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Today

• A typology for linear programs.

• Linear equations reminders,

• Basic solutions, the kind of solutions we will be interested in,

• Hyperplanes, or how to visualize linear objectives/constraints.

• A few grams of topology to define halfspaces.
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Typology of Linear Programs
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Remember...

• the general form of linear programs:

max or min z = c1x1 + c2x2 + · · · + cnxn,

subject to



























a11x1 + a12x2 + · · · + a1nxn

{

<,>

=

≤,≥

}

b1,

... ...

am1x1 + am2x2 + · · · + amnxn

{

<,>

=

≤,≥

}

bm,

where x1, x2, · · · , xn≥ 0.

• This form is however too vague to be easily usable.

• First step: get rid of the strict inequalities: do not bring much and would only
add numerical noise.

• Second step: use matrix and vectorial notations to alleviate.
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Notations

Unless explicitly stated otherwise,

• A, B etc... are matrices whose size is clear from context.

• x,b, a are vectors. a1, ak are members of a vector family.

• x =
[ x1...

xn

]

with vector coordinates xi in R.

• x ≥ 0 is meant coordinate-wise, that is xi ≥ 0 for 1 ≥ i ≤ n

• x 6= 0 means that x is not the zero vector, i.e. there exists at least one index i

such that xi 6= 0.

• x
T is the transpose [ x1,··· ,xn ] of x.
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Linear Program

Common representation for all these programs?

• Would help in developing both theory & algorithms.

• Also helps when developing software, solvers, etc

The answer is yes. . .

• There are 2: standard form and canonical form
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Terminology

• A linear program in canonical form is the program

max or min c
T
x

subject to Ax ≤ b,

x ≥ 0.

b ≥ 0 ⇒ feasible canonical form (just a convention)

• A linear program in standard form is the program

max or min c
T
x (1)

subject to Ax = b, (2)

x ≥ 0. (3)
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Linear Programs: a look at the canonical form

Canonical form linear program

• Maximize the objective

• Only inequality constraints

• All variables should be positive

Example:
maximize 5x1 + 4x2 + 3x3

subject to 2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8

x1, x2, x3 ≥ 0.
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Linear Programs: canonical form

Although more intuitive than the standard form, the canonical is not the most
useful,

• We will formulate the simplex method on problems with equality constraints,
that is standard forms.

• Solvers do not all agree on this input format. MATLAB for example uses:

minimize
∑

i cixi

subject to
∑n

j=1 Aijxj ≤ bi, i = 1, . . . ,m1
∑n

j=1 Bijxj = di, i = 1, . . . ,m2

li ≤ xi ≤ ui, i = 1, . . . , n

• Ultimately: this is a non-issue, we can easily switch from one form to the
other. . .
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Linear Programs: standard & canonical form

equalities ⇒ inequalities

• What if the original problem has equality constraints?

• Replace equality constraints by two inequality constraints.

• The inequality
2x1 + 3x2 + x3 = 5,

is equivalent to

2x1 + 3x2 + x3 ≤ 5 and 2x1 + 3x2 + x3 ≥ 5

• The new problem is equivalent to the previous one. . .
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Linear Programs: standard & canonical form

inequalities ⇒ equalities

• The opposite direction works too. . .

• Turn inequality constraints into equality constraints by adding variables.

• The inequality
2x1 + 3x2 + x3 ≤ 5,

is equivalent to

2x1 + 3x2 + x3 + w1 = 5 and w1 ≥ 0,

• The new variable is called a slack variable (one for each inequality in the
program). . .

• The new problem is equivalent to the previous one. . .
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Linear Programs: standard & canonical form

free variable ⇒ positive variables

• What about free variables?

• A free variable is simply the difference of its positive and negative parts. Again
the solution is again adding variables.

• If the variable y is free, we can write it

y1 = y2 − y3 and y2, y3 ≥ 0,

• We add two positive variables for each free variable in the program.

• Again, the new problem is equivalent to the previous one.
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Linear Programs: standard & canonical form

minimizing ⇒ maximizing

• What happens when the objective is to minimize? We can use the fact that

min
x

f(x) = −max
x

−f(x)

• In a linear program this means

minimize 6x1 − 3x2 + 5x3

becomes:
− maximize −6x1 + 3x2 − 5x3

That’s all we need to convert all linear programs in standard form. . .

