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Today

e A typology for linear programs.

e Linear equations reminders,

e Basic solutions, the kind of solutions we will be interested in,
e Hyperplanes, or how to visualize linear objectives/constraints.

e A few grams of topology to define halfspaces.
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Typology of Linear Programs
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Remember...

e the general form of linear programs:

max or min  z = ¢1x1 + Cax2 + - - - + Cp Ty,

( <,>
a;1r1y + a2 + -+ Aipdy {:} b1,
<,>
subject to ¢
<,>
Ami1T1 + Qm2T2 + - +  QmnTn { = } b
\ S,Z
where T1,To, - ,Tp> 0.

e This form is however too vague to be easily usable.

e First step: get rid of the strict inequalities: do not bring much and would only
add numerical noise.

e Second step: use matrix and vectorial notations to alleviate.
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Notations
Unless explicitly stated otherwise,

e A, B etc... are matrices whose size is clear from context.

e X, b, a are vectors. a;,a; are members of a vector family.

x1
o X = [ ; } with vector coordinates x; in R.

Tn

e x > ( is meant coordinate-wise, thatisx; > 0for1 > <mn

e x #* 0 means that x is not the zero vector, i.e. there exists at least one index @
such that x; # 0.

e x! is the transpose [ 1, ,zn] of x.
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Linear Program
Common representation for all these programs?

e Would help in developing both theory & algorithms.

e Also helps when developing software, solvers, etc

The answer is yes. . .

e [ here are 2: standard form and canonical form
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Terminology

e A linear program in canonical form is the program

max or min c¢Tx

subject to Ax < b,
x > 0.

b > 0 = feasible canonical form (just a convention)

e A linear program in standard form is the program

max or min clx

subject to Ax = b,
x > 0.
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Linear Programs: a look at the canonical form
Canonical form linear program

e Maximize the objective
e Only inequality constraints

e All variables should be positive

Example:
maximize dx; + 4x9 + 3x3
subjectto 2x1 + 322 4+ x3 < 5
4561 + Tro -+ 2163 S 11
3r1 + 4dxe + 223 < 8
r1, T2, x3 = 0.
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Linear Programs: canonical form

Although more intuitive than the standard form, the canonical is not the most
useful,

e We will formulate the simplex method on problems with equality constraints,
that is standard forms.

e Solvers do not all agree on this input format. MATLAB for example uses:

minimize ) . cz;

subject to Z?:l Aijibj <b;, i1=1,...,m
Z?:l B’ijj — dia 1= 17 cee, M2
ZZSZCZS’LLZ, izl,...,n

e Ultimately: this is a non-issue, we can easily switch from one form to the
other. . .
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Linear Programs: standard & canonical form

equalities = inequalities

e What if the original problem has equality constraints?
e Replace equality constraints by two inequality constraints.

e The inequality
2561 + 3182 + T3 = 5,

Is equivalent to

201 + 322 +x3 <5 and 2z1+3x9+x3>5

e The new problem is equivalent to the previous one. . .
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Linear Programs: standard & canonical form

inequalities = equalities

e [he opposite direction works too. . .
e Turn inequality constraints into equality constraints by adding variables.

e The inequality
2331 + 3332 + I3 S 5,

Is equivalent to

201+ 3x2+x3+w; =5 and wy; >0,

e The new variable is called a slack variable (one for each inequality in the
program). . .

e The new problem is equivalent to the previous one. . .

ORF-522 11



Linear Programs: standard & canonical form

free variable = positive variables

e \What about free variables?

e A free variable is simply the difference of its positive and negative parts. Again

the solution is again adding variables.

e |f the variable y is free, we can write it

Y1 =Y2— Y3 and ys,y3 > 0,

e \We add two positive variables for each free variable in the program.

e Again, the new problem is equivalent to the previous one.
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Linear Programs: standard & canonical form

minimizing = maximizing
e What happens when the objective is to minimize? We can use the fact that
min f(xr) = — max — f(x)
X X

e |n a linear program this means
minimize 6x; — 39 + 5x3

becomes:
— maximize —6x7 + 3r2 — bx3

That's all we need to convert all linear programs in standard form. . .

