ORF 522

Linear Programming and Convex Analysis

Basics of Convexity

Today

- A few elementary definitions about convexity,
- Extreme points,
- Separating and supporting hyperplanes,
- Carathéodory Theorem.

Reminder: Basic solutions and hyperplanes

- When $A\mathbf{x} = \mathbf{b}$, $A \in \mathbf{R}^{m \times n}$, $\mathbf{Rank}(A) = m < n$ then,
 - \circ we can choose a list I of *m* basic variables among *n*,
 - \circ solutions such that $\mathbf{x}_i = 0$ for $i \notin \mathbf{I}$ are called basic,
 - When **b** is l.i. from any subset of m-1 columns of $B_{\mathbf{I}}$ then the $x_i \neq 0, i \in \mathbf{I}$ and the solution is **not degenerate**.
- the set $H_{\mathbf{c},z} = \left\{ \mathbf{x} \in \mathbf{R}^n | \mathbf{c}^T \mathbf{x} = z \right\}$, $\mathbf{c} \neq \mathbf{0}$ is a hyperplane
 - \circ c is a **normal vector** to the hyperplane,
 - The vector subspace $H_{\mathbf{c},0}$ and the affine spaces $H_{\mathbf{c},z}$ are parallel.
 - Given a hyperplane H we define open halfspaces H_+ and H_- and their closures $\overline{H_+}$ and $\overline{H_-}$.

"In response to..." Short comment about degeneracy

- Degeneracy only means something for a linear equation. NO inequalities yet
- Simple example in \mathbf{R}^3 . We can't draw picture beyond.

$$\begin{cases} x_1 + x_2 &= 1\\ x_1 &+ x_3 &= 1 \end{cases}$$

• $A\mathbf{x} = \mathbf{b}$. $A_b = \begin{bmatrix} 1 & 1 & 0 & | & 1 \\ 1 & 0 & 1 & | & 1 \end{bmatrix}$

- All groups of 2 columns of A are l.i. hence we have three basic solutions. i.e. Solutions where we want to control zero patterns.
- [**0**,?,?],[?,**0**,?],[?,?,**0**].
- In fact, [0, 1, 1], [1, 0, 0], [1, 0, 0].
- Two basic solutions with the same value... not very satisfying.

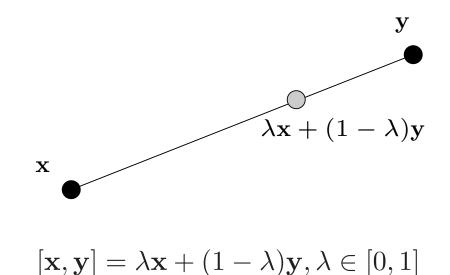
"In response to..." Short comment about degeneracy

- Let's try with inequalities.
- A canonical program with two variables x_1, x_2 . We start in \mathbf{R}^2
- Add 4 inequalities (assume \geq) add 4 slack variables. The problem is in \mathbf{R}^6 .
- We have 4 vectors of \mathbf{R}^6 , the **rows** of A.
- A non-degenerate basic solution has 4 non-zero components. 2 are zero.
- set variables 1 and 2 at zero. unless a hyperplane cuts the origin, no degeneracy
- set one of variables 1 or 2 at zero. The other must be crossing a hyperplane.
- set 1 & 2 be non zero. Let's look for degeneracy.
- we find out that this means 3 lines have a common point
- actually that means the two first columns and the b column are tied, I.d.

Convex sets & extreme points

Definition

• Convexity starts by defining segments



Definition 1. A set C is said to be **convex** if for all \mathbf{x} and \mathbf{y} in C the segment $[\mathbf{x}, \mathbf{y}] \subset C$.