ORF-522 13



Linear Programs: standard & canonical form

Example. . .

minimize 2x1 − 4x2 + x3

subject to 2x1 + 7x2 + x3 = 5
4x1 + x2 + 9x3 ≤ 11
3x1 + 4x2 + 2x3 = 8

x1, x2 ≥ 0.

This program has one free variable (x3) and one inequality constraint. It’s a
minimization problem. . .
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Linear Programs: standard & canonical form

We first turn it into a maximization. . .

− maximize −2x1 + 4x2 − x3

subject to 2x1 + 7x2 + x3 = 5
4x1 + x2 + 9x3 ≤ 11
3x1 + 4x2 + 2x3 = 8

x1, x2 ≥ 0.

Just switch the signs in the objective. . .
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Linear Programs: standard & canonical form

We then turn the inequality into an equality constraint by adding a slack
variable. . .

− maximize −2x1 + 4x2 − x3

subject to 2x1 + 7x2 + x3 = 5
4x1 + x2 + 9x3 + w1 = 11
3x1 + 4x2 + 2x3 = 8

x1, x2 ≥ 0.

Now, we only need to get rid of the free variable. . .
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Linear Programs: standard & canonical form

We replace the free variable by a difference of two positive ones:

− maximize −2x1 + 4x2 − (x4 − x5)
subject to 2x1 + 7x2 + x4 − x5 = 5

4x1 + x2 + 9x4 − 9x5 + w1 = 11
3x1 + 4x2 + 2x4 − 2x5 = 8

x1, x2, x4, x5 ≥ 0.

• That’s it, we’ve reached a standard form.

• The simplex algorithm is easier to write with this form.
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To sum up...

• A linear program in standard form is the program

minimize c
T
x

subject to Ax = b,

x ≥ 0.

(4)

where

◦ c, x ∈ Rn – the objective,
◦ A ∈ Rm×n and b ∈ Rm – the equality constraints,
◦ x ≥ 0 means that for x = (x1, . . . , xn), xi ≥ 0 for 1 ≤ i ≤ n.

• From now on we focus on

◦ linear constraints Ax = b,
◦ objective function c

T
x,

separately.

• x ≥ 0 will reappear when we study convexity.
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Linear Equations
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Linear Equations

The usual linear equations we know, m = n

• In the usual linear algebra setting, A is square of size n and invertible.

• Straightforward: {x ∈ Rn|Ax = b} is a singleton, {A−1
b}.

• Focus: find efficiently that unique solution. Many methods (Gaussian pivot
etc.)

In classic statistics, most often m ≫ n

• A few explicative variables, a lot of observations.

• Generally {x ∈ Rn|Ax = b} = ∅ so we need to tweak the problem

• Least-squares regression: select x0 | x0 = argmin |Ax− b|2

• More advanced, penalized LS regression: x0 = argmin(|Ax − b|2 + λ‖x‖)
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Linear Equations

On the other hand, in an LP setting where usually m < n

• {x ∈ Rn|Ax = b} is a wider set of candidates, a convex set.

• In LP, a linear criterion is used to choose one of them.

• In other fields, such as compressed sensing, other criterions are used.

• Today we start studying some simple properties of the set {x ∈ Rn|Ax = b}.
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Linear Equations

• Linear Equation: Ax = b, m equations.

a11x1 + a12x2 + · · · + a1nxn = b1,
... ...

am1x1 + am2x2 + · · · + amnxn = bm.

• Writing A = [a1, · · · , an] we have n columns ∈ Rm.

• Add now b: Ab = [A, b] ∈ Rm×n+1.

• remember: a solution to Ax = b is a vector x such that

n
∑

i=1

xiai = b,

that is the b and a’s should be linearly dependent (l.d.) for everything to
work.
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Linear Equations

Two cases (note that Rank(A) cannot be > Rank(Ab))

• (i) Rank(A) < Rank(Ab); b and a’s are linearly independent (l.i.). no

solution.

• (ii) Rank(A) = Rank(Ab) = k; every column of Ab, b in particular, can be
expressed as a linear combination of k other columns of the matrix
ai1, · · · , aik. Namely, ∃x such that

k
∑

j=1

xijaij = b.

In practice

• if m = n = k, then there is a unique solution: x = A−1
b;

• Usually Rank(A) = k ≤ m < n and we have a plenty of solutions;

• We assume from now on that Rank(A) = Rank(Ab) = m.
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Linear Equation Solutions

• if x1 and x2 are two different solutions, then ∀λ ∈ R, λx1 + (1 − λ)x2 is a
solution.

