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Reminder: Basic Feasible Solutions, Extreme points, Optima

• Some important theorems last time for standard forms:

(i) Existence of one feasible solution ⇒ Existence of a basic feasible solution;
(ii) basic feasible solutions ⇔ extreme points of the feasible region;
(iii) Optimum of an LP occurs at an extreme point of the feasible region;

• Extreme points in canonical and corresponding standard form are equivalent.
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Today

• The simplex algorithm with an initial feasible solution,

• How to check for optimality,

• How to check for unboundedness of the feasible set and/or the objective in
that feasible region.
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Golden slide. Always remember

• A Linear Program is a program with linear constraints and objectives.

• Equivalent formulations for LP’s: canonical (inequalities) and standard
(equalities) form.

• Both have feasible convex sets that are bounded from below.

• Simplex Algorithm to solve LP’s works in standard form.

• In standard form, the optimum occurs on an extreme point of this
polyhedron.

• All extreme points are basic feasible solutions.

• That is, all extreme points are of the type xI = B−1
I b for a subset I of

coordinates, zero elsewhere.

• Looking for an optimum? only need to check extreme points/BFS

• Looking for an optimum? there exists a basis I which realizes that
optimum.
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Improving a Basic Feasible Solution
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Improving a BFS

• Remember that a standard form LP is

maximize cTx

subject to Ax = b,
x ≥ 0.

• Given I = (i1, · · · , im), the base BI = [ai1,ai2, · · · ,aim], suppose we have a
basic feasible solution where xI = B−1b, that is an extreme point of the
feasible polyhedron.

• We know that the optimum is reached on an optimal I⋆.

• There is finite number of families {I|BI is invertible, xI is feasible}.

• How can we find a family I′ such that xI′ is still feasible and cT
I′
xI′ > cT

I xI?.

• The simplex algorithm provides an answer, where an index of I is replaced by
a new integer in O = [1, · · · , n] \ I.

• Note that we only have methods that change one index at a time.
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The simplex does three things

Given a BFS I

• shows how to select a base I′ by changing one index in I (an index goes out,
an index goes in)

• check how to select an improved basic solution by telling which index to
include.

• check how we can select a improved basic feasible solution linked to I′ by
telling which index to remove.

In practice, given a BFS I, the 3 steps of the simplex

1. Look for an index that would improve the objective.

2. check we can improve and obtain a valid base I′ by incorporating that index
and checking there is at least one we can remove.

3. basic & improve objective accomplished, ensure now xI′ is feasible by
choosing the index we remove.
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Initial Setting

• Let I = (i1, · · · , im), the base BI = [ai1,ai2, · · · ,aim] and suppose we have a
basic feasible solution xI = B−1

I b.

• The column vectors of B are l.i., and can thus be used as a basis of Rm.
Thus ∃Y ∈ Rm×n | A = BY , namely Y = B−1A, the coordinates of all
vectors of A in base B.

m







n
︷ ︸︸ ︷



... ... · · · · · · ...
a1 a2 · · · · · · an
... ... · · · · · · ...



 =

m
︷ ︸︸ ︷



... ... ·· ...
ai1 ai2 ·· aim
... ... ·· ...





n
︷ ︸︸ ︷



... ... · · · · · · ...
y1 y2 · · · · · · yn
... ... · · · · · · ...





or individually aj =
∑m

k=1
yk,j aik. We write yj =

[
y1,j
...

ym,j

]

and aj = Byj.

• Hence yj = B−1aj and B−1 is a change of coordinate matrix from the
canonical base to the base in B.
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Change an element in the basis and still have a basic solution

• Change an index in I? everything depends on

Y =





... ... · · · · · · ...
y1 y2 · · · · · · yn
... ... · · · · · · ...



 ∈ Rm×n

• Claim: if yr,e 6= 0 for two indices, r ≤ m, e ≤ n and not in I,

◦ r for remove, e for enter,
◦ one can substitute the rth column of B,air, for the eth column of A, ae.
◦ That is we can select the basis Î = (I \ ir) ∪ e and we are sure that

⊲ B
Î
is invertible,

⊲ x
Î
is a basic solution.
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basic solution

• Proof if yr,e 6= 0,ae = yr,e air +
∑

k 6=r

yk,j aik ⇒ air = 1

yr,e
ae −

∑

k 6=r

yk,j

yr,e
aik.

Thus

BIxI =

m∑

k=1

xikaik = xirair +

m∑

k=1,k 6=r

xikaik = b

is replaced by
xir

yr,e

ae +
m∑

k=1

(

xik − xir

yk,e

yr,e

)

aik = b

and we have a new solution x̂ with Î = (i1, · · · , ir−1, e, ir+1, · · · , im) and

x̂ik = xik − xir

yk,e

yr,e
for 1 ≤ k ≤ m, (k 6= r)

x̂e =
xir

yr,e

note that x̂ir = 0 and we still have a basic solution.
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basic & better: restriction on e

• The objective value, cT
I xI becomes cT

Î
x̂Î with ĉik = cik for k 6= r and ĉe = ce.