Examples

- \mathbf{R}^n is trivially convex and so is any vector subspace V of \mathbf{R}^n .
- For $\mathbf{R}^n \ni \mathbf{c} \neq \mathbf{0}$ and $z \in \mathbf{R}$, $H_{\mathbf{c},z}$ is convex
- The halfspaces $H^+_{\mathbf{c},z}$ and $H^-_{\mathbf{c},z}$ are **open convex sets**, their respective closures are **closed convex sets**.
- Let $\mathbf{x}_1, \mathbf{x}_2 \in B_r(\mathbf{x}_0), \lambda \in [0,1]$ then

 $|(\lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2) - \mathbf{x}_0| = |\lambda(\mathbf{x}_1 - \mathbf{x}_0) + (1-\lambda)(\mathbf{x}_2 - \mathbf{x}_0)| < \lambda r + (1-\lambda)r = r.$

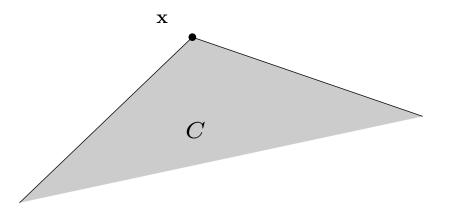
hence $B_r(\mathbf{x}_0)$ and similarly $\overline{B_r(\mathbf{x}_0)}$ are convex

Extreme points

Definition 2. A point \mathbf{x} of a convex set C is said to be an **extreme point** of C if

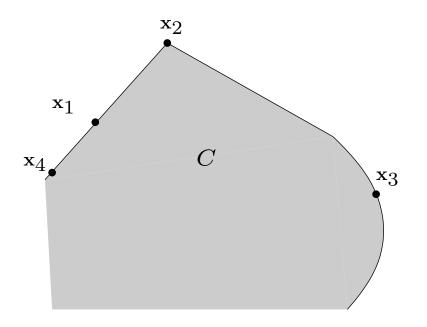
$$\left(\exists \mathbf{x}_1, \mathbf{x}_2 \in C \mid \mathbf{x} = \frac{\mathbf{x}_1 + \mathbf{x}_2}{2}\right) \Rightarrow \mathbf{x}_1 = \mathbf{x}_2 = \mathbf{x}.$$

- intuitively \mathbf{x} is not part of an **open** segment of two other points $\mathbf{x}_1, \mathbf{x}_2$.
- other definitions use $0 < \lambda < 1$, $\mathbf{x} = \lambda \mathbf{x}_1 + (1 \lambda)\mathbf{x}_2$ but the one above is equivalent & easier to remember.



Extreme points

• an extreme point is a boundary point but the converse is not true in general.



x₁, x₂, x₃, x₄ are all boundary points. Only x₂ and x₃ are extreme. x₁ for instance can be written as λx₂ + (1 − λ)x₄

Hyperplanes and Convexity: Isolation and Support

Boundaries of Hyperplanes and Halfspaces

- Hyperplanes are closed
 - We can actually show that $H_{\mathbf{c},z} \subset \partial H_{\mathbf{c},z}$, namely any point of $H_{\mathbf{c},z}$ is a boundary point:
 - \triangleright let $\mathbf{x} \in H_{\mathbf{c},z}$ and $B_r(\mathbf{x})$ an open ball centered in \mathbf{x} .
 - $\triangleright \text{ let } \mathbf{y}_1 = \mathbf{x} + \frac{r}{2|\mathbf{c}|^2} \mathbf{c}. \text{ Then } \mathbf{c}^T \mathbf{y}_1 = z + \frac{r}{2} > z \text{ hence } \mathbf{y}_1 \notin H_{\mathbf{c},z} \text{ but } \mathbf{y}_1 \in B_r(\mathbf{x}),$
 - $\triangleright \text{ let } \mathbf{z} \in H_{\mathbf{c},z}, \mathbf{z} \neq \mathbf{x}, \text{ and } \mathbf{y}_2 = \mathbf{x} + r \frac{\mathbf{x} \mathbf{z}}{2|\mathbf{x} \mathbf{z}|}, \text{ hence } \mathbf{y}_2 \in H_{\mathbf{c},z} \text{ and } \mathbf{y}_2 \in B_r(\mathbf{x}).$
 - We could also have raised the fact that for \mathbf{x}_i a converging sequence of $H_{\mathbf{c},z}$ we have that $\mathbf{c}^T \lim_{i \to \infty} \mathbf{x}_i = \lim_{i \to \infty} \mathbf{c}^T \mathbf{x}_i = z$.
- The boundary of a halfspace is the corresponding hyperplane, i.e.

$$\partial H_- = \partial H_+ = H.$$

• The interior H^o of a hyperplane is empty as $H^o = H \setminus \partial H$.

