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Reminder: Convexity

• basic notions of convexity

◦ Convex set C: ∀x1,x2 ∈ C, [x1,x2] = {λx1 + (1 − λ)x2, 0 < λ < 1} ⊂ C.
◦ Boundary point: ∀r > 0, Br(x) ∩ C 6= ∅, Br(x) ∩ Rn \ C 6= ∅.
◦ x extreme point of a convex set: x = a+b

2 ⇒ a = b = x

• hyperplanes and carathéodory

◦ isolation; C convex: ∀y /∈ C, ∃c ∈ Rn, z ∈ R | C ⊂ H+
c,z

◦ supporting hyperplace: y ∈ ∂C: ∃c ∈ Rn, z ∈ R | C ⊂ H+
c,z,y ∈ H+

c,z

◦ C convex & bounded from below : every supporting hyperplane of C
contains an extreme point of C.

◦ convex hull 〈A〉 of a set A is the minimal convex set that contains A.
◦ See also convex hull = all convex combinations.
◦ Carathéodory: S ⊂ Rn, 〈S〉 =

⋃

C⊂S,card(C)=n+1

〈C〉.

ORF-522 2



Today

• Carathéodory theorem proof

• Some important theorems

(i) Existence of one feasible solution ⇒ Existence of a basic feasible solution;
(ii) basic feasible solutions ⇔ extreme points of the feasible region;
(iii) Optimum of an LP occurs at an extreme point of the feasible region;

• A comment on polyhedra in canonical form and polyhedra in standard form.
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Carathéodory Theorem
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The intuition

• Start with the example of C = {x1,x2,x3,x4,x5} ⊂ R2 and its hull 〈C〉.

x1

x3

x4

y3

y2

x5

y1
C

〈C〉
=⇒

x2
x4

x3

x5

x2

x1

◦ y1 can be written as a convex combination of x1,x2,x3 (or x1,x2,x5);
◦ y2 can be written as a convex combination of x1,x3,x4;
◦ y3 can be written as a convex combination of x1,x4,x5;

• For a set C of 5 points in R2 there seems to be always a way to write a point
y ∈ 〈C〉 as the convex combination of 2 + 1 = 3 of such points.

• Is this result still valid for general hulls 〈S〉 (not necessarily polytopes but also
balls etc..) and higher dimensions?
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Remember for convex hull of finite sets...

• We had proved this for finite sets,

Theorem 1. The smallest convex set that contains a finite set of points is
the set of all their convex combinations.

• Proof reminder, (⊃) is obvious.

◦ (⊂) : by induction on k. if k = 1 then B1 = 〈{x1}〉 ⊆ A1 = {x1}.
◦ Suppose we have

{convex combinations of x1, · · · , xk−1} = Ak−1 ⊆ Bk−1 = 〈{x1, · · · , xk−1}〉.

◦ Let now x ∈ Ak such that x =
∑k

i=1 αixi.
◦ If x = xk then trivially x ∈ Bk. If x 6= xk then

x = (1 − αk)
k−1
∑

i=1

αi

1 − αk

xi +
αk

1 − αk

xk = (1 − αk)y + αkxk.

◦ y ∈ Bk−1 ⊂ Bk and xk ∈ Bk. Bk convex, hence x ∈ Bk.
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...generalized for convex hull of (infinite) sets

Theorem 2. The convex hull 〈S〉 of a set of points S is the union of all convex
combinations of k points {x1, · · · ,xk} ∈ S, k ∈ N.

〈S〉 =
⋃

k≥1

⋃

C⊂S,card(C)=k

〈C〉.

• Proof ⊃ is obvious.

• ⊂

◦ easy to show that the union on the right hand side is a convex set. Not
because it is a union but because taking two points in this union we can
show that their segment is included in the union.

◦ hence the RHS is convex and contains S.
◦ Hence it also contains the minimal convex set, 〈S〉.
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Carathéodory’s Theorem

Theorem 3. Let S ⊂ Rn. Then every point x of the convex hull 〈S〉 can be
represented as a convex combination of n + 1 points from S,

x = α1x1 + · · · + αn+1xn+1,
n+1
∑

i=1

αi = 1, αi ≥ 0.

alternative formulation:

〈S〉 =
⋃

C⊂S,card(C)=n+1

〈C〉.

