ORF 522

Linear Programming and Convex Analysis

Canonical & Standard Programs, Linear Equations in an LP Context

Marco Cuturi

Today

- A typology for linear programs.
- Linear equations reminders,
- Basic solutions, the kind of solutions we will be interested in,
- Hyperplanes, or how to visualize linear objectives/constraints.
- A few grams of topology to define halfspaces.

Typology of Linear Programs

Remember...

• the general form of linear programs:

- This form is however too vague to be easily usable.
- First step: get rid of the strict inequalities: do not bring much and would only add numerical noise.
- Second step: use matrix and vectorial notations to alleviate.

Notations

Unless explicitly stated otherwise,

- A, B etc... are matrices whose size is clear from context.
- $\mathbf{x}, \mathbf{b}, \mathbf{a}$ are vectors. $\mathbf{a}_1, \mathbf{a}_k$ are members of a vector family.

•
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 with vector coordinates x_i in **R**.

- $\mathbf{x} \ge 0$ is meant coordinate-wise, that is $x_i \ge 0$ for $1 \ge i \le n$
- x ≠ 0 means that x is not the zero vector, i.e. there exists at least one index i such that x_i ≠ 0.
- \mathbf{x}^T is the transpose $[x_1, \cdots, x_n]$ of \mathbf{x} .

Linear Program

Common representation for all these programs?

- Would help in developing both theory & algorithms.
- Also helps when developing software, solvers, etc

The answer is yes. . .

• There are 2: **standard form** and **canonical form**

Terminology

• A linear program in **canonical** form is the program

$$\begin{array}{ll} \mathsf{max} \ \mathsf{or} \ \mathsf{min} & \mathbf{c}^T \mathbf{x} \\ \mathsf{subject} \ \mathsf{to} & \mathbf{A} \mathbf{x} \leq \mathbf{b}, \\ \mathbf{x} \geq \mathbf{0}. \end{array}$$

 $\mathbf{b} \ge 0 \Rightarrow$ feasible canonical form (just a convention)

• A linear program in **standard** form is the program

$$\begin{array}{ll} \max \mbox{ or min } & \mathbf{c}^T \mathbf{x} & (1) \\ \mbox{ subject to } & \mathbf{A} \mathbf{x} = \mathbf{b}, & (2) \\ & \mathbf{x} \geq \mathbf{0}. & (3) \end{array}$$

Linear Programs: a look at the canonical form

Canonical form linear program

- Maximize the objective
- Only **inequality** constraints
- All variables should be **positive**

Example:

Linear Programs: canonical form

Although more intuitive than the standard form, the canonical is not the most useful,

- We will formulate the simplex method on problems with **equality constraints**, that is **standard forms**.
- Solvers do not all agree on this input format. MATLAB for example uses:

minimize
$$\sum_{i} c_{i} x_{i}$$

subject to $\sum_{j=1}^{n} A_{ij} x_{j} \leq b_{i}, \quad i = 1, \dots, m_{1}$
 $\sum_{j=1}^{n} B_{ij} x_{j} = d_{i}, \quad i = 1, \dots, m_{2}$
 $l_{i} \leq x_{i} \leq u_{i}, \quad i = 1, \dots, n$

• Ultimately: this is a **non-issue**, we can easily switch from one form to the other. . .

equalities \Rightarrow inequalities

- What if the original problem has equality constraints?
- Replace equality constraints by two inequality constraints.
- The inequality

$$2x_1 + 3x_2 + x_3 = 5,$$

is equivalent to

$$2x_1 + 3x_2 + x_3 \le 5$$
 and $2x_1 + 3x_2 + x_3 \ge 5$

• The new problem is **equivalent** to the previous one. . .

inequalities \Rightarrow equalities

- The opposite direction works too. . .
- Turn inequality constraints into equality constraints by adding variables.
- The inequality

$$2x_1 + 3x_2 + x_3 \le 5,$$

is equivalent to

$$2x_1 + 3x_2 + x_3 + w_1 = 5$$
 and $w_1 \ge 0$,

- The new variable is called a **slack** variable (one for each inequality in the program). . .
- The new problem is **equivalent** to the previous one. . .

free variable \Rightarrow positive variables

- What about free variables?
- A free variable is simply the difference of its positive and negative parts. Again the solution is again **adding variables**.
- If the variable y is free, we can write it

 $y_1 = y_2 - y_3$ and $y_2, y_3 \ge 0$,

- We add two positive variables for each free variable in the program.
- Again, the new problem is **equivalent** to the previous one.

minimizing \Rightarrow maximizing

• What happens when the objective is to minimize? We can use the fact that

$$\min_{x} f(x) = -\max_{x} - f(x)$$

• In a linear program this means

minimize
$$6x_1 - 3x_2 + 5x_3$$

becomes:

$$-$$
 maximize $-6x_1 + 3x_2 - 5x_3$

That's all we need to convert all linear programs in standard form. . .