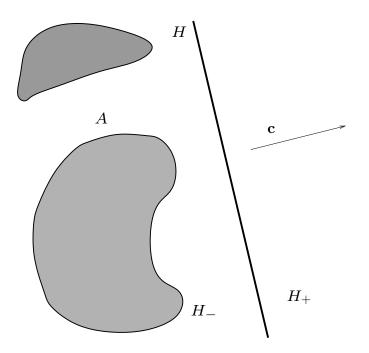
Hyperplanes, halfspaces and convexity

Lemma 1. (i) All hyperplanes are convex; (ii) The halfspaces $H_{\mathbf{c},z}^+, H_{\mathbf{c},z}^-, \overline{H_{\mathbf{c},z}^+}, \overline{H_{\mathbf{c},z}^-}$ are convex; (iii) Any intersection of convex sets is convex; (iv) The set of all feasible solutions of a linear program is a convex set.

Proof. (i) $c^T(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) = (\lambda + (1 - \lambda)) z = z$. (ii) same as above by replacing equality by inequalities. (iii) Let $C = \bigcap_{i \in I} C_i$. Let $\mathbf{x}_1, \mathbf{x}_2 \in C$. Then for $\lambda \in [0, 1], \forall i \in I, (\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \in C_i$, hence $(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \in C$. (iv) The set of feasible points to an LP problem is the intersection of hyperplanes $\mathbf{r}_i^T \mathbf{x} = b_i$ and halfspaces $\mathbf{r}_j^T \mathbf{x} \geq b_j$ and is hence convex by (iii).

Isolation

Definition 3. Let $A \subset \mathbb{R}^n$ be a set and let $H \subset \mathbb{R}^n$ be a affine hyperplane. *H* is said to **isolate** *A* if *A* is contained in one of the closed subspaces $\overline{H_-}$ or $\overline{H_+}$. *H* **strictly isolates** *A* if *A* is contained in one of the open halfspaces H_- or H_+ .



Isolation Theorem

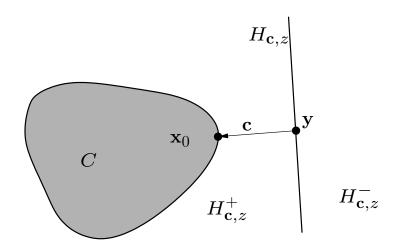
Theorem 1. Let C be a closed convex set and y a point not in C. Then there is a hyperplane $H_{\mathbf{c},z}$ that contains y and such that $C \subset H_{\mathbf{c},z}^-$ or $C \subset H_{\mathbf{c},z}^+$

- (Bar02,II.1.6) has a more general result when C is **open**. The proof is longer and we won't use it.
- **Proof strategy**: build a suitable hyperplane and show it satisfies the property.

Isolation Theorem : Proof

Proof. • **Define the hyperplane**:

- Let $\delta = \inf_{x \in C} |\mathbf{x} \mathbf{y}| > 0.$
- The continuous function $\mathbf{x} \to |\mathbf{x} \mathbf{y}|$ on the closed set $\overline{B_{2\delta}(\mathbf{y})}$ achieves its minimum at a point $\mathbf{x}_0 \in C$.
- One can prove that necessarily $\mathbf{x} \in \partial C$.
- Let $\mathbf{c} = \mathbf{x}_0 \mathbf{y}, z = \mathbf{c}^T \mathbf{y}$ and consider $H_{\mathbf{c},z}$. Clearly $\mathbf{y} \in H_{\mathbf{c},z}$.



Isolation Theorem : Proof

• Show that $C \subset H^+_{\mathbf{c},z}$:

• Let $\mathbf{x} \in C$. Since $\mathbf{x}_0 \in C$, for $\lambda \in [0, 1]$,

$$\lambda \mathbf{x} + (1 - \lambda) \mathbf{x}_0 = \mathbf{x}_0 + \lambda (\mathbf{x} - \mathbf{x}_0) \in C.$$

o By definition of x₀, |(x₀ + λ(x − x₀)) − y|² ≥ |x₀ − y|²,
o thus by definition of c = x₀ − y,

$$|\lambda(\mathbf{x} - \mathbf{x}_0) + \mathbf{c}|^2 \ge |\mathbf{c}|^2,$$

o thus 2λ**c**^T(**x** − **x**₀) + λ²|**x** − **x**₀|² ≥ 0,
o Letting λ → 0 we have that **c**^T(**x** − **x**₀) ≥ 0, hence

$$\mathbf{c}^T \mathbf{x} \ge \mathbf{c}^T \mathbf{x}_0 = \mathbf{c}^T (\mathbf{y} + \mathbf{c}) = z + |\mathbf{c}|^2 = z + \delta^2 > z$$