• Rank(A) = m. There are m independent columns. Suppose we reorder them
so that a1, · · · , am are linearly independent.

• Then

A =









a11 a12 · · · a1m

a21 a22 · · · a2m
... ... ...

am1 am2 · · · amm

∣

∣

∣

a1m+1 a1m+2 · · · a1n

a2m+1 a2m+2 · · · a2n
... ... ...

amm+1 amm+2 · · · amn









= [B,R]

• B is m × m square, R is m × (n − m) rectangular.
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Linear Equation Solutions

• suppose we divide x =

[

xB

xβ

]

where xB ∈ Rm and xβ ∈ Rm−n

• If Ax = b then BxB + Rxβ = b. Since B is non-singular, we have

xB = B−1(b− Rxβ),

which shows that we can assign arbitrary values to xβ and obtain different
points x such that Ax = b.

• Solutions are parameterized by xβ... a bit problematic since R is the
“discarded” part.

• We choose xβ = 0 and focus on the choice of B.
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Basic Solutions

ORF-522 26



Basic Solutions

Definition 1. Consider Ax = b and suppose Rank(A) = m < n. Let

I = (i1, · · · , im) be a list of indexes corresponding to m linearly

independent columns taken among the n columns of A.

• We call the m variables xi1,xi2, · · · ,xim of x its basic variables,

• the other variables are called non-basic.

If x is a vector such that Ax = b and all its non-basic variables are equal

to 0 then x is a basic solution.
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Basic Solutions

• When reordering variables as in the previous slide, and defining
B = [ai1, · · · , aim] we can set xβ = 0. Then xB = B−1

b and

x =

[

xB

0

]

,

and we have a basic solution.

• Sidenote: a basic feasible solution to an LP Equation (4) is such that x is
basic and x ≥ 0.
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Basic Solutions

• More generally, let
BI = [ai1, · · · , aim],

RO = [ao1, · · · , aom−n
],

where O = {1, · · · , n} \ I = (o1, · · · , om−n) is the complementary of I in
{1, · · · , n} in increasing order.

• I contains the indexes of vectors in the basis, O contains the indexes of vectors
outside the basis.

• Equivalently set xI =

[

xi1...
xim

]

,xO =

[

xo1...
xon−m

]

.

• Ax = BIxI + ROxO
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Basic Solutions

The two things to remember so far:

• A list I of m independent columns ↔ One basic solution x, with

xI = B−1
I

b and xO = 0

• We are not interested in all basic solutions, only a subset: basic feasible

solutions.
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Basic Solutions: Degeneracy

Definition 2. A basic solution to Ax = b is degenerate if one or more of

the m basic variables is equal to zero.

• For a basic solution, xO is always 0. On the other hand, we do not expect
elements of xI to be zero.

• This is degeneracy which appears whenever there is one or more components
of xI which are zero.
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Basic Solutions: Example

• Consider Ax = b where

A =

[

1 2 1 0 3
0 1 2 1 3

]

,b =

[

1
1

]

.

We start by choosing I:

• I = (1, 2). BI = [a1, a2] = [ 1 2
0 1 ] → xI = [−1

1 ] ;x =

[

−1
1
0
0
0

]

is basic.

• I = (1, 4). BI = [a1, a4] = [ 1 0
0 1 ] → xI = [ 1

1 ] ;x =

[

1
0
0
1
0

]

is basic.

• I = (2, 5). BI = [a2, a5] = [ 1 3
0 3 ] → xI =

[

0
1
3

]

;x =







0
0
0
0
0
1
3






is degenerate basic

note that a5 and b are colinear...
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Non-degeneracy

Theorem 1. A necessary and sufficient condition for the existence and

non-degeneracy of all basic solutions of Ax = b is the linear independence

of every set of m columns of Ab, the augmented matrix.

Proof. • Proof strategy: ⇒ the existence of all possible basic solutions is
already a good sign: all families of m columns of A are l.i. What we need is
show that m − 1 columns of A plus b are also l.i.

• ⇐ if all m columns choices are independent, basic solutions exist, and are
non-degenerate because b is l.i. with any combination of m − 1 columns.
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Non-degeneracy

Proof. • ⇒: Let I = (i1, · · · , im) a family of indexes.