Example. . .

minimize	$2x_1$	—	$4x_2$	+	x_3		
subject to	$2x_1$	+	$7x_2$	+	x_3	=	5
	$4x_1$	+	x_2	+	$9x_3$	\leq	11
	$3x_1$	+	$4x_2$	+	$2x_3$	—	8
				x_1	$_{1}, x_{2}$	\geq	0.

This program has one free variable (x_3) and one inequality constraint. It's a minimization problem. . .

We first turn it into a maximization. . .

Just switch the signs in the objective. . .

We then turn the inequality into an **equality** constraint by adding a slack variable. . .

Now, we only need to get rid of the free variable. . .

We replace the free variable by a difference of two **positive** ones:

• That's it, we've reached a standard form.

• The simplex algorithm is easier to write with this form.

To sum up...

• A linear program in **standard** form is the program

$$\begin{array}{ll} \text{minimize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & \mathbf{A} \mathbf{x} = \mathbf{b}, \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$$

where

- From now on we focus on
 - \circ linear constraints $A\mathbf{x} = \mathbf{b}$,
 - \circ objective function $\mathbf{c}^T \mathbf{x}$,

separately.

• $x \ge 0$ will reappear when we study convexity.

(4)

The usual linear equations we know, m = n

- In the usual linear algebra setting, A is square of size n and invertible.
- Straightforward: $\{\mathbf{x} \in \mathbf{R}^n | A\mathbf{x} = \mathbf{b}\}$ is a singleton, $\{A^{-1}\mathbf{b}\}$.
- Focus: find **efficiently** that **unique** solution. Many methods (Gaussian pivot etc.)

In classic statistics, most often $m \gg n$

- A few explicative variables, a lot of observations.
- Generally $\{\mathbf{x} \in \mathbf{R}^n | A\mathbf{x} = \mathbf{b}\} = \emptyset$ so we need to tweak the problem
- Least-squares regression: select $\mathbf{x}_0 \mid \mathbf{x}_0 = \operatorname{argmin} |A\mathbf{x} \mathbf{b}|^2$
- More advanced, penalized LS regression: $\mathbf{x}_0 = \operatorname{argmin}(|A\mathbf{x} \mathbf{b}|^2 + \lambda ||\mathbf{x}||)$

On the other hand, in an LP setting where usually m < n

- $\{\mathbf{x} \in \mathbf{R}^n | A\mathbf{x} = \mathbf{b}\}\$ is a wider set of candidates, a convex set.
- In LP, a linear criterion is used to choose one of them.
- In other fields, such as **compressed sensing**, other criterions are used.
- Today we start studying some simple properties of the set $\{\mathbf{x} \in \mathbf{R}^n | A\mathbf{x} = \mathbf{b}\}$.

• Linear Equation: $A\mathbf{x} = \mathbf{b}$, m equations.

• Writing $A = [\mathbf{a}_1, \cdots, \mathbf{a}_n]$ we have n columns $\in \mathbf{R}^m$.

• Add now b:
$$A_b = [A, b] \in \mathbf{R}_{m \times n+1}$$
.

• remember: a solution to $A\mathbf{x} = \mathbf{b}$ is a vector \mathbf{x} such that

$$\sum_{i=1}^{n} x_i \mathbf{a}_i = \mathbf{b},$$

that is the **b** and **a**'s should be **linearly dependent** (I.d.) for everything to work.

Two cases (note that $\operatorname{Rank}(A)$ cannot be > $\operatorname{Rank}(A_b)$)

- (i) Rank(A) < Rank(A_b); b and a's are linearly independent (I.i.). no solution.
- (ii) Rank(A) = Rank(A_b) = k; every column of A_b, b in particular, can be expressed as a linear combination of k other columns of the matrix a_{i1}, ..., a_{ik}. Namely, ∃x such that

$$\sum_{j=1}^k x_{i_j} \mathbf{a}_{i_j} = \mathbf{b}.$$

In practice

- if m = n = k, then there is a unique solution: $\mathbf{x} = A^{-1}\mathbf{b}$;
- Usually $\operatorname{\mathbf{Rank}}(A) = k \le m < n$ and we have a plenty of solutions;
- We assume from now on that $\operatorname{\mathbf{Rank}}(A) = \operatorname{\mathbf{Rank}}(A_b) = m$.