ORF-522

13



Linear Programs: standard & canonical form

Example. . .

minimize 2xy — 4x9 + 3
subjectto 221 4+ Txo 4+ x3 = 5
41 + To + 9zx3 < 11
3561 + 4562 + 2163 = 8
x1, ta > Q.

This program has one free variable (x3) and one inequality constraint. It's a
minimization problem. . .
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Linear Programs: standard & canonical form

We first turn it into a maximization. . .

— maximize —2x1 + 4z — 3
subject to 2¢c7 + Tx9 4+ x3 = 5
41 + ro + 93 < 11
3561 + 4562 + 2183 = 8
x1, t2 > 0.

Just switch the signs in the objective. . .
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Linear Programs: standard & canonical form

We then turn the inequality into an equality constraint by adding a slack
variable. . .

— maximize —2x1 + 4z — 3
subject to 2¢1 + Txo 4+ x3 = 5
4y + x9 + 923 + w; = 11
3181 + 4162 + 2563 = 8
L1, T2 Z 0

Now, we only need to get rid of the free variable. . .
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Linear Programs: standard & canonical form

We replace the free variable by a difference of two positive ones:

— maximize —2x; + 4xs — (x4 —x5)
subject to 2¢7 + Txo + T4 — T = 5
4y + 29 + 924—925 + w; = 11
3r1 + 4xo + 2x4 — 25 = &
T1, T2, T4, IT5 > 0

e That's it, we've reached a standard form.

e The simplex algorithm is easier to write with this form.
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To sum up...

e A linear program in standard form is the program

minimize cfx

subject to Ax = b,
x > 0.

where

o ¢,x € R"™ — the objective,
o A€ R™* ™ and b € R™ - the equality constraints,
o x > 0 means that for x = (x1,...,x,),2; > 0 for 1 <i <n.

e From now on we focus on

o linear constraints Ax = b,

o objective function c’x,

separately.

e x > 0 will reappear when we study convexity.
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Linear Equations
The usual linear equations we know, m = n

e In the usual linear algebra setting, A is square of size n and invertible.
e Straightforward: {x € R"|Ax = b} is a singleton, {4 'b}.

e Focus: find efficiently that unique solution. Many methods (Gaussian pivot
etc.)

In classic statistics, most often m > n

e A few explicative variables, a lot of observations.
e Generally {x € R"|Ax = b} = () so we need to tweak the problem
e Least-squares regression: select xq | xg = argmin |Ax — b|?

e More advanced, penalized LS regression: xo = argmin(|Ax — b|? + \||x||)

ORF-522

20



Linear Equations

On the other hand, in an LP setting where usually m < n

e {x ¢ R"|Ax = b} is a wider set of candidates, a convex set.
e In LP, a linear criterion is used to choose one of them.
e |n other fields, such as compressed sensing, other criterions are used.

e Today we start studying some simple properties of the set {x € R"|Ax = b}.
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Linear Equations

e Linear Equation: Ax = b, m equations.

a11x7 + appxre + - 4+ apr, = by,
Am1T1 + Am2T92 + -+ AmnLn — bm-
e Writing A = [ay, - ,a,] we have n columns € R™.

e Add now b: A, =[A,b] € Riyyxnt1-

e remember: a solution to Ax = b is a vector x such that

n
E T;Ad; = b,
1=1

that is the b and a’s should be linearly dependent (l.d.) for everything to
work.
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Linear Equations

Two cases (note that Rank(A) cannot be > Rank(A))

e (i) Rank(A) < Rank(A4;); b and a’s are linearly independent (l.i.). no
solution.

e (ii)) Rank(A) = Rank(A;) = k; every column of Ay, b in particular, can be
expressed as a linear combination of k other columns of the matrix
Qi+ ,a;,. Namely, dx such that

k
E $7;jaz'j = b.
g=1

In practice

o if m =n =k, then there is a unique solution: x = A~ !b;
e Usually Rank(A) =k < m < n and we have a plenty of solutions;
e \We assume from now on that Rank(A) = Rank(A4;) =
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Linear Equation Solutions

e if x; and x5 are two different solutions, then VA € R, Ax; + (1 — A\)x5 is a
solution.