◦ The basic solution associated with I exists and is non-degenerate. b 6= 0
◦ Hence by definition {ai1, · · · ,aim} is l.i. and b =

∑m

k=1 xkaik.
◦ For a given r, suppose {ai1, · · · , air−1, air+1, · · · ,aim,b} is l.d.
◦ Then ∃(α1, · · · , αr−1, αr+1, αm) and β such that

βb +
m

∑

k=1,k 6=r

αkaik = 0.

Note that necessarily β 6= 0 (otherwise {ai1, · · · , air−1, air+1, · · · , aim} is l.d)
◦ Contradiction: degenerate solution for I, (−α1

β
, · · · ,−

αr−1
β

, 0,−
αr+1

β
,−αm

β
)

• ⇐: Let I = (i1, · · · , im) a family of indexes.

◦ A basic solution exists,
∑m

k=1 xkaik = b

◦ Suppose it is degenerate, i.e. xr = 0. Then
∑m

k=1,k 6=r xkaik − b = 0

◦ Contradiction: {ai1, · · · ,air−1,air+1, · · · ,aim,b}, of size m, is l.d.
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Non-degeneracy

Corollary 1. Given a basic solution to Ax = b with basic variables xi1, · · · , xim,

a necessary and sufficient condition for the solution to be non-degenerate is

the l.i. of b with every subset of m − 1 columns of {ai1, · · · , aim}

• In our previous example,

A =

[

1 2 1 0 3
0 1 2 1 3

]

,b =

[

1
1

]

, m = 2.

• Hence if I = (2, 5), [b,a2] and [b, a5] should be of rank 2 for the solution not
to be degenerate. Yet [b, a5] = [ 1 3

1 3 ] is clearly of rank 1.
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Hyperplanes
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Hyperplane

Definition 3. A hyperplane in Rm is defined by a vector c 6= 0 ∈ Rm and a

scalar z ∈ R as the set {x ∈ Rm|cT
x = z}.

z = 0,

• A hyperplane Hc,z contains 0 iff z = 0.

• In that case Hc,0 is a vector subspace and dim(Hc,0) = n − 1

z 6= 0,

• For x1,x2 easy to check that c
T (x1 − x2) = 0. In other words c is orthogonal

to vectors lying in the hyperplane.

• c is called the normal of the hyperplane
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Affine Subspace

Definition 4. Let V be a vector space and let L be a vector subspace of V .

Then given x ∈ V , the translation T = L + x = {u + x,u ∈ L} is called an

affine subspace of V .

• the dimension of T is the dimension of L.

• T is parallel to L.
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Affine Hyperplane

• For c 6= 0, Hc,0 is a Vector subspace of Rm of dimension n − 1.

• When z 6= 0, Hc,z is an affine hyperplane: it’s easy to see that
Hc,z = Hc,0 + z

‖c‖2c

c

Hc,0

Hc,z

z
‖c‖2

c

0
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Some grams of Topology and Halfspaces
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A bit of topology: open and closed balls

• The n dimensional open ball centered at x0 with radius r is defined as

Br(x0) = {x ∈ Rns.t.|x− x0| < r},

• its closure
Br(x0) = {x ∈ Rns.t.|x− x0| ≤ r},

x1

x2r1

r2

Br1(x1)

Br2(x2)
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A bit of topology: boundary

• Let S ⊂ Rn. A point x is a boundary point of S if every open ball centered
at x contains both a point in S and a point in Rn \ S.

• A boundary point can either be in S or not in S.

x1
C

x2

x3

• x1 is a boundary point, x2 and x3 are not.
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A bit of topology: open and closed sets

• The set of all boundary points of S is the boundary ∂S of S.

• A set is closed if ∂S ⊂ S. A set is open if Rn \ S is closed.

• Note that there are sets that are neither open nor close.

• The closure S of a set S is S ∪ ∂S

• The interior So of a set S is S \ ∂S

• A set S is closed iff S = S and open iff S = So.
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Halfspaces

• For a hyperplane H, its complement in Rn is the union of two sets called open

halfspaces;
Rn \ H = H+ ∪ H−

where
H+ = {x ∈ Rm|cT

x > z}
H− = {x ∈ Rm|cT

x < z}

• H+ = H+ ∪ H and H− = H− ∪ H are closed halfspaces.

H−H−H

c
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Coming Next

• some basic convexity,

• important interplay between convex sets and hyperplanes,

• starting with some nice results, Caratheodory theorem,

• laying out theoretical fundations to attack the simplex.
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