Linear Equation Solutions

- if \mathbf{x}_1 and \mathbf{x}_2 are two different solutions, then $\forall \lambda \in \mathbf{R}, \lambda \mathbf{x}_1 + (1 \lambda) \mathbf{x}_2$ is a solution.
- **Rank**(A) = m. There are m independent columns. Suppose we reorder them so that $\mathbf{a}_1, \dots, \mathbf{a}_m$ are linearly independent.
- Then

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} & a_{1m+1} & a_{1m+2} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2m} & a_{2m+1} & a_{2m+2} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} & a_{mm+1} & a_{mm+2} & \cdots & a_{mn} \end{bmatrix} = [B, R]$$

• B is $m \times m$ square, R is $m \times (n - m)$ rectangular.

Linear Equation Solutions

• suppose we divide $\mathbf{x} = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_\beta \end{bmatrix}$ where $\mathbf{x}_B \in \mathbf{R}^m$ and $\mathbf{x}_\beta \in \mathbf{R}^{m-n}$

• If $A\mathbf{x} = \mathbf{b}$ then $B\mathbf{x}_B + R\mathbf{x}_\beta = \mathbf{b}$. Since B is non-singular, we have

$$\mathbf{x}_B = B^{-1}(\mathbf{b} - R\mathbf{x}_\beta),$$

which shows that we can assign **arbitrary** values to \mathbf{x}_{β} and obtain different points \mathbf{x} such that $A\mathbf{x} = \mathbf{b}$.

- Solutions are parameterized by \mathbf{x}_{β} ... a bit problematic since R is the "discarded" part.
- We choose $\mathbf{x}_{\beta} = \mathbf{0}$ and focus on the choice of B.

Definition 1. Consider $A\mathbf{x} = \mathbf{b}$ and suppose $\mathbf{Rank}(A) = m < n$. Let $\mathbf{I} = (i_1, \dots, i_m)$ be a list of indexes corresponding to m **linearly** independent columns taken among the n columns of A.

- We call the *m* variables $\mathbf{x}_{i_1}, \mathbf{x}_{i_2}, \cdots, \mathbf{x}_{i_m}$ of \mathbf{x} its **basic variables**,
- the other variables are called **non-basic**.

If \mathbf{x} is a vector such that $A\mathbf{x} = \mathbf{b}$ and all its non-basic variables are equal to 0 then \mathbf{x} is a basic solution.

• When reordering variables as in the previous slide, and defining $B = [\mathbf{a}_{i_1}, \cdots, \mathbf{a}_{i_m}]$ we can set $\mathbf{x}_{\beta} = \mathbf{0}$. Then $\mathbf{x}_B = B^{-1}\mathbf{b}$ and

$$\mathbf{x} = \left[egin{array}{c} \mathbf{x}_B \ \mathbf{0} \end{array}
ight],$$

and we have a **basic solution**.

Sidenote: a basic feasible solution to an LP Equation (4) is such that x is basic and x ≥ 0.

• More generally, let

$$B_{\mathbf{I}} = [\mathbf{a}_{i_1}, \cdots, \mathbf{a}_{i_m}],$$
$$R_{\mathbf{O}} = [\mathbf{a}_{o_1}, \cdots, \mathbf{a}_{o_{m-n}}],$$

where $\mathbf{O} = \{1, \dots, n\} \setminus \mathbf{I} = (o_1, \dots, o_{m-n})$ is the complementary of \mathbf{I} in $\{1, \dots, n\}$ in increasing order.

- I contains the indexes of vectors **in** the basis, **O** contains the indexes of vectors **outside** the basis.
- Equivalently set $\mathbf{x}_{\mathbf{I}} = \begin{bmatrix} x_{i_1} \\ \vdots \\ x_{i_m} \end{bmatrix}, \mathbf{x}_{\mathbf{O}} = \begin{bmatrix} x_{o_1} \\ \vdots \\ x_{o_{n-m}} \end{bmatrix}.$
- $A\mathbf{x} = B_{\mathbf{I}}\mathbf{x}_{\mathbf{I}} + R_{\mathbf{O}}\mathbf{x}_{\mathbf{O}}$

The two things to remember so far:

- A list I of *m* independent columns \leftrightarrow One basic solution x, with $x_I = B_I^{-1}b$ and $x_O = 0$
- We are **not** interested in **all** basic solutions, only a subset: **basic feasible solutions**.