• Proof strategy: show that when a point is written as a combination of m
points and m > n + 1, it is possible to write it as a combination of m − 1
points by solving a homogeneous linear equation of n + 1 equations in Rm.
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Proof.

• (⊃) is direct.

• (⊂) any x ∈ 〈S〉 can be written as a convex combination of p points,
x = α1x1 + · · ·αpxp. We can assume αi > 0 for i = 1, · · · , p.

◦ If p < n + 1 then we add terms 0xp+1 + 0xp+2 + · · · to get n + 1 terms.
◦ If p > n + 1, we build a new combination with one term less:

⊲ let A =

[

x1 x2 · · · xm

1 1 · · · 1

]

∈ Rn+1×p.

⊲ The key here is that since p > n + 1 there exists a solution
η ∈ Rm 6= 0 to Aη = 0.

⊲ By the last row of A, η1 + η2 + · · · + ηm = 0, thus η has both + and -
coordinates.

⊲ Let τ = min{αi
ηi

, ηi > 0} =
αi0
ηi0

.

⊲ Let α̃i = αi − τηi. Hence α̃i ≥ 0, α̃i0 = 0 and
α̃1 + · · · + α̃p = (α1 + · · · + αp) − τ(η1 + · · · + ηp) = 1.

⊲ α̃1x1 + · · · + α̃pxp = α1x1 + · · · + αpxp − τ(η1x1 + · · · + ηpxp) = x.
⊲ Thus x =

∑

i 6=i0
αixi of p − 1 points {xi, i 6= i0}.

⊲ Iterate this procedure until x is a convex combin. of n + 1 points of S.
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Basic Solutions, Extreme Points and

Optima of Linear Programs
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Terminology

• A linear program is a mathematical program with linear objectives and
linear constraints.

• A linear program in canonical form is the program

maximize cTx

subject to Ax ≤ b,
x ≥ 0.

b ≥ 0 ⇒ feasible canonical form. Initial feasible point: x = 0.

• In broad terms:

◦ In resource allocation problems canonical is more adapted,
◦ in flow problems standard is usually more natural.

• However our algorithms work in standard form.
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Terminology

• A linear program in standard form is the program

maximize cTx (1)

subject to Ax = b, (2)

x ≥ 0. (3)

• Easy to go from one to the other but dimensions of x, c, A,b may change.

• Ultimately, all LP can be written in standard form.
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Terminology
Definition 1. (i) A feasible solution to an LP in standard form is a

vector x that satisfies constraints (2)(3).

(ii) The set of all feasible solutions is called the feasible set or feasible
region.

(iii) A feasible solution to an LP is an optimal solution if it maximizes the
objective function of the LP.

(iv) A feasible solution to an LP in standard form is said to be a basic
feasible solution (BFS) if it is a basic solution with respect to
Equation (2).

(v) If a basic solution is non-degenerate, we call it a non-degenerate
basic feasible solution.

• note that an optimal solution may not be unique, but the optimal value of the
problem is.

• Anytime “basic” is quoted, we are implicitly using the standard form.
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∃ feasible solutions ⇒ ∃ basic feasible solutions

Theorem 4. The feasible region to an LP is convex, closed, bounded from
below.

Theorem 5. If there is a feasible solution to a LP in standard form, then
there is a basic feasible solution.

• Proof idea:

◦ if x is such that
∑

i∈I xiai = p and where card(I) > m then we show we
can have an expansion of x with a smaller family I ′.

◦ Eventually by making I smaller we turn it into a basis I.
◦ Some of the simplex’s algorithm ideas are contained in the proof.

• Remarks:

◦ Finding an initial feasible solution might be a problem to solve by itself.
◦ We assume in the next slides we have one. More on this later.

ORF-522 14



Proof

Assume x is a solution with p ≤ n positive variables. Up to a reordering and for
convenience, assume that such variables are the p first variables, hence
x = (x1, · · · , xp, 0, · · · , 0) and

∑p

i=1 xiai = b.