Thus
ẑ = cT

Î
x̂Î =

∑

k 6=r cikx̂ik + cex̂e

=
∑

k 6=r cik

(

xik − xir

yk,e

yr,e

)

+ ce
xir

yr,e

=
∑

k cikxik −
xir

yr,e

∑

k cikyk,e + ce
xir

yr,e

= z −
xir

yr,e
cT
I ye + ce

xir

yr,e

= z +
xir

yr,e
(ce − ze),

where ze = cT
I ye = cT

I B−1ae.

• ẑ > z if yr,e > 0 and ce − ze > 0, hence we choose a column e such that

◦ ce − ze > 0
◦ there exists yi,e > 0

• Important Remark if xI is non-degenerate, xir > 0 and hence ẑ > z.

• Much better than ẑ ≥ z as it implies convergence.
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basic & better & feasible: restriction on r

• We require x̂i ≥ 0 for all i. In particular, for basic variables we need that

{

x̂ik = xik − xir

yk,e

yr,e
≥ 0 for 1 ≤ k ≤ m (k 6= r)

x̂e =
xir

yr,e
≥ 0

• Let r be chosen such that

xir

yr,e
= min

k=1,..,m

{
xik

yk,e
| yk,e > 0

}
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From one basic feasible solution to a better one

Theorem 1. Let x be a basic feasible solution (BFS) to a LP with index
set I and objective value z. If there exists e /∈ I, 1 ≤ e ≤ n such that

(i) a reduced cost coefficient ce − ze > 0,

(ii) at least one coordinate of ye is positive, ∃i such that yi,e > 0,

then it is possible to obtain a new BFS by replacing an index in I by e, and
the new value of the objective value ẑ is such that ẑ ≥ z, strictly if xI is
non-degenerate.
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From one basic feasible solution to a better one

• Remark: coefficients ce − ze are called reduced cost coefficients.

• Remark “e /∈ I” is redundant: if e ∈ I, that is ∃k, ik = e then ce − ze = 0.
Indeed, ce − ze = ce − cT

I B−1ae = ce − cT
I eik = ce − ce = 0 where ei is the

ith canonical vector of Rm. Indeed, if Bx = a and a is the kth vector of B
then necessarily x = ek.

• Remember: if k ∈ I then necessarily the reduced cost (ck − zk) is 0.
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Testing for Optimality
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Optimality: ci − zi ≤ 0 for all i

Theorem 2. Let x⋆ be a basic feasible solution (BFS) to a LP with index
set I⋆ and objective value z⋆. If ci − z⋆

i ≤ 0 for all 1 ≤ i ≤ n then x⋆ is
optimal.

• Proof idea: the conditions ci − z⋆
i ≤ 0 allow us to write that

∑
cixi is smaller

than
∑

z⋆
i xi for all x in Rm

+ . Moreover, z⋆
i integrates information about the

base I⋆ and we show that the point that realizes
∑

z⋆
i
xi = cTx is necessarily

x⋆ and thus every cTx is smaller than cTx⋆.
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Proof

• For any feasible solution x we have
∑n

k=1
ckxk ≤

∑n
k=1

z⋆
kxk. Yet,

n∑

k=1

z⋆
kxk =

n∑

k=1

cT
I⋆yk xk =

n∑

k=1





m∑

j=1

cij
yj,k



xk =
m∑

j=1

cij

(
n∑

k=1

yj,kxk

)

• We have found a maxima of cTx with base I⋆...

• The terms uj
def
=
∑n

k=1
yj,k xk are actually equal to x⋆

ij
. Indeed, remember

∑m
j=1

x⋆
ij
aij

= b and that since x is feasible,
∑n

k=1
xkak = b. Yet,

n∑

k=1

xk(BI⋆yk) =

n∑

k=1





m∑

j=1

yk,jaij



xk =

m∑

j=1

(
n∑

k=1

yk,jxk

)

aij
=

m∑

j=1

ujaij
= b.

Hence

z ≤
m∑

j=1

cij
x⋆

ij
= z⋆.
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Testing for Boundedness
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(un)boundedness

• Sometimes programs are trivially unbounded

maximize 1Tx

subject to x ≥ 0.

• Here both the feasible set and the objective on that feasible set are
unbounded.

• Feasible set is bounded ⇒ objective is bounded.

• Feasible set is unbounded, optimum might be bounded or unbounded, no
implication.

• Two different issues.

• Can we check quickly?
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(un)boundedness of the feasible set and/or of the objective.

Theorem 3. Consider an LP in standard form and a basic feasible index set
I. If there exists an index e /∈ I such that ye ≤ 0 then the feasible region is
unbounded. If moreover for e the reduced cost ce − ze > 0 then there exists a
feasible solution with at most m + 1 nonzero variables and an arbitrary
large objective function.

