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Basics of Convexity
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Today

e A few elementary definitions about convexity,
e Extreme points,
e Separating and supporting hyperplanes,

e Carathéodory Theorem.
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Reminder: Basic solutions and hyperplanes

e When Ax =b, A € R™*", Rank(A) = m < n then,

o we can choose a list I of m basic variables among n,

o solutions such that x; = 0 for ¢ ¢ T are called basic,

o When b is |.i. from any subset of m — 1 columns of By then the
x; # 0,7 € I and the solution is not degenerate.

o the set H, , = {X c R"|clx = z} c # 0 is a hyperplane

o c is a normal vector to the hyperplane,

o The vector subspace H o and the affine spaces H, . are parallel.

o Given a hyperplane H we define open halfspaces H, and H_ and their
closures H, and H_.
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"In response to...” Short comment about degeneracy

e Degeneracy only means something for a linear equation. NO inequalities yet

e Simple example in R®. We can’t draw picture beyond.

I —+ i)
I + I3

1 1 011
Ab_[1 0 1|1]

e All groups of 2 columns of A are |.i. hence we have three basic solutions. i.e.
Solutions where we want to control zero patterns.

e [0,7,7,[2,0,7],[7,7,0].
o In fact, [0,1,1],[1,0,0],[L,0,0].

|
—_

e Two basic solutions with the same value... not very satisfying.
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"In response to...” Short comment about degeneracy

e Let's try with inequalities.

e A canonical program with two variables z1, x5. We start in -

e Add 4 inequalities (assume >) add 4 slack variables. The problem is in R

e We have 4 vectors of R®, the rows of A.

¢ A non-degenerate basic solution has 4 non-zero components. 2 are zero.
e set variables 1 and 2 at zero. unless a hyperplane cuts the origin, no degeneracy
e set one of variables 1 or 2 at zero. The other must be crossing a hyperplane.

e set 1 & 2 be non zero. Let's look for degeneracy.

e we find out that this means 3 lines have a common point

e actually that means the two first columns and the b column are tied, |.d.
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Convex sets & extreme points
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Definition

e Convexity starts by defining segments

Ax 4+ (1 — Ny

x,y] = x+(1—-ANy, A €[0,1]

Definition 1. A set C' s said to be convex if for all x andy wn C the
segment [x,y] C C.
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Examples

e R" is trivially convex and so is any vector subspace V' of R".
e For R">c#0and z € R, H. , is convex

e The halfspaces H, and H_, are open convex sets, their respective closures
are closed convex sets.

o Let x1,%x5 € B.(x0), A € [0, 1] then

‘()\X1+(1—)\)X2)—X0‘ = |)\(X1—X0)—|—(1—)\)(X2—X0)| < )\T—|—(1—)\)T =T.

hence B,.(xg) and similarly B,.(x() are convex
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Extreme points

Definition 2. A point x of a convex set C' is said to be an extreme point of
C if

(Hxl,X2€C|X:¥):>X1:X2:X.

e intuitively x is not part of an open segment of two other points x1, X5.

e other definitions use 0 < A < 1,x = Ax; + (1 — A\)x2 but the one above is
equivalent & easier to remember.
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Extreme points

e an extreme point is a boundary point but the converse is not true in general.

X2

X1

® X1,Xo,X3,X,4 are all boundary points. Only x5 and x3 are extreme. x; for
instance can be written as Axs + (1 — A\)x4
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Hyperplanes and Convexity: Isolation and
Support
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Boundaries of Hyperplanes and Halfspaces

e Hyperplanes are closed

o We can actually show that H. , C 0H, ., namely any point of H,  is a
boundary point:
> let x € H. , and B,(x) an open ball centered in x.
> let y1 = x + gimc. Then c'y1=z+% > zhencey; ¢ He . but

y1 € Br(x),
> letz € He .,z # X, and yo = X + 157~ | | hence y» € H. , and
Yo € B,,n( )
o We could also have raised the fact that for x; a converging sequence of H, ,

we have that ¢’ lim; ... x; = lim; .., c'x; = 2.

e The boundary of a halfspace is the corresponding hyperplane, i.e.

8[-[_ — 8H_|_ — H

e The interior H° of a hyperplane is empty as H° = H \ OH.
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Hyperplanes, halfspaces and convexity

Lemma 1. (i) All hyperplanes are convex;

(ii) The halfspaces HCJ,FZ, H,, H., He, are convex;

(ii1) Any intersection of conver sets is conver;

(iv) The set of all feasible solutions of a linear program is a convex set.

Proof. (i) cP'(Mx1+ (1= XN)x2) = A+ (1 =X))z =z

(ii) same as above by replacing equality by inequalities.

(iii) Let C' = N;erC;. Let x1,%5 € C. Then for

Ae[0,1,Vie I, (Ax1+ (1 — A)x2) € Cy, hence (Ax; + (1 — A\)xq) € C.

