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Today

• A few elementary definitions about convexity,

• Extreme points,

• Separating and supporting hyperplanes,

• Carathéodory Theorem.
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Reminder: Basic solutions and hyperplanes

• When Ax = b, A ∈ Rm×n, Rank(A) = m < n then,

◦ we can choose a list I of m basic variables among n,
◦ solutions such that xi = 0 for i /∈ I are called basic,
◦ When b is l.i. from any subset of m − 1 columns of BI then the

xi 6= 0, i ∈ I and the solution is not degenerate.

• the set Hc,z =
{

x ∈ Rn|cTx = z
}

, c 6= 0 is a hyperplane

◦ c is a normal vector to the hyperplane,
◦ The vector subspace Hc,0 and the affine spaces Hc,z are parallel.
◦ Given a hyperplane H we define open halfspaces H+ and H− and their

closures H+ and H−.
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”In response to...” Short comment about degeneracy

• Degeneracy only means something for a linear equation. NO inequalities yet

• Simple example in R3. We can’t draw picture beyond.

{

x1 + x2 = 1
x1 + x3 = 1

• Ax = b.

Ab =

[

1 1 0
1 0 1

∣

∣

∣

1
1

]

• All groups of 2 columns of A are l.i. hence we have three basic solutions. i.e.
Solutions where we want to control zero patterns.

• [0, ?, ?], [?,0, ?], [?, ?,0].

• In fact, [0, 1, 1], [1,0,0], [1,0,0].

• Two basic solutions with the same value... not very satisfying.
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”In response to...” Short comment about degeneracy

• Let’s try with inequalities.

• A canonical program with two variables x1, x2. We start in R2

• Add 4 inequalities (assume ≥) add 4 slack variables. The problem is in R6.

• We have 4 vectors of R6, the rows of A.

• A non-degenerate basic solution has 4 non-zero components. 2 are zero.

• set variables 1 and 2 at zero. unless a hyperplane cuts the origin, no degeneracy

• set one of variables 1 or 2 at zero. The other must be crossing a hyperplane.

• set 1 & 2 be non zero. Let’s look for degeneracy.

• we find out that this means 3 lines have a common point

• actually that means the two first columns and the b column are tied, l.d.
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Convex sets & extreme points
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Definition

• Convexity starts by defining segments

y

x

λx + (1 − λ)y

[x,y] = λx + (1 − λ)y, λ ∈ [0, 1]

.

Definition 1. A set C is said to be convex if for all x and y in C the
segment [x,y] ⊂ C.
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Examples

• Rn is trivially convex and so is any vector subspace V of Rn.

• For Rn ∋ c 6= 0 and z ∈ R, Hc,z is convex

• The halfspaces H+
c,z and H−

c,z are open convex sets, their respective closures
are closed convex sets.

• Let x1,x2 ∈ Br(x0), λ ∈ [0, 1] then

|(λx1 +(1−λ)x2)−x0| = |λ(x1−x0)+(1−λ)(x2−x0)| < λr+(1−λ)r = r.

hence Br(x0) and similarly Br(x0) are convex

ORF-522 8



Extreme points

Definition 2. A point x of a convex set C is said to be an extreme point of
C if

(

∃x1,x2 ∈ C | x = x1+x2
2

)

⇒ x1 = x2 = x.

• intuitively x is not part of an open segment of two other points x1,x2.

• other definitions use 0 < λ < 1,x = λx1 + (1 − λ)x2 but the one above is
equivalent & easier to remember.

C

x
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Extreme points

• an extreme point is a boundary point but the converse is not true in general.

x2

x1

x3
x4 C

• x1,x2,x3,x4 are all boundary points. Only x2 and x3 are extreme. x1 for
instance can be written as λx2 + (1 − λ)x4
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Hyperplanes and Convexity: Isolation and

Support
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Boundaries of Hyperplanes and Halfspaces

• Hyperplanes are closed

◦ We can actually show that Hc,z ⊂ ∂Hc,z, namely any point of Hc,z is a
boundary point:
⊲ let x ∈ Hc,z and Br(x) an open ball centered in x.
⊲ let y1 = x + r

2|c|2
c. Then cTy1 = z + r

2 > z hence y1 /∈ Hc,z but

y1 ∈ Br(x),
⊲ let z ∈ Hc,z, z 6= x, and y2 = x + r x−z

2|x−z|, hence y2 ∈ Hc,z and

y2 ∈ Br(x).
◦ We could also have raised the fact that for xi a converging sequence of Hc,z

we have that cT limi→∞ xi = limi→∞ cTxi = z.