• if {ai}
p

i=1 is linearly independent, then necessarily p ≤ m. If p = m then the
solution is basic. If p < m it is basic and degenerate.

• Suppose {ai}
p

i=1 is linearly dependent.

◦ Assume all ai, i ≤ p are non-zero. If there is a zero vector we can remove it
from the start. Hence we have

∑p

i=1 αiai = 0 with α 6= 0.

◦ Let αr 6= 0, hence ar =
∑p

j=1,j 6=r

(

−
αj

αr

)

aj, which, when substituted in x’s

expansion,
p

∑

j=1,j 6=r

(

xj − xr

αj

αr

)

aj = b,

with has now no more than p − 1 non-zero variables.
◦ non-zero is not enough, since we need feasibility. We show how to choose

r such that
xj − xr

αj

αr

≥ 0, j = 1, 2, · · · , p. (4)
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Proof

◦ For indexes j such that αj = 0 the condition (4) is ok. For those αj 6= 0,
(4) becomes

xj

αj

−
xr

αr

≥ 0 for αj > 0, (5)

xj

αj

−
xr

αr

≤ 0 for αj < 0, (6)

⊲ if αr > 0, (6) is Ok, we set r = argminj

{

xj

αj
|αj > 0

}

for (5)

⊲ if αr < 0, (5) is Ok, we set r = argminj

{

xj

αj
|αj < 0

}

for (6)

In both cases r has been chosen suitably, such that (4) is always satisfied

• Finally: when p > m, we can show that there exists a feasible solution which
can be written as a combination of p − 1 vectors ai ⇒ only need to reiterate.
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Basic feasible solutions of an LP ⊂ Extreme points of the

feasible region

Theorem 6. The basic feasible solutions of an LP in standard form are
extreme points of the corresponding feasible region.

• Proof idea: basic solutions means that xI is uniquely defined by BI’s
invertibility, that is xI is uniquely defined as B−1

I b. This helps to prove that x

is extreme.
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Proof

• Suppose x is a basic feasible solution, that is with proper reordering x has the
form x = [ xB

0 ] with xB = B−1b and B ∈ Rm×m an invertible matrix made of
l.i. columns of A.

• Suppose ∃x1,x2 s.t. x = x1+x2
2 .

• Write x1 = [ u1
v1 ] ,x2 = [ u2

v2 ]

• since v1,v2 ≥ 0 and v1+v2
2 = 0 necessarily v1 = v2 = 0.

• Since x1 and x2 are feasible, Bu1 = b and Bu2 = b hence
u1 = u2 = B−1b = xB which proves that x1 = x2 = x.
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Basic feasible solutions of an LP ⊃ Extreme points of the

feasible region

Theorem 7. The extreme points of the feasible region of an LP in standard
form are basic feasible solutions of the LP.

• Proof idea: Similar to the previous proof, the fact that a point is extreme
helps show that it only has m or less non-zero components.
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Proof

Let x be an extreme point of the feasible region of an LP, with r ≤ n zero
variables. We reorder variables such that xi, i ≤ r are positive and xi = 0 for
r + 1 ≤ i ≤ n.

• As usual
∑r

i=1 xiai = b.

• Let us prove by contradiction that {ai}
r
i=1 are linearly independent.

• if not, ∃(α1, · · · , αr) 6= 0 such that
∑r

i=1 αiai = 0. We show how to use the
family α to create two distinct feasible points x1 and x2 such that x is their
center.

• Let 0 < ε < minαi 6=0
xi
|αi|

. Then xi ± εαi > 0 for i ≤ r and set x1 = x + εα

and x2 = x − εα with α = (α1, · · · , αr, 0, · · · , 0) ∈ Rn.

• x1,x2 are feasible: by definition of ε,x1,x2 ≥ 0. Furthermore,
Ax1 = Ax2 = Ax ± εAα = b since Aα = 0

• We have x1+x2
2 = x which is a contradiction.
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∃ extreme point in the set of optimal solutions.

Theorem 8. The optimal solution to an LP in standard form occurs at an
extreme point of the feasible region.

Proof. Suppose the optimal value of an LP is z⋆ and suppose the objective is to
maximize cTx.