e Rank(A) = m. There are m independent columns. Suppose we reorder them

so that ay,--- ,a,, are linearly independent.
e [hen
aii a2 -+ Q1m A1m+1 A1lm+2 = Q1n
a1 ago -+ A2 ao 1 as 2 QA
A= . . - m mE | =[B,R]
i am1 Am?2 vt Amm amm—l—l amm—|—2 e Amn |

e B is m x m square, R is m x (n —m) rectangular.
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Linear Equation Solutions

XpB
Xp
o |If Ax = b then Bxp + Rxg = b. Since B is non-singular, we have

e suppose we divide x = [ ] where xp € R™ and x5 € R™™"

xg = B~ (b — Rxp),
which shows that we can assign arbitrary values to xg and obtain different
points x such that Ax = b.

e Solutions are parameterized by xg3... a bit problematic since R is the
“discarded” part.

e We choose xg = 0 and focus on the choice of B.

ORF-522
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Basic Solutions

Definition 1. Consider Ax = b and suppose Rank(A) = m < n. Let
I= (i1, - i) be a list of indexes corresponding to m linearly
independent columns taken among the n columns of A.

o We call the m wvariables x;,,%X;,, -+ ,X;,, of x its basic variables,

e the other variables are called non-basic.

If x is a vector such that Ax = b and all its non-basic variables are equal
to O then x 1s a basic solution.
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Basic Solutions

e \When reordering variables as in the previous slide, and defining
B =la;, - ,a;,| we can set xg = 0. Then xg = B~ 'b and

-]

e Sidenote: a basic feasible solution to an LP Equation (&) is such that x is
basic and x > 0.

and we have a basic solution.

ORF-522
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Basic Solutions

e More generally, let

BI — [aip o 7aim]7

RO — [aola o 7a0m_n]7
where O ={1,--- n}\I= (01, - ,0m_n) is the complementary of I in
{1,--- ,n} in increasing order.

e I contains the indexes of vectors in the basis, O contains the indexes of vectors
outside the basis.

xil 51301
e Equivalently set x1 = L ] , X0 = [ : ]

€Z
On—m

o Ax = Bix1 + Roxo
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Basic Solutions

The two things to remember so far:

e A list I of m independent columns < One basic solution x, with
XI:Bl_lb and xo =0

e We are not interested in all basic solutions, only a subset: basic feasible
solutions.

ORF-522
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Basic Solutions: Degeneracy

Definition 2. A basic solution to Ax = b is degenerate if one or more of
the m basic variables is equal to zero.

e For a basic solution, xg is always 0. On the other hand, we do not expect
elements of x7 to be zero.

e This is degeneracy which appears whenever there is one or more components
of x1 which are zero.
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Basic Solutions: Example

e Consider Ax = b where

We start by choosing I:

—1
e I=(1,2). Bi=laj,as] =[}}] —>xi=[7'];x= [ é ] is basic.
0
0
e I=(1,4). Bi=laj,a4] =[}{] > xi=[{];x= [?] is basic.
0
-
0 0
e I1=(25). Bi=Jlag,a5] =[}3] > x1 = [%] ;x = | 0| is degenerate basic
1
| 3

note that as and b are colinear...
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Non-degeneracy

Theorem 1. A necessary and sufficient condition for the existence and
non-degeneracy of all basic solutions of Ax = b 1s the linear independence
of every set of m columns of Ay, the augmented matrizx.

Proof. e Proof strategy: = the existence of all possible basic solutions is

already a good sign: all families of m columns of A are l.i. What we need is
show that m — 1 columns of A plus b are also .i.

e < if all m columns choices are independent, basic solutions exist, and are
non-degenerate because b is |.i. with any combination of m — 1 columns.