Basic Solutions: Degeneracy

Definition 2. A basic solution to $A\mathbf{x} = \mathbf{b}$ is degenerate if one or more of the m basic variables is equal to zero.

- For a **basic solution**, x_0 is always 0. On the other hand, we do not expect elements of x_I to be zero.
- This is **degeneracy** which appears whenever there is one or more components of x_I which are zero.

Basic Solutions: Example

• Consider $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 & 3 \\ 0 & 1 & 2 & 1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

We start by choosing I:

•
$$\mathbf{I} = (1, 2).$$
 $B_{\mathbf{I}} = [\mathbf{a}_1, \mathbf{a}_2] = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \rightarrow \mathbf{x}_{\mathbf{I}} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}; \mathbf{x} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ is basic.
• $\mathbf{I} = (1, 4).$ $B_{\mathbf{I}} = [\mathbf{a}_1, \mathbf{a}_4] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \mathbf{x}_{\mathbf{I}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}; \mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ is basic.
• $\mathbf{I} = (2, 5).$ $B_{\mathbf{I}} = [\mathbf{a}_2, \mathbf{a}_5] = \begin{bmatrix} 1 & 3 \\ 0 & 3 \end{bmatrix} \rightarrow \mathbf{x}_{\mathbf{I}} = \begin{bmatrix} 0 \\ \frac{1}{3} \end{bmatrix}; \mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{3} \end{bmatrix}$ is degenerate basic

note that \mathbf{a}_5 and \mathbf{b} are colinear...

Non-degeneracy

Theorem 1. A necessary and sufficient condition for the existence and non-degeneracy of all basic solutions of $A\mathbf{x} = \mathbf{b}$ is the linear independence of every set of m columns of A_b , the augmented matrix.

- *Proof.* **Proof strategy**: \Rightarrow the existence of all possible basic solutions is already a good sign: all families of m columns of A are I.i. What we need is show that m 1 columns of A plus b are also I.i.
- \leftarrow if all m columns choices are independent, basic solutions exist, and are non-degenerate because **b** is l.i. with any combination of m 1 columns.

Non-degeneracy

Proof. • \Rightarrow : Let $I = (i_1, \cdots, i_m)$ a family of indexes.

- $\circ~$ The basic solution associated with I exists and is non-degenerate. $\mathbf{b} \neq \mathbf{0}$
- Hence by definition $\{\mathbf{a}_{i_1}, \cdots, \mathbf{a}_{i_m}\}$ is I.i. and $\mathbf{b} = \sum_{k=1}^m x_k \mathbf{a}_{i_k}$.
- For a given r, suppose $\{\mathbf{a}_{i_1}, \cdots, \mathbf{a}_{i_{r-1}}, \mathbf{a}_{i_{r+1}}, \cdots, \mathbf{a}_{i_m}, \mathbf{b}\}$ is I.d. • Then $\exists (\alpha_1, \cdots, \alpha_{r-1}, \alpha_{r+1}, \alpha_{r+1})$ and β such that
- Then $\exists (\alpha_1, \cdots, \alpha_{r-1}, \alpha_{r+1}, \alpha_m)$ and β such that

$$\beta \mathbf{b} + \sum_{k=1, k \neq r}^{m} \alpha_k \mathbf{a}_{i_k} = \mathbf{0}.$$

Note that necessarily $\beta \neq 0$ (otherwise $\{\mathbf{a}_{i_1}, \cdots, \mathbf{a}_{i_{r-1}}, \mathbf{a}_{i_{r+1}}, \cdots, \mathbf{a}_{i_m}\}$ is I.d) \circ Contradiction: degenerate solution for I, $\left(-\frac{\alpha_1}{\beta}, \cdots, -\frac{\alpha_{r-1}}{\beta}, 0, -\frac{\alpha_{r+1}}{\beta}, -\frac{\alpha_m}{\beta}\right)$

- \Leftarrow : Let $I = (i_1, \cdots, i_m)$ a family of indexes.
 - A basic solution exists, ∑_{k=1}^m x_k a_{i_k} = b
 Suppose it is degenerate, i.e. x_r = 0. Then ∑_{k=1,k≠r}^m x_k a_{i_k} b = 0
 Contradiction: {a_{i1}, · · · , a<sub>i_{r-1}, a<sub>i_{r+1}, · · · , a_{i_m}, b}, of size m, is l.d.
 </sub></sub>

Non-degeneracy

Corollary 1. Given a basic solution to $A\mathbf{x} = \mathbf{b}$ with basic variables x_{i_1}, \dots, x_{i_m} , a necessary and sufficient condition for the solution to be non-degenerate is the l.i. of \mathbf{b} with every subset of m - 1 columns of $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_m}\}$

• In our previous example,

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 & 3 \\ 0 & 1 & 2 & 1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ m = 2.$$

• Hence if I = (2, 5), $[b, a_2]$ and $[b, a_5]$ should be of rank 2 for the solution not to be degenerate. Yet $[b, a_5] = \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}$ is clearly of rank 1.