• The boundary of a halfspace is the corresponding hyperplane, i.e.

∂H− = ∂H+ = H.

• The interior Ho of a hyperplane is empty as Ho = H \ ∂H.
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Hyperplanes, halfspaces and convexity

Lemma 1. (i) All hyperplanes are convex;

(ii) The halfspaces H+
c,z,H

−
c,z, H

+
c,z,H

−
c,z are convex;

(iii) Any intersection of convex sets is convex;
(iv) The set of all feasible solutions of a linear program is a convex set.

Proof. (i) cT (λx1 + (1 − λ)x2) = (λ + (1 − λ)) z = z.
(ii) same as above by replacing equality by inequalities.
(iii) Let C = ∩i∈ICi. Let x1,x2 ∈ C. Then for
λ ∈ [0, 1], ∀i ∈ I, (λx1 + (1 − λ)x2) ∈ Ci, hence (λx1 + (1 − λ)x2) ∈ C.
(iv) The set of feasible points to an LP problem is the intersection of hyperplanes
rT

i x = bi and halfspaces rT
j x≥

≤ bj and is hence convex by (iii).
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Isolation

Definition 3. Let A ⊂ Rn be a set and let H ⊂ Rn be a affine hyperplane. H is
said to isolate A if A is contained in one of the closed subspaces H− or H+.
H strictly isolates A if A is contained in one of the open halfspaces H− or
H+.

A
c

H

H−

H+
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Isolation Theorem

Theorem 1. Let C be a closed convex set and y a point not in C. Then
there is a hyperplane Hc,z that contains y and such that C ⊂ H−

c,z or C ⊂ H+
c,z

• (Bar02,II.1.6) has a more general result when C is open. The proof is longer
and we won’t use it.

• Proof strategy: build a suitable hyperplane and show it satisfies the property.
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Isolation Theorem : Proof

Proof. • Define the hyperplane:

◦ Let δ = infx∈C |x − y| > 0.
◦ The continuous function x → |x− y| on the closed set B2δ(y) achieves its

minimum at a point x0 ∈ C.
◦ One can prove that necessarily x ∈ ∂C.
◦ Let c = x0 − y, z = cTy and consider Hc,z. Clearly y ∈ Hc,z.

H−
c,z

C

yc

Hc,z

x0

H+
c,z
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Isolation Theorem : Proof

• Show that C ⊂ H+
c,z:

◦ Let x ∈ C. Since x0 ∈ C, for λ ∈ [0, 1],

λx + (1 − λ)x0 = x0 + λ(x − x0) ∈ C.

◦ By definition of x0, | (x0 + λ(x − x0)) − y|2 ≥ |x0 − y|2,
◦ thus by definition of c = x0 − y,

|λ(x − x0) + c|2 ≥ |c|2,

◦ thus 2λcT (x − x0) + λ2|x− x0|
2 ≥ 0,

◦ Letting λ → 0 we have that cT (x − x0) ≥ 0, hence

cTx ≥ cTx0 = cT (y + c) = z + |c|2 = z + δ2 > z
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Supporting Hyperplane

Definition 4. Let y be a boundary point of a convex set C. A hyperplane
Hc,z is called a supporting hyperplane of C at y if y ∈ Hc,z and either

C ⊆ H+
c,z or C ⊆ H−

c,z.

Theorem 2. If y is a boundary point of a closed convex set C then there is at
least one supporting hyperplane at y.

• Proof strategy: use the isolation theorem on a sequence of points that
converge to a boundary point.
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Supporting Hyperplane : Proof

Proof. Since y ∈ ∂C, ∀k ∈ N, ∃yk ∈ B1
k

(y) such that yk /∈ C. (yk) is thus a

sequence of Rn \ C that converges to y. Let ck be the sequence of corresponding
normal vectors constructed according to the proof of Theorem 1, normalized so
that |ck| = 1 and C is in the halfspace {x | cT

k x ≥ cT
k yk}. Since (ck) is a

bounded sequence in a compact space, there exists a subsequence ckj
that

converges to a point c. Let z = cTy. For any x ∈ C,

cTx = lim
j→∞

cT
kj

x ≥ lim
j→∞

cT
kj

ykj
= cTy = z,

thus C ⊂ H+
c,z
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Bounded from below

Definition 5. A set A ⊂ Rn is said to be bounded from below if for all
1 ≤ j ≤ n,

inf
{

xj |A ∋ x = (x1, . . . ,xn)T
}

> −∞.

