j}$.
- Let's play with \mathbf{a}_e : $\mathbf{b} = \sum_{j=1}^m x_{i_j} \mathbf{a}_{i_j} \theta \mathbf{a}_e + \theta \mathbf{a}_e$.

•
$$\mathbf{b} = \sum_{j=1}^{m} (x_{i_j} - \theta y_{j,e}) \mathbf{a}_{i_j} + \theta \mathbf{a}_e$$

- Since y_{j,e} ≤ 0 is negative we have a nonbasic & feasible solution with m + 1 nonzero variables.
- θ can be set arbitrarily large: $\mathbf{x}_{\mathbf{I}} + \theta \mathbf{a}_{e}$ is feasible \Rightarrow **unboundedness**.
- If moreover $c_e > z_e$ then writing \hat{z} for the objective of the point above,

$$\hat{z} = \sum_{j=1}^{m} (x_{ij} - \theta y_{j,e}) c_{ij} + \theta c_e, = \sum_{j=1}^{m} x_{ij} c_{ij} - \theta \sum_{j=1}^{m} y_{j,e} c_{ij} + \theta c_e, = c_{\mathbf{I}}^T \mathbf{x}_{\mathbf{I}} - \theta c_{\mathbf{I}}^T \mathbf{y}_e + \theta c_e = z - \theta z_e + \theta c_e, = z + \theta (c_e - z_e).$$

A simple example

An example

• Let's consider the following example:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 1 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 2 \\ 5 \\ 6 \\ 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}.$$

Let us choose the starting I as (1,4). B_I = [¹₁ ⁴₁], and we check easily that x_I = [¹₁] which is feasible (lucky here) with objective

$$z = c_{\mathbf{I}}^T x_{\mathbf{I}} = [2 \ 8] [\frac{1}{1}] = 10.$$

An example: 4 out, 2 in

• Here $B_{\mathbf{I}}^{-1} = \frac{1}{3} \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}$ the y_{ij} are given by $B_{\mathbf{I}}^{-1}A = \begin{bmatrix} 1 & -\frac{2}{3} & -1 & 0 \\ 0 & \frac{2}{3} & 1 & 1 \end{bmatrix}$, namely

$$\mathbf{y}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}, \mathbf{y}_2 = \begin{bmatrix} -\frac{2}{3}\\\frac{2}{3} \end{bmatrix}, \mathbf{y}_3 = \begin{bmatrix} -1\\1 \end{bmatrix}, \mathbf{y}_4 = \begin{bmatrix} 0\\1 \end{bmatrix}$$

- Hence, $z_2 = \begin{bmatrix} 2 & 8 \end{bmatrix} \begin{bmatrix} -\frac{2}{3} \\ \frac{2}{3} \end{bmatrix} = 4, z_3 = \begin{bmatrix} 2 & 8 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = 6.$
- Because $\mathbf{I} = [1, 4]$, we know $z_1 c_1 = z_4 c_4 = 0$.
- We have $c_2 z_2 = \mathbf{1}$; $c_3 z_3 = 0$ so only one choice for e, that is 2.
- We check \mathbf{y}_2 and see that y_{22} is the only positive entry. Hence we remove the second index of \mathbf{I} , $i_2 = 4$. $\mathbf{I}' = (1, 2)$ and $B_{\mathbf{I}'} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$
- The corresponding basic solution is $\mathbf{x}_{\mathbf{I}'} = \begin{bmatrix} 2 \\ \frac{3}{2} \end{bmatrix}$, feasible as expected.

• The objective is now
$$z' = \begin{bmatrix} 2 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ \frac{3}{2} \end{bmatrix} = 11.5 > z$$
, **better, as expected**.

An example: that's it

• Since $B_{\mathbf{I}'}^{-1} = \frac{1}{2} \begin{bmatrix} 0 & 2\\ 1 & -1 \end{bmatrix}$ the new coefficients y'_{ij} in

$$B_{\mathbf{I}'}^{-1}A == \begin{bmatrix} 1 & 0 & 0 & 1\\ 0 & 1 & \frac{3}{2} & \frac{3}{2} \end{bmatrix}$$

are given by

$$\mathbf{y}_{1}' = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \mathbf{y}_{2}' = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \mathbf{y}_{3}' = \begin{bmatrix} 0 \\ 3/2 \end{bmatrix}, \ \mathbf{y}_{4}' = \begin{bmatrix} 1 \\ 3/2 \end{bmatrix},$$

- Now $c_3 z_3 = 6 \begin{bmatrix} 2 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ \frac{3}{2} \end{bmatrix} = -1.5$ and $c_4 z_4 = 8 \begin{bmatrix} 2 & 5 \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ \frac{3}{2} \end{bmatrix} = -1.5$.
- since all $c_j z_j \ge 0$, the set of indices 1, 2 is optimal.
- The solution is $\mathbf{x}^{\star} = \begin{bmatrix} 2 \\ \frac{3}{2} \\ 0 \\ 0 \end{bmatrix}$.

Nice algorithm but...

Issues with the previous example

- Clean mathematically, but very heavy notation-wise.
- Worse: lots of redundant computations: we only change one column from B_I to B_{I'} but always recompute at each iteration:
 - the inverse $B_{\mathbf{I}}^{-1}$, • the \mathbf{y}_i 's, that is the matrix $Y = B_{\mathbf{I}}^{-1}A$,
 - the z_i 's which can be found through $c_{\mathbf{I}}^T Y = c_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} A$ and the reduced costs.
- **Plus** we assumed we had an initial feasible solution immediately... what if?
- Imagine someone solves the problem $(\mathbf{c}, A, \mathbf{b})$ before us and finds \mathbf{x}^* as the optimal solution such that $\mathbf{c}^T \mathbf{x}^* = z^*$.
- He gives it back to us adding the constraint c^Tx ≥ z^{*}. Finding an initial feasible solution is as hard as finding the optimal solution itself!

Next time

- For all these reasons, we look for a
 - compact (less redundant variables and notations),
 - fast computationally (rank one updates),

methodology: the tableaux and dictionaries methods to go through the simplex step by step.

- We also study how to find an initial BFS and address additional issues.
- **YET** The simplex is **not** just a dictionary or a tableau method.
- The latter are **tools**. The **simplex algorithm is 100% algebraic and combinatorial**.
- The truth is that it is just an "optimization tool in disguise".