Proof sketch:

• Take advantage of ye ≤ 0 to modify a BFS b =
∑

xijaij to get a new
nonbasic feasible solution using ae, b =

∑
xijaij − θae + θae. This solution is

arbitrarily large.

• If for that e, ce > ze then it is easy to prove that we can have an arbitrarily
high objective.
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(un)boundedness of the feasible set and/or of the objective.

Proof. • Let I be an index set and xI the corresponding BFS.

• Remember that for any index, e in particular, ae = BIye =
∑m

j=1
yj,eaij .

• Let’s play with ae : b =
∑m

j=1
xijaij − θae + θae.

• b =
∑m

j=1

(
xij − θyj,e

)
aij + θae

• Since yj,e ≤ 0 is negative we have a nonbasic & feasible solution with m + 1
nonzero variables.

• θ can be set arbitrarily large: xI + θae is feasible ⇒ unboundedness.

• If moreover ce > ze then writing ẑ for the objective of the point above,

ẑ =
∑m

j=1
(xij − θyj,e)cij + θce,

=
∑m

j=1
xijcij − θ

∑m
j=1

yj,ecij + θce,

= cT
I xI − θcT

I ye + θce = z − θze + θce,
= z + θ(ce − ze).
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A simple example
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An example

• Let’s consider the following example:

A =

[
1 2 3 4
1 0 0 1

]

, c =

[
2
5
6
8

]

,b = [ 5
2 ] .

• Let us choose the starting I as (1, 4). BI = [ 1 4
1 1 ], and we check easily that

xI = [ 1
1 ] which is feasible (lucky here) with objective

z = cT
I xI = [ 2 8 ] [ 1

1 ] = 10.
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An example: 4 out, 2 in

• Here B−1

I = 1

3

[
−1 4
1 −1

]
the yij are given by B−1

I A =

[
1 −2

3
−1 0

0 2

3
1 1

]

,

namely

y1 = [ 1
0 ] ,y2 =

[
−

2

3
2

3

]

,y3 = [−1
1

] ,y4 = [ 0
1 ]

• Hence, z2 = [ 2 8 ]

[
−

2

3
2

3

]

= 4, z3 = [ 2 8 ] [−1
1

] = 6.

• Because I = [1, 4], we know z1 − c1 = z4 − c4 = 0.

• We have c2 − z2 = 1; c3 − z3 = 0 so only one choice for e, that is 2.

• We check y2 and see that y22 is the only positive entry. Hence we remove the
second index of I, i2 = 4. I′ = (1, 2) and BI′ = [ 1 2

1 0 ]

• The corresponding basic solution is xI′ =

[
2
3

2

]

, feasible as expected.

• The objective is now z′ = [ 2 5 ]

[
2
3

2

]

= 11.5 > z, better, as expected.
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An example: that’s it

• Since B−1

I′
= 1

2
[ 0 2
1 −1 ] the new coefficients y′

ij in

B−1

I′
A ==

[
1 0 0 1
0 1 3

2

3

2

]

are given by

y′
1 = [ 1

0 ] , y′
2 = [ 0

1 ] , y′
3 =

[
0

3/2

]
, y′

4 =
[

1
3/2

]
,

• Now c3 − z3 = 6 − [ 2 5 ]
[

0
3

2

]

= −1.5 and c4 − z4 = 8 − [ 2 5 ]
[

1
3

2

]

= −1.5.

• since all cj − zj ≥ 0, the set of indices 1, 2 is optimal.

• The solution is x⋆ =







2
3

2

0
0







.
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Nice algorithm but...
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Issues with the previous example

• Clean mathematically, but very heavy notation-wise.

• Worse: lots of redundant computations: we only change one column from BI

to BI′ but always recompute at each iteration:

◦ the inverse B−1

I ,
◦ the yi’s, that is the matrix Y = B−1

I A,
◦ the zi’s which can be found through cT

I Y = cT
I B−1

I A and the reduced costs.

• Plus we assumed we had an initial feasible solution immediately... what if?

• Imagine someone solves the problem (c, A,b) before us and finds x⋆ as the
optimal solution such that cTx⋆ = z⋆.

• He gives it back to us adding the constraint cTx ≥ z⋆. Finding an initial
feasible solution is as hard as finding the optimal solution itself!
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Next time

• For all these reasons, we look for a

◦ compact (less redundant variables and notations),
◦ fast computationally (rank one updates),

methodology: the tableaux and dictionaries methods to go through the simplex
step by step.

• We also study how to find an initial BFS and address additional issues.

• YET The simplex is not just a dictionary or a tableau method.

• The latter are tools. The simplex algorithm is 100% algebraic and
combinatorial.

• The truth is that it is just an “optimization tool in disguise”.
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