Supporting Hyperplane

Definition 4. Let \mathbf{y} be a **boundary** point of a convex set C. A hyperplane $H_{\mathbf{c},z}$ is called a **supporting hyperplane** of C at \mathbf{y} if $\mathbf{y} \in H_{\mathbf{c},z}$ and either $C \subseteq \overline{H_{\mathbf{c},z}^+}$ or $C \subseteq \overline{H_{\mathbf{c},z}^-}$.

Theorem 2. If \mathbf{y} is a boundary point of a closed convex set C then there is at least one supporting hyperplane at \mathbf{y} .

• **Proof strategy**: use the isolation theorem on a sequence of points that converge to a boundary point.

Supporting Hyperplane : Proof

Proof. Since $\mathbf{y} \in \partial C, \forall k \in \mathbf{N}, \exists \mathbf{y}_k \in B_{\frac{1}{k}}(\mathbf{y})$ such that $\mathbf{y}_k \notin C$. (\mathbf{y}_k) is thus a sequence of $\mathbf{R}^n \setminus C$ that converges to \mathbf{y} . Let \mathbf{c}_k be the sequence of corresponding normal vectors constructed according to the proof of Theorem 1, normalized so that $|\mathbf{c}_k| = 1$ and C is in the halfspace $\{\mathbf{x} \mid \mathbf{c}_k^T \mathbf{x} \geq \mathbf{c}_k^T \mathbf{y}_k\}$. Since (\mathbf{c}_k) is a bounded sequence in a compact space, there exists a subsequence \mathbf{c}_{k_j} that converges to a point \mathbf{c} . Let $z = \mathbf{c}^T \mathbf{y}$. For any $\mathbf{x} \in C$,

$$\mathbf{c}^T \mathbf{x} = \lim_{j \to \infty} \mathbf{c}_{k_j}^T \mathbf{x} \ge \lim_{j \to \infty} \mathbf{c}_{k_j}^T \mathbf{y}_{k_j} = \mathbf{c}^T \mathbf{y} = z,$$

thus $C \subset \overline{H^+_{\mathbf{c},z}}$

Bounded from below

Definition 5. A set $A \subset \mathbb{R}^n$ is said to be **bounded from below** if for all $1 \leq j \leq n$, $\inf \{ \mathbf{x}_j | A \ni \mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T \} > -\infty.$

- Any bounded set is bounded from below
- More importantly, $\mathbf{R}_{+}^{n} = {\mathbf{x} | \mathbf{x} \ge 0}$ is bounded from below.
- the LP set of solutions {x ∈ Rⁿ | Ax = b, x ≥ 0} is convex & bounded from below.

Supporting Hyperplane and Extreme Points

Theorem 3. Let C be a closed convex set which is bounded from below. Then every supporting hyperplane of C contains an extreme point of C.

 Proof strategy: Show that for a supporting hyperplane H, an extreme point of the convex subset H ∩ C is an extreme point of C. Find an extreme point of H ∩ C.

Supporting Hyperplane and Extreme Points: Proof

- *Proof.* Let $H_{\mathbf{c},z}$ be a supporting hyperplane at $\mathbf{y} \in C$. Let us write $A = H_{\mathbf{c},z} \cap C$ which is non-empty since it contains \mathbf{y} .
- an extreme point of A is an extreme point of C
 - suppose $\mathbf{x} \in A$, that is $\mathbf{c}^T \mathbf{x} = z$, is **not** an ext. point of C, i.e $\exists \mathbf{x}_1 \neq \mathbf{x}_2 \in C$ such that $\mathbf{x} = \frac{\mathbf{x}_1 + \mathbf{x}_2}{2}$.
 - If $\mathbf{x}_1 \notin A$ or $\mathbf{x}_2 \notin A$ then $\frac{1}{2}\mathbf{c}^T(\mathbf{x}_1 + \mathbf{x}_2) > z = \mathbf{c}^T \mathbf{x}$ hence $\mathbf{x}_1, \mathbf{x}_2 \in A$ and thus \mathbf{x} is **not** an ext. point of A.