• Any bounded set is bounded from below

• More importantly, Rn
+ = {x|x ≥ 0} is bounded from below.

• the LP set of solutions {x ∈ Rn | Ax = b,x ≥ 0} is convex & bounded

from below.
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Supporting Hyperplane and Extreme Points

Theorem 3. Let C be a closed convex set which is bounded from below. Then
every supporting hyperplane of C contains an extreme point of C .

• Proof strategy: Show that for a supporting hyperplane H, an extreme point
of the convex subset H ∩ C is an extreme point of C. Find an extreme point
of H ∩ C.
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Supporting Hyperplane and Extreme Points: Proof

Proof. • Let Hc,z be a supporting hyperplane at y ∈ C. Let us write
A = Hc,z ∩ C which is non-empty since it contains y.

• an extreme point of A is an extreme point of C

◦ suppose x ∈ A, that is cTx = z, is not an ext. point of C, i.e
∃x1 6= x2 ∈ C such that x = x1+x2

2 .
◦ If x1 /∈ A or x2 /∈ A then 1

2c
T (x1 + x2) > z = cTx hence x1,x2 ∈ A and

thus x is not an ext. point of A.
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Supporting Hyperplane and Extreme Points: Proof

• look now for an extreme point of A. We use mainly A ⊂ Hc,z ∩ Rm
+

◦ if A is a singleton, namely A = {y}, then y is obviously extreme.
◦ if not, narrow down recursively:

⊲ A1 = argmin{a1 | a ∈ A}. Since A ⊂ C and C is bounded from below the
closed set A1 is well defined as the set of points which achieve this minimum.

⊲ If A1 is still not a singleton, we narrow further:

Aj = argmin{aj | a ∈ Aj−1}.

⊲ Since A ⊂ Rn, this process must stop after k ≤ n iterations (after n
iterations the n variables of points in An are uniquely defined). We have
Ak ⊆ Ak−1 ⊆ A1 ⊆ A and write Ak =

{

ak
}

.

◦ Suppose ∃x1 6= x2 ∈ A such that ak = x1+x2

2 . In particular ∀i ≤ k,ak
i =

x1
i +x2

i
2 .

◦ Since ak
1 is an infimum, x1

i = x2
i = ak

1 and x1,x2 ∈ A1.
◦ By the same argument applied recursively we have that x1,x2 ∈ Aj and

finally Ak which by construction is {ak}, hence x1 = x2 = ak, a contradiction,
and ak is our extreme point.
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Convex Hulls & Carathéodory’s Theorem
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Convex combinations

Definition 6. Let {x1,x2, · · · ,xk} be a set of points. Let α1, · · · , αk be a

family of nonnegative weights such that
∑k

1 αi = 1. Then x =
∑k

1 αixi is
called a convex combination of the points x1,x2, · · · ,xk.

x

x2
y

x3

x1

Let’s illustrate this statement with a point x in a triangle (x1,x2,x3).

• Let y be the intersection of (x1,x) with [x2,x3]. y = px2 + qx3 with

p = |x2−y|
|x3−x2|

and q = |x3−y|
|x3−x2|

.

• On the other hand, x = lx1 + ky with l = |x1−x|
|x1−y| and k = |y−x|

|x1−y|.

• Finally x = lx1 + pkx2 + qkx3, and l + pk + qk = 1.
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Convex hull

Definition 7. The convex hull 〈A〉 of a set A is the minimal convex set that
contains A.

Lemma 2. (i) if A 6= ∅ then 〈A〉 6= ∅
(ii) if A ⊂ B then 〈A〉 ⊂ 〈B〉
(iii) 〈A〉 is the intersection of all convex sets that contain A.
(iv) if A is convex then 〈A〉 = A
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Convex hull ⇔ all convex combinations

Theorem 4. The convex hull of a set of points {x1, · · · ,xk} is the set of all
convex combinations of x1, · · · ,xk.

Proof. • Let A = {x |x =
∑k

1 αixi, αi ≥ 0,
∑k

1 αi = 1}; B = 〈{x1, · · · ,xk}〉

◦ It’s easy to prove that A is convex: Let x =
∑k

1 αixi and y =
∑k

1 βixi be
two points of A. Then λx + (1 − λ)y can be written as

k
∑

i=1

(λαi + (1 − λ)βi)xi ∈ A

◦ B ⊆ A : A is convex and contains each point xi since

xi =
k

∑

j=1

δijxj.
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Convex hull ⇔ all convex combinations

◦ A ⊆ B : by induction on k. if k = 1 then B1 = 〈{x1}〉 and A1 = {x1}. By
Lemma 2 A1 ⊆ B1. Suppose that the claim holds for any family of k − 1
points, i.e. Ak−1 ⊆ Bk−1. Let now x ∈ Ak such that

x =
k

∑

i=1

αixi.

