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Reminder

e Convexity

o Affine independence.

o Faces, Dimension, Interior.

o Krein-Milman.

o No straight lines in a closed convex-set = d extreme point.

e Positive semidefinite matrices

o ldentify Sym_ with R™*("*1)/2 although Frobenius dot-product slightly
different.

o S = subset of matrices of Sym, with nonnegative eigenvalues

o A interior point of S;lF — A is positive definite.
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Today

o A few more results on S,
e ‘Linear’ programming — study linear equations in S;E.

e A simple application in embeddings.
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Further results on S’
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S is a closed-convex cone with no straight lines

n

Proposition 1. The set of positive semidefinite matrices is a closed conver
cone which does not contain straight lines.

e A, BcS' «a,8>0then Vx € R" xT(aA + B)x = axTAx + xTBx > 0.
e closed: convergence of nonnegative eigenvalues.

e straight lines: for any two matrices A, B, any line {B + AA, A € R}, cannot be
entirely in ;1.
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Faces of S

Proposition 2. Let A € S. Suppose that Rank(A) =r. Ifr =n, A is an
interior point of S,;f. If r <n, A is an interior point of a face F' of S,,J{,
where dim(F') = r(r + 1)/2. There is a rank-preserving isometry identifying F
with S;F.

e r = n proved in previous theorem.

e Suppose Rank(A) =r < n. We build a suitable hyperplane H C Sym,_,
which contains A and isolates S .

o Let A1,---, A, the non-zero eigenvalues of A.
o Define U orthogonal such that A = UDU?' and
D =diag(\y, -+, Ar,0,---,0).
o Let C'=diag(0,---,0,1,---,1) be the diagonal matrix of r zeroes and
n — T Ones.
Let Q = UCU?. Obviously Q € S;' and (A,Q) = 0.
Furthermore, VY € S (Y, Q) = (UTYU,C) > 0.
Therefore H = {X € Sym, |(Q, X) = 0} isolates S;' and contains A.
Set F=S'NH. Themapyp: X —Y =UTXU maps @ onto C and A
onto D.
o p(F)=F ={Y € Sym_ [(C,Y) =0}. Let Y € F".

© O O O
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o By nonnegativity of its diagonal elements, y,; =0 for j > r + 1. Y must
thus have the following block structure

_ W'rxr 07 xn—r
Y = :
O0n—rxr On—rxn—r

with Wy, € S
o Hence the face F’ can be identified with S,
o S contains D in its interior.
o Sincep 1Y — X =UYU" isa
> non-degenerate linear transformation,
~ which maps D to A and F’ to F,
o we have dim(F') = r(r +1)/2 and F contains A in its interior.
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Linear Equations in S’
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Linear Equations in S

Proposition 3. Let us fiz k matrices Ay, --- , Ax matrices in Sym,, and k real
numbers aq,- - ,oy. If there exists a matriz X € S} such that

<A27X> — Oéiai — 17 7k
then there exists a matriz Xo € ;' such that

<A’L'7X0> :aiai:]-a'" 7k

and additionally such that Rank(X) < | Y=L,

Is equivalent to

Proposition 4. Let A C Sym,, be an affine subspace such that the intersection
S N A is non-empty. Suppose dim(A) > n(n+1)/2 — (r+1)(r +2)/2 for
some non-negative integer r. Then there is a matriz X in S;f N A such that
Rank(X) <r
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Linear Equations in S

e Proof of equivalence:
olet A={X €Sym, : (4;,X)=q;, i=1,---  k}.
o Then dim(A) > n(n+1)/2 — k.
o Moreover k < (r+2)(r+1)/2iff r < Lv8k;1_1j
o why? if x = (y+2)(y+1)/2 then y = iv&”;l_l.

e Proof: we prove the second proposition.

o Let L =AN S,,J[. The set IC is non empty, closed and does not contain
straight lines — it contains an extreme point X.

o Suppose Rank(Xy) = m. Thus by Proposition 2 Xy must be an interior
point of a face F of S, embedded in S of dimension m(m + 1)/2.

o Xog € K. Xg is an interior point of the intersection F'N A.

o Since Xj is an extreme point, we must have dim(F N.A) = 0 (why?).

o This implies dim(F') + dim(A) < n(n 4+ 1)/2 hence
dim(A) >n(n+1)/2 - (m+ 1)(m+ 2)/2.

o Hence m < r and 3X, € ANS such that Rank(Xy) < r.
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Some further comments

e In the real case, solutions of
Ax=b, AcR™",

can be found such that x has at least n — m zero components or up to n
non-zero components.

e In the psd case, representing X € S by a vector X (:) of size n(n +1)/2,

+1

AX(:)=b, AeR™" >

we have the result that a solution X with up to Lv8k;1_1j non-zero

eigenvalues can be obtained.