Supporting Hyperplane and Extreme Points: Proof

- look now for an extreme point of A. We use mainly $A \subset H_{\mathbf{c},z} \cap \mathbf{R}^m_+$
 - \circ if A is a singleton, namely $A = \{y\}$, then y is obviously extreme.
 - if not, narrow down recursively:
 - ▷ A¹ = argmin{a₁ | a ∈ A}. Since A ⊂ C and C is bounded from below the closed set A¹ is well defined as the set of points which achieve this minimum.
 ▷ If A¹ is still not a singleton, we narrow further:

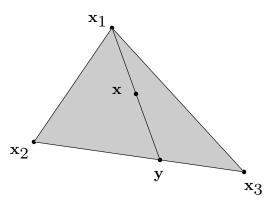
$$A^j = \operatorname{argmin}\{\mathbf{a}_j \mid \mathbf{a} \in A^{j-1}\}.$$

- ▷ Since $A \subset \mathbf{R}^n$, this process must stop after $k \leq n$ iterations (after n iterations the n variables of points in A^n are uniquely defined). We have $A^k \subseteq A^{k-1} \subseteq A^1 \subseteq A$ and write $A^k = \{\mathbf{a}^k\}$.
- Suppose $\exists \mathbf{x}^1 \neq \mathbf{x}^2 \in A$ such that $\mathbf{a}^k = \frac{\mathbf{x}^1 + \mathbf{x}^2}{2}$. In particular $\forall i \leq k, \mathbf{a}^k_i = \frac{\mathbf{x}^1 + \mathbf{x}^2}{2}$. • Since \mathbf{a}^k_1 is an infimum, $\mathbf{x}^1_i = \mathbf{x}^2_i = \mathbf{a}^k_1$ and $\mathbf{x}^1, \mathbf{x}^2 \in A^1$.
- By the same argument **applied recursively** we have that $\mathbf{x}^1, \mathbf{x}^2 \in A^j$ and finally A^k which by construction is $\{\mathbf{a}^k\}$, hence $\mathbf{x}_1 = \mathbf{x}_2 = \mathbf{a}^k$, a contradiction, and \mathbf{a}^k is our extreme point.

Convex Hulls & Carathéodory's Theorem

Convex combinations

Definition 6. Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ be a set of points. Let $\alpha_1, \dots, \alpha_k$ be a family of nonnegative weights such that $\sum_{i=1}^{k} \alpha_i = 1$. Then $\mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{x}_i$ is called a **convex combination** of the points $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$.



Let's illustrate this statement with a point x in a triangle (x_1, x_2, x_3) .

- Let y be the intersection of $(\mathbf{x}_1, \mathbf{x})$ with $[\mathbf{x}_2, \mathbf{x}_3]$. $\mathbf{y} = p\mathbf{x}_2 + q\mathbf{x}_3$ with $p = \frac{|\mathbf{x}_2 \mathbf{y}|}{|\mathbf{x}_3 \mathbf{x}_2|}$ and $q = \frac{|\mathbf{x}_3 \mathbf{y}|}{|\mathbf{x}_3 \mathbf{x}_2|}$.
- On the other hand, $\mathbf{x} = l\mathbf{x}_1 + k\mathbf{y}$ with $l = \frac{|\mathbf{x}_1 \mathbf{x}|}{|\mathbf{x}_1 \mathbf{y}|}$ and $k = \frac{|\mathbf{y} \mathbf{x}|}{|\mathbf{x}_1 \mathbf{y}|}$.
- Finally $\mathbf{x} = l\mathbf{x}_1 + pk\mathbf{x}_2 + qk\mathbf{x}_3$, and l + pk + qk = 1.

Convex hull

Definition 7. The convex hull $\langle A \rangle$ of a set A is the minimal convex set that contains A.