If x = xk then trivially x ∈ Bk. If x 6= xk then αk 6= 1 and we have that

∑k−1
i=1 αi

1 − αk

= 1.

Consider y =
∑k−1

i=1
αi

1−αk
xi. y ∈ Bk−1 by the induction hypothesis. Since

{x1, · · · ,xk−1} ⊂ {x1, · · · ,xk}, Bk−1 ⊆ Bk by Lemma2. Since Bk is
convex and both y,xk ∈ Bk, so is x = (1 − αk)y + αkxk.
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Polytope, Polyhedrons

Definition 8. The convex hull of a finite set of points in Rn is called a
polytope.

Let r1, · · · , rm be vectors from Rn and b1, · · · , bm be numbers. The set

P =
{

x ∈ Rn | rT
i x ≤ bi , i = 1, · · · , n

}

is called a polyhedron.

• A few comments:

◦ bounded polyhedron ⇔ polytope: TBP Weyl-Minkowski theorem.
◦ polytopes are generated by a finite set of points. Br(x) is not a polytope.
◦ a polyhedron is exactly the set of feasible solutions of an LP.
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Carathéodory’s Theorem

• Start with the example of C = {x1,x2,x3,x4,x5} ⊂ R2 and its hull 〈C〉.

x1

x3

x4

y3

y2

x5

y1
C

〈C〉
=⇒

x2
x4

x3

x5

x2

x1

◦ y1 can be written as a convex combination of x1,x2,x3 (or x1,x2,x5);
◦ y2 can be written as a convex combination of x1,x3,x4;
◦ y3 can be written as a convex combination of x1,x4,x5;

• For a set C of 5 points in R2 there seems to be always a way to write a point
y ∈ 〈C〉 as the convex combination of 2 + 1 = 3 of such points.

• Is this result still valid for general hulls 〈S〉 (not necessarily polytopes but also
balls etc..) and higher dimensions?
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Carathéodory’s Theorem

Theorem 5. Let S ⊂ Rn. Then every point x of 〈S〉 can be represented as a
convex combination of n + 1 points from S,

x = α1x1 + · · · + αn+1xn+1,
n+1
∑

i=1

αi = 1, αi ≥ 0.

alternative formulation:

〈S〉 =
⋃

C⊂S,card(C)=n+1

〈C〉.

• Proof strategy: show that when a point is written as a combination of m
points and m > n + 1, it is possible to write it as a combination of m − 1
points by solving a homogeneous linear equation of n + 1 equations in Rm.
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Proof.

• (⊃) is direct.

• (⊂) any x ∈ 〈S〉 can be written as a convex combination of p points,
x = α1x1 + · · ·αpxp. We can assume αi > 0 for i = 1, · · · , p.

◦ If p < n + 1 then we add terms 0xp+1 + 0xp+2 + · · · to get n + 1 terms.
◦ If p > n + 1, we build a new combination with one term less:

⊲ let A =

[

x1 x2 · · · xm

1 1 · · · 1

]

∈ Rn+1×p.

⊲ The key here is that since p > n + 1 there exists a solution

η ∈ Rm 6= 0 to Aη = 0.
⊲ By the last row of A, η1 + η2 + · · · + ηm = 0, thus η has both + and -

coordinates.
⊲ Let τ = min{αi

ηi
, ηi > 0} =

αi0
ηi0

.

⊲ Let α̃i = αi − τηi. Hence α̃i ≥ 0 and α̃i0 = 0.

⊲

α̃1 + · · · + α̃p = (α1 + · · · + αp) − τ(η1 + · · · + ηp) = 1,
α̃1x1 + · · · + α̃pxp = α1x1 + · · · + αpxp − τ(η1x1 + · · · + ηpxp) = x.

⊲ Thus x =
∑

i 6=i0
αixi of p − 1 points {xi, i 6= i0}.

⊲ Iterate this procedure until x is a convex combin. of n + 1 points of S.
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Next time

• Some notable points: basic feasible / extreme points / optima

• The simplex in theory
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