Hyperplanes

Hyperplane

Definition 3. A hyperplane in \mathbb{R}^m is defined by a vector $\mathbf{c} \neq \mathbf{0} \in \mathbb{R}^m$ and a scalar $z \in \mathbb{R}$ as the set $\{\mathbf{x} \in \mathbb{R}^m | \mathbf{c}^T \mathbf{x} = z\}$.

z = 0,

- A hyperplane $H_{\mathbf{c},z}$ contains 0 iff z = 0.
- In that case $H_{\mathbf{c},0}$ is a vector subspace and $\dim(H_{\mathbf{c},0}) = n-1$

 $z \neq 0$,

- For $\mathbf{x}_1, \mathbf{x}_2$ easy to check that $\mathbf{c}^T(\mathbf{x}_1 \mathbf{x}_2) = 0$. In other words \mathbf{c} is orthogonal to vectors lying in the hyperplane.
- c is called the **normal** of the hyperplane

Affine Subspace

Definition 4. Let V be a vector space and let L be a vector subspace of V. Then given $\mathbf{x} \in V$, the translation $T = L + \mathbf{x} = {\mathbf{u} + \mathbf{x}, \mathbf{u} \in L}$ is called an affine subspace of V.

- the **dimension** of T is the dimension of L.
- T is parallel to L.

Affine Hyperplane

- For $\mathbf{c} \neq \mathbf{0}$, $H_{\mathbf{c},0}$ is a Vector subspace of \mathbf{R}^m of dimension n-1.
- When $z \neq 0$, $H_{c,z}$ is an affine hyperplane: it's easy to see that $H_{c,z} = H_{c,0} + \frac{z}{\|\mathbf{c}\|^2} \mathbf{c}$

Some grams of Topology and Halfspaces

A bit of topology: open and closed balls

• The *n* dimensional open ball centered at \mathbf{x}_0 with radius *r* is defined as

$$B_r(\mathbf{x}_0) = \{ x \in \mathbf{R}^n \text{s.t.} |\mathbf{x} - \mathbf{x}_0| < r \},\$$

• its closure

$$\overline{B_r(\mathbf{x}_0)} = \{ x \in \mathbf{R}^n \text{s.t.} |\mathbf{x} - \mathbf{x}_0| \le r \},\$$

A bit of topology: boundary

- Let S ⊂ Rⁿ. A point x is a boundary point of S if every open ball centered at x contains both a point in S and a point in Rⁿ \ S.
- A boundary point can either be in S or not in S.

• x_1 is a boundary point, x_2 and x_3 are not.

A bit of topology: open and closed sets

- The set of all boundary points of S is the **boundary** ∂S of S.
- A set is closed if $\partial S \subset S$. A set is *open* if $\mathbb{R}^n \setminus S$ is closed.
- Note that there are sets that are **neither** open nor close.
- The closure \overline{S} of a set S is $S\cup\partial S$
- The interior S^o of a set S is $S\setminus\partial S$
- A set S is closed iff $S = \overline{S}$ and open iff $S = S^{o}$.

Halfspaces

 For a hyperplane H, its complement in Rⁿ is the union of two sets called open halfspaces;

$$\mathbf{R}^n \setminus H = H_+ \cup H_-$$

where

$$H_{+} = \{ \mathbf{x} \in \mathbf{R}^{m} | \mathbf{c}^{T} \mathbf{x} > z \}$$
$$H_{-} = \{ \mathbf{x} \in \mathbf{R}^{m} | \mathbf{c}^{T} \mathbf{x} < z \}$$

• $\overline{H_+} = H_+ \cup H$ and $\overline{H_-} = H_- \cup H$ are **closed** halfspaces.

Coming Next

- some basic convexity,
- important interplay between convex sets and hyperplanes,
- starting with some nice results, Caratheodory theorem,
- laying out theoretical fundations to attack the simplex.