Lemma 2. (i) if $A \neq \emptyset$ then $\langle A \rangle \neq \emptyset$ (ii) if $A \subset B$ then $\langle A \rangle \subset \langle B \rangle$ (iii) $\langle A \rangle$ is the intersection of all convex sets that contain A. (iv) if A is convex then $\langle A \rangle = A$

Convex hull \Leftrightarrow all convex combinations

Theorem 4. The convex hull of a set of points $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ is the set of all convex combinations of $\mathbf{x}_1, \dots, \mathbf{x}_k$.

Proof. • Let
$$A = \{ \mathbf{x} \mid \mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{x}_i, \alpha_i \ge 0, \sum_{i=1}^{k} \alpha_i = 1 \}; B = \langle \{ \mathbf{x}_1, \cdots, \mathbf{x}_k \} \rangle$$

• It's easy to prove that A is convex: Let $\mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{x}_i$ and $\mathbf{y} = \sum_{i=1}^{k} \beta_i \mathbf{x}_i$ be two points of A. Then $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ can be written as

$$\sum_{i=1}^{k} \left(\lambda \alpha_i + (1-\lambda)\beta_i \right) \mathbf{x}_i \in A$$

 $\circ B \subseteq A : A$ is convex and contains each point \mathbf{x}_i since

$$\mathbf{x}_i = \sum_{j=1}^k \delta_{ij} \mathbf{x}_j.$$

Convex hull \Leftrightarrow all convex combinations

• $A \subseteq B$: by induction on k. if k = 1 then $B_1 = \langle \{\mathbf{x}_1\} \rangle$ and $A_1 = \{\mathbf{x}_1\}$. By Lemma 2 $A_1 \subseteq B_1$. Suppose that the claim holds for any family of k - 1points, i.e. $A_{k-1} \subseteq B_{k-1}$. Let now $\mathbf{x} \in A_k$ such that

$$\mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{x}_i$$

If $\mathbf{x} = \mathbf{x}_k$ then trivially $\mathbf{x} \in B_k$. If $\mathbf{x} \neq \mathbf{x}_k$ then $\alpha_k \neq 1$ and we have that

$$\frac{\sum_{i=1}^{k-1} \alpha_i}{1 - \alpha_k} = 1.$$

Consider $\mathbf{y} = \sum_{i=1}^{k-1} \frac{\alpha_i}{1-\alpha_k} \mathbf{x}_i$. $\mathbf{y} \in B_{k-1}$ by the induction hypothesis. Since $\{\mathbf{x}_1, \dots, \mathbf{x}_{k-1}\} \subset \{\mathbf{x}_1, \dots, \mathbf{x}_k\}, B_{k-1} \subseteq B_k$ by Lemma2. Since B_k is convex and both $\mathbf{y}, \mathbf{x}_k \in B_k$, so is $\mathbf{x} = (1 - \alpha_k)\mathbf{y} + \alpha_k\mathbf{x}_k$.

Polytope, Polyhedrons

Definition 8. The convex hull of a finite set of points in \mathbb{R}^n is called a **polytope**.

Let $\mathbf{r}_1, \dots, \mathbf{r}_m$ be vectors from \mathbf{R}^n and b_1, \dots, b_m be numbers. The set

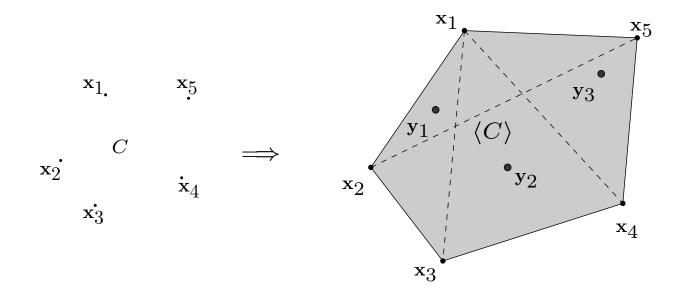
$$P = \left\{ \mathbf{x} \in \mathbf{R}^n \mid \mathbf{r}_i^T \mathbf{x} \le b_i , \ i = 1, \cdots, n \right\}$$

is called a **polyhedron**.