(iv) The set of feasible points to an LP problem is the intersection of hyperplanes

r/'x = b; and halfspaces r?x%bj and is hence convex by (iii). m
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Isolation

Definition 3. Let A C R" be a set and let H C R™ be a affine hyperplane. H is
said to isolate A if A is contained in one of the closed subspaces H_ or H .
H strictly isolates A if A is contained in one of the open halfspaces H_ or

H..
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Isolation Theorem

Theorem 1. Let C be a closed convex set andy a point not in C'. Then
there is a hyperplane H. , that contains'y and such that C C H, , or C C HCJFZ

N

e (Bar02,11.1.6) has a more general result when C'is open. The proof is longer
and we won't use it.

e Proof strategy: build a suitable hyperplane and show it satisfies the property.
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Isolation Theorem : Proof

Proof. e Define the hyperplane:

o Let 6 =inf cc|x —y| > 0.

o The continuous function x — |x — y| on the closed set Bys(y) achieves its
minimum at a point xg € C.

o One can prove that necessarily x € 0C.

o Let c =xg—Yy,z=cly and consider H, ,. Clearly y € H, .
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Isolation Theorem : Proof

e Show that C C H,:

o Let x € C. Since xq € C, for A € [0,1],
AX + (1 — N)xg =x0+ A(x — x9) € C.

o By definition of xq, | (xo + A(x — %)) —y|* > |x0 — ¥/,
o thus by definition of ¢ = xg — vy,

A(x —xo) + | = |ef,

o thus 2\c!'(x — x¢) + A\?|x — x| > 0,
o Letting A — 0 we have that ¢ (x — xg) > 0, hence

cl'x>clxg=cl(y+c)=z+cf=2+6 >z
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Supporting Hyperplane

Definition 4. Let y be a boundary point of a convex set C'. A hyperplane
H. , is called a supporting hyperplane of C' aty if y € H. . and either

CgH(iz or C C He .

Theorem 2. If y is a boundary point of a closed convex set C' then there is at
least one supporting hyperplane at'y.

e Proof strategy: use the isolation theorem on a sequence of points that
converge to a boundary point.
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Supporting Hyperplane : Proof

Proof. Since y € 0C,Vk € N, Jyi € B1(y) such that y, ¢ C. (yx) is thus a
k

sequence of R™ \ C' that converges to y. Let c; be the sequence of corresponding
normal vectors constructed according to the proof of Theorem [, normalized so
that |cix| = 1 and C' is in the halfspace {x|c}x > ¢} yy}. Since (cg) is a
bounded sequence in a compact space, there exists a subsequence cj; that
converges to a point c. Let z = c!y. For any x € C,

cl'x = lim CZ.X > lim cz,yk. =cly =2,
jooo T joo Y

thus C C HS, =
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Bounded from below

Definition 5. A set A C R" is said to be bounded from below if for all
1 <73 <n,
inf {x;]A>x=(x1,...,%x,)" } > —00.

e Any bounded set is bounded from below
e More importantly, R} = {x|x > 0} is bounded from below.

e the LP set of solutions {x € R" | Ax = b,x > 0} is convex & bounded
from below.
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Supporting Hyperplane and Extreme Points

Theorem 3. Let C' be a closed convex set which is bounded from below. Then
every supporting hyperplane of C contains an extreme point of C .

e Proof strategy: Show that for a supporting hyperplane H, an extreme point

of the convex subset H N C' is an extreme point of C'. Find an extreme point
of HNC.
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Supporting Hyperplane and Extreme Points: Proof

Proof. e Let H. , be a supporting hyperplane at y € C. Let us write
A = H. . N C which is non-empty since it contains y.

e an extreme point of A is an extreme point of

o suppose x € A, that is c'x = z is not an ext. point of C, i.e
dx1 # x9 € C such that x = #

o If x;1 ¢ A or xo ¢ A then %CT(Xl +X5) > 2z = ¢!'x hence x1,x, € A and
thus x is not an ext. point of A.
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Supporting Hyperplane and Extreme Points: Proof

e look now for an extreme point of A. We use mainly A C H. . N RT

o if A is a singleton, namely A = {y}, then y is obviously extreme.
o if not, narrow down recursively:
>~ Al = argmin{a; | a € A}. Since A C C and C is bounded from below the
closed set A! is well defined as the set of points which achieve this minimum.
> If A is still not a singleton, we narrow further:

A’ = argmin{a; |a € A7}

~ Since A C R", this process must stop after k < n iterations (after n

iterations the n variables of points in A™ are uniquely defined). We have
AR C AR=1 C Al C A and write A* = {a*}.
1 2

o Suppose Ix! # x? € A such that a* = # In particular Vi < k,af = %

o Since a} is an infimum, x} = x? = a¥ and x!,x% € Al

o By the same argument applied recursively we have that x!,x? € A7 and
finally A* which by construction is {ak}, hence x; = x5 = a*, a contradiction,

and a¥ is our extreme point.
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Convex Hulls & Carathéodory’s Theorem
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Convex combinations

Definition 6. Let {x1,xo, -+ ,x;} be a set of points. Let ay,--- ,ax be a
family of nonnegative weights such that Zlf a; =1. Then x = Zlf Q;X; 1S
called a convex combination of the points x1,Xs, - , X.
X1
X2
Yy
X3

Let's illustrate this statement with a point x in a triangle (x1, X2, X3).

e Let y be the intersection of (x1,x) with [x2,X3]. ¥ = pxo + gx3 with

_xo—y] |x3—y]
= ——— an = —.
p |x3—xX2] q |x3—X2)|

e On the other hand, x = Ix; + ky with | = {2:;‘} and k = |L§f1:’j|.

e Finally x = Ix; + pkxsy + qkx3, and [ + pk + gk = 1.
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Convex hull

Definition 7. The convex hull (A) of a set A is the minimal convex set that
contains A.