ORF-522 33



Non-degeneracy

Proof. e =: Let [ = (i1, ,1,,) a family of indexes.

o The basic solution associated with I exists and is non-degenerate. b # 0
o Hence by definition {a;,, -+ ,a;, }isli. and b=>Y," za;,.

o For a given r, suppose {a;,, - ,a;,_,,a;..,, " ,a;,,b} is L.d.

o Then 3(a, - ,r_1,0011, Q) and 3 such that

,Bb-+ 2{: aka%::(l

k=1,k#r
Note that necessarily 3 # 0 (otherwise {a;,, -+ ,a;. _,,a; ., - ,a;,} is |.d)
o Contradiction: degenerate solution for I, (=%, -+, —%, 0, —O”“B“, —5)
o <: Let I = (i1, ,%y,) a family of indexes.

o A basic solution exists, >, zxa;, = b
o Suppose it is degenerate, i.e. z, = 0. Then 2?21 kot Thij, — b=0
o Contradiction: {a;,,---,a;,_,,a; ,, - ,a;,,b}, of size m, is |.d.
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Non-degeneracy

Corollary 1. Given a basic solution to Ax = b with basic variables x;,,--- ,x;, ,
a necessary and sufficient condition for the solution to be non-degenerate is
the l.i. of b with every subset of m — 1 columns of {a;,,--- ,a;,,}

e In our previous example,

1 2 1 0 3 1
A_lo 12 1 3]’b_H’m_2'

e Hence if I = (2,5), [b,as] and [b,

as| should be of rank 2 for the solution not
to be degenerate. Yet [b,as] = [1 3]

is clearly of rank 1.
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Hyperplane

Definition 3. A hyperplane in R™ is defined by a vector ¢ # 0 € R™ and a
scalar z € R as the set {x € R""|c'x = z}.

z =0,

e A hyperplane H, . contains O iff z = 0.

e In that case H. ¢ is a vector subspace and dim(H. ) =n — 1

z # 0,

e For x1, X easy to check that ¢ (x; — x3) = 0. In other words c is orthogonal
to vectors lying in the hyperplane.

e c is called the normal of the hyperplane
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Affine Subspace

Definition 4. Let V' be a vector space and let L be a vector subspace of V.
Then given x € V, the translation T = L +x = {u+x,u € L} is called an
affine subspace of V.

e the dimension of 7' is the dimension of L.

e 7' is parallel to L.

ORF-522
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Affine Hyperplane

e For c # 0, H. is a Vector subspace of R" of dimension n — 1.

e When z # 0, H. . is an affine hyperplane: it's easy to see that
Hc,z — Ll¢,0 + WC

C

ORF-522
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Some grams of Topology and Halfspaces
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A bit of topology: open and closed balls

e The n dimensional open ball centered at xy with radius r is defined as

B.(xq) = {z € R"s.t.|x — x¢| < 1},

e its closure

B, (xq) = {z € R"s.t.|x — x¢| <7},

Brq (x1)

\

Y

X
\
i 1}
' .
! ]
' )
\ /

\ 4

. 4

B?“Q (x2)
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A bit of topology: boundary

e Let S C R". A point x is a boundary point of S if every open ball centered
at x contains both a point in S and a point in R™\ S.

e A boundary point can either be in .S or not in S.

X3

o )

C

e 1, is a boundary point, x5 and x3 are not.
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A bit of topology: open and closed sets

e The set of all boundary points of S is the boundary 0S5 of S.
e A setis closed if 05 C S. A setis open if R"\ S is closed.

e Note that there are sets that are neither open nor close.

e The closure S of aset Sis SUOS

e The interior S° of aset S'is S\ 05

o Aset S is closed iff S =S and open iff S = S°.
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Halfspaces

e For a hyperplane H, its complement in R" is the union of two sets called open
halfspaces;
R‘\H=H, UH_

where
H, ={xeR"cx>z}

H_  ={xeR"cx <z}

e H_ =H,UH and H_ = H_ U H are closed halfspaces.

C

™
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Coming Next

e some basic convexity,
e important interplay between convex sets and hyperplanes,
e starting with some nice results, Caratheodory theorem,

e laying out theoretical fundations to attack the simplex.
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