- A few comments:
 - o bounded polyhedron ⇔ polytope: TBP Weyl-Minkowski theorem.
 - \circ polytopes are generated by a finite set of points. $\overline{B_r(\mathbf{x})}$ is **not** a polytope.
 - \circ a polyhedron is exactly the set of **feasible solutions of an LP**.

Carathéodory's Theorem

• Start with the example of $C = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5} \subset \mathbf{R}^2$ and its hull $\langle C \rangle$.



- \mathbf{y}_1 can be written as a convex combination of $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ (or $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_5$);
- \circ \mathbf{y}_2 can be written as a convex combination of $\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_4$;
- \circ y₃ can be written as a convex combination of x₁, x₄, x₅;
- For a set C of 5 points in R² there seems to be always a way to write a point y ∈ ⟨C⟩ as the convex combination of 2 + 1 = 3 of such points.
- Is this result still valid for general hulls (S) (not necessarily polytopes but also balls etc..) and higher dimensions?

Carathéodory's Theorem

Theorem 5. Let $S \subset \mathbb{R}^n$. Then every point \mathbf{x} of $\langle S \rangle$ can be represented as a convex combination of n + 1 points from S,

$$\mathbf{x} = \alpha_1 \mathbf{x}_1 + \dots + \alpha_{n+1} \mathbf{x}_{n+1}, \sum_{i=1}^{n+1} \alpha_i = 1, \alpha_i \ge 0.$$

alternative formulation:

$$\langle S \rangle = \bigcup_{C \subset S, \operatorname{card}(C) = n+1} \langle C \rangle.$$

Proof strategy: show that when a point is written as a combination of m points and m > n + 1, it is possible to write it as a combination of m - 1 points by solving a homogeneous linear equation of n + 1 equations in R^m.

Proof.

- (\supset) is direct.
- (C) any $\mathbf{x} \in \langle S \rangle$ can be written as a convex combination of p points, $\mathbf{x} = \alpha_1 \mathbf{x}_1 + \cdots + \alpha_p \mathbf{x}_p$. We can assume $\alpha_i > 0$ for $i = 1, \cdots, p$.
 - If p < n + 1 then we add terms $0\mathbf{x}_{p+1} + 0\mathbf{x}_{p+2} + \cdots$ to get n + 1 terms. • If p > n + 1, we build a new combination with one term less:

$$\triangleright \text{ let } A = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_m \\ 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathbf{R}^{n+1 \times p}$$

- ▷ The key here is that since p > n + 1 there exists a solution $\eta \in \mathbf{R}^m \neq \mathbf{0}$ to $A\eta = \mathbf{0}$.
- ▷ By the last row of A, $\eta_1 + \eta_2 + \cdots + \eta_m = 0$, thus η has both + and coordinates.

$$\begin{array}{l} \triangleright \ \mbox{Let } \tau = \min\{\frac{\alpha_i}{\eta_i}, \eta_i > 0\} = \frac{\alpha_{i_0}}{\eta_{i_0}}. \\ \triangleright \ \mbox{Let } \tilde{\alpha}_i = \alpha_i - \tau \eta_i. \ \mbox{Hence } \tilde{\alpha}_i \geq 0 \ \mbox{and } \tilde{\alpha}_{i_0} = 0. \\ \hline \alpha_1 + \dots + \tilde{\alpha}_p = (\alpha_1 + \dots + \alpha_p) - \tau(\eta_1 + \dots + \eta_p) = 1, \\ \triangleright \ \ \tilde{\alpha}_1 \mathbf{x}_1 + \dots + \tilde{\alpha}_p \mathbf{x}_p = \alpha_1 \mathbf{x}_1 + \dots + \alpha_p \mathbf{x}_p - \tau(\eta_1 \mathbf{x}_1 + \dots + \eta_p \mathbf{x}_p) = \mathbf{x}. \\ \triangleright \ \ \mbox{Thus } \mathbf{x} = \sum_{i \neq i_0} \alpha_i \mathbf{x}_i \ \mbox{of } p - 1 \ \mbox{points } \{\mathbf{x}_i, i \neq i_0\}. \\ \triangleright \ \ \ \mbox{Iterate this procedure until } \mathbf{x} \ \mbox{is a convex combin. of } n+1 \ \mbox{points of } S. \end{array}$$

Next time

- Some notable points: basic feasible / extreme points / optima
- The simplex in theory