Lemma 2. (i) if A # () then (A) # ()
(ii) if A C B then (A) C (B)
(ii1) (A) is the intersection of all convex sets that contain A.

(iv) if A is convex then (A) = A
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Convex hull < all convex combinations

Theorem 4. The convex hull of a set of points {x1,--- ,xp} is the set of all
convexr combinations of X1, -+ , Xg.

Proof. e Let A ={x|x= Zlf ;X i > 0, Zlf a; =1} B = ({x1," "+ ,XkJ)

o It's easy to prove that A is convex: Let x = Zlf a;X; and y = Zlf Bix; be
two points of A. Then Ax + (1 — A\)y can be written as

k
Z )\Oéz — )\)5@) x; € A
1=1

o BC A: Ais convex and contains each point x; since

k
= E (Sinj.
J=1
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Convex hull & all convex combinations

o A C B : by induction on k. if k =1 then By = ({x1}) and A; = {x1}. By
Lemma 2 A; C B;. Suppose that the claim holds for any family of £ — 1
points, i.e. Ap_1 C Bi_1. Let now x € A;. such that

k
X = Z ;X
i=1
If x = x;, then trivially x € By. If x # x; then ai # 1 and we have that

k—1
D e Qi

1—Oék

= 1.

Consider y = Zf:_ll ﬁ‘—&kxz y € Bj_1 by the induction hypothesis. Since
{x1,  ,Xp_1} C{x1, ,Xg}, Bp_1 C By by Lemmal2. Since By is
convex and both y,x; € By, sois x = (1 — ag)y + agpXg.
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Polytope, Polyhedrons

Definition 8. The convex hull of a finite set of points in R" is called a
polytope.

Letrqy,--- 1, be vectors from R™ and by,--- ,b,, be numbers. The set
P:{XERnlerSbi, 7,:17 ’n}
s called a polyhedron.

e A few comments:

o bounded polyhedron < polytope: TBP Weyl-Minkowski theorem.

o polytopes are generated by a finite set of points. B,.(x) is not a polytope.

o a polyhedron is exactly the set of feasible solutions of an LP.
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Carathéodory’s Theorem

e Start with the example of C' = {x1, X2, X3, X4, X5} C R* and its hull (C).

X1, X5

X9 ‘.
4
X3

o yi1 can be written as a convex combination of x1, X2, x3 (or X1, X2, X5);
o yo can be written as a convex combination of x1, X3, Xy;
o y3 can be written as a convex combination of x1, X4, X5;

e For a set C of 5 points in R® there seems to be always a way to write a point
y € (C) as the convex combination of 2 + 1 = 3 of such points.

e Is this result still valid for general hulls (S) (not necessarily polytopes but also
balls etc..) and higher dimensions?
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Carathéodory’s Theorem

Theorem 5. Let S C R™. Then every point x of (S) can be represented as a
convexr combination of n + 1 points from S,

n+1

X = a1X1 + -+ pp1Xng, E a; = 1,0, 2 0.
i=1

alternative formulation:

(S) = g (C).

CCS,card(C)=n+1

e Proof strategy: show that when a point is written as a combination of m
points and m > n + 1, it is possible to write it as a combination of m — 1
points by solving a homogeneous linear equation of n + 1 equations in R™.
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Proof.

D) is direct.

* (
e (C) any x € () can be written as a convex combination of p points,
X = a1X1 + - apX,. We can assume o; > 0 fori=1,---,p.

o If p<n+1 then we add terms 0x,41 + 0xp42 + --- to get n + 1 terms.
o If p>n+1, we build a new combination with one term less:
X1 X2 0 X n+1x
e c R"THP
> The key here is that since p > n 4+ 1 there exists a solution
neR™#£0to An = 0.
>~ By the last row of A, n1 +n2+ -+ -+ n,,, = 0, thus 1 has both + and -
coordinates.
> Let 7 = min{%,n; > 0} =

aio

ni

> Let a; = a; — T™n;. Hence %zz- > 0 and a;, = 0.

Gyt = () T ) = 1

a1X1+ -+ apXp = X1 + - -+ apXy, — (X 4+ - X)) = X
> Thus x = Zi#io a;x; of p — 1 points {x;,7 # ig}.

> lterate this procedure until x is a convex combin. of n 4+ 1 points of S.
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Next time

e Some notable points: basic feasible / extreme points / optima

e [he simplex in theory
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