• Any optimal solution x is necessarily in the boundary of the feasible region. If
not, ∃ε > 0 such that x + εc is still feasible, and cT (x + εc) = z⋆ + ε|c|2 > z⋆.

• The set of solutions is the intersection of Hc,z⋆ and the feasible region C which
is convex & bounded from below. Hc,z⋆ is a supporting plane of C on the
boundary point x, thus Hc,z⋆ contains an extreme point (Thm. 3,lecture 3).

... but some solutions that are not extreme points might be optimal.
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Wrap-up

(i) a feasible solution exists ⇒ we know how to turn it into a basic feasible
solution;

(ii) basic feasible solutions ⇔ extreme points of the feasible region;

(iii) Optimum of an LP occurs at an extreme point of the feasible region;
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A Comment on Polyhedra in Canonical and

Standard Form
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Some extra bits of rigor

• Often you are shown this kind of image for LP’s:

• And we think

1. we have an LP,
2. we can plot the feasible polyhedron (grey zone),
3. the solutions need to be extreme points,
4. and actually we can see it that they indeed are.

• Yet something’s wrong in our logic. What?
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Some extra bits of rigor

• We’ve only proved that the solutions of an LP in standard form are extreme
points of the feasible set, which is an intersection of hyperplanes. No
halfspaces involved.

• We’ve seen it before, standard form is poor when it comes to visualization:
in 3D, 3 variables, 2 constraints, 1 line for the feasible set... that’s the max.

• So to visualize we often use 2D or 3D, but in canonical form. That makes a
more interesting polyhedron...

• Yet what are the connections between the BFS of the corresponding standard
form and the extreme points in the canonical form?
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Some extra bits of rigor

• In other words, does it make sense to think that vertices are relevant here?

• it does.
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Some extra bits of rigor

• Suppose we have P1 = {Ax ≤ b,x ≥ 0} ⊂ Rd the feasible set of a canonical
form. We can draw it when d = 3, whatever m.

• We augment it to P2 = {[A, I]x′ = b,x′ ≥ 0} ⊂ Rn to run algorithms in
standard form.

• We can prove that an extreme point of P2, that is a BFS, corresponds to one
and only extreme point of the fancy polyhedron in P1.

• ...coming as a simple homework question.
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Example

• Great, we can start drawing in 2D and 3D.

• Consider the set in R2 defined by

x1 + 8
3x2 ≤ 4

x1 + x2 ≤ 2
2x1 ≤ 3

x1, x2 ≥ 0.

• Here Let’s add slack variables to convert it to standard form:

x1 + 8
3x2 + x3 ≤ 4

x1 + x2 + x4 ≤ 2
2x1 + x5 ≤ 3

x1, x2, x3, x4, x5 ≥ 0.

• Here m = 3, n = 5.
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Example

• Check all basic solutions: we set two variables to zero and solve for the
remaining three:

• Let x1 = x3 = 0 and solve for x2, x4, x5







8
3x2 = 4
x2 + x4 = 2

x5 = 3

• This gives the BFS [ 0,32,0,12,3 ].

• Look how [ 0,32 ] is an extreme point in the next figure (a).

• Not all basic solutions are feasible: the maximum is
(

5
3

)

= 10 but we typically
have far less.

• The exact number is 5 here.

• the number of vertices of the polyhedron (the standard or the canonical,
whichever you like!)
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extreme points a b c d e f
non-basics x1, x3 x4, x3 x4, x5 x2, x5 x1, x2 x1, x5
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That’s it for basic convex analysis and LP’s
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Major Recap

• A Linear Program is a program with linear constraints and objectives.

• Equivalent formulations for LP’s: canonical (inequalities) and standard
(equalities) form.

• Both have feasible convex sets that are bounded from below.

• Simplex Algorithm to solve LP’s works in standard form.

• In standard form, the optimum occurs on an extreme point of this
polyhedron.

• All extreme points are basic feasible solutions.

• That is, all extreme points are of the type xI = B−1
I b for a subset I of

coordinates, zero elsewhere.

• Looking for an optimum? only need to check extreme points/BFS

• Looking for an optimum? there exists a basis I which realizes that
optimum.
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