e Some work on extensions of the simplex show that “extreme points” on the set
A are low (r such that r(r + 1)/2 < m more precisely) rank matrices (Pataki,
1996). generalization is not straightforward however.
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A more advanced result

Proposition 5. Let us fix k matrices A1, --- , Ax matrices in Sym,,, where
k=(r+1)(r+2)/2 withr >0 andn >r+2, and k real numbers ay,- - , Q.
If there exists a matriz X € S;' such that

<A27X>:0527Z:17 7k

and the set of all solutions to these equations is bounded, then there
exists a matriz Xo € S;° such that

<A27X>:a27Z:17 7k

and additionally such that Rank(Xg) < r.

is equivalent to
Proposition 6. Let A C Sym,, be an affine subspace such that the intersection
S: N A is non-empty and bounded. Suppose

dim(A)=n(n+1)/2 — (r+1)(r +2)/2

for some positive integer r and n > r + 2. Then there is a matriz X in S,,J[ NA
such that Rank(X) <r

Princeton ORF-522 12



What is the difference

e Proof is quite involved (a few pages, uses topology)

e In practice, for a number of constraints k if the set of solutions is not empty,
the minimal rank solution is of rank r,

o k=3 r<1,
o k=6,1r<2,
o k=10,r <3

e compared to the bounds of Proposition 3:

o k=3, 1r<2
o k=6, r< VST _3

o k=10, r < ¥2OH-L =4

e Existence theorems only.

e Recovering a solution of low rank from an arbitrary solution requires iterative
algorithms
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Approximation

Proposition 7. Let us fix k matrices Aq,--- , A matrices in S;:, k nonnegative
numbers aq,--- ,ar and a number 0 < e < 1. If there exists a matriz X € S,,JLr
such that

<A27X>:a27Z:17 7k

then, letting m be a positive integer such that

8
m > = In(4k),

there exists a matriz Xo € S0 such that
Ozz(l —6) < <AZ,X0> < Oéi(l—l—g),’l: — 1, ,]C

and additionally such that Rank(Xy) < m.

e No proof, but look at the improvement with approximation: from
Rank(X() = O(vk) to Rank(X,) = O(Ink).

e These results are in Barvinok (2002)

Princeton ORF-522 14



An application: Graph Realizability
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Gram matrices

e For x1, -+ ,x,, vectors in R", the matrix
K = [kijli<ij<n,
defined as
kij = (X4, %)
is called the Gram matrix of vectors x1,- - ,X,,.
e Rank(K) = dim(span{xy, - - ,X;,}) < min(n, m) why?

o Set X =[xy, -+ ,X;,] € R™™.
o Then K = XTX ¢ R™*™
o Can show that ker(K) = ker(X)

e Conversely, can prove that if K € S and Rank(K) < r then K is the gram
matrix of vectors in R"
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Graph Realization Problem

e Suppose we are given an undirected weighted graph G = (N, &, p) where

o N is the set of nodes (v, - ,vy)

o & the set of edges
o pis a family of weights indexed by the edges p. € R for every e € £.

Definition 1. A weighted graph G(N,E, p) is d-realizable if there exists a
way to assoctate to each node vy, --- ,v, vectors vi,--- ,V, € R?
respectively such that ||v; — v|| = pgi -

e A weighted graph is realizable if it is d-realizable for an certain dimension d.

Princeton ORF-522

17



Realizability

e An important problem: 3-realizability,

o molecular conformation: atoms, distances imposed by physical lows, which
configurations are possible?

o industry: in which configurations can a few joints connected by rigid links
move”?

o sensor network configuration

e Existence of low-realizability given distances is also used in data-visualization
(low dimensional embeddings)
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A straightforward reformulation

o Letvy,---,v, € R? be a realization of the graph in R¢
o let K = (v;,v;) be the gram matrix of vi,--- ,v,,.
e K €S’ why?

e For any edge {i,j},

Pligy = Ivi = vill* = Vil + Iv5II° = 2(vi, vj) = kjj + kag — 2k

e Can be interpreted as |£| constraints

e The d-realizability problem is equivalent to looking for a matrix X € S: with
the additional constraint that Rank(X) < d.
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Realizability and d-realizability

Proposition 8. Suppose that |E] < (d+ 1)(d + 2)/2. Then G is d-realizable if
and only if it is realizable. In particular if k < 9 then the graph is realizable iff
it 18 3-realizable.

e Proof: follows from of proposition 3.
e Comment: realizability only depends on the number of edges, not nodes.

e Edges for which such a constraint is not given can be freely set.
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With approximations: Johnson-Lindenstrauss Lemma

e Proof uses the approximation result of Proposition 7 we discussed before

Proposition 9. Suppose that a graph G with k edges is realizable. Then for
any 0 < e <1 and any m > 8%11(1(4/43) one can place the nodes vy,--- ,v, on
points vi,--- , v, in R™ so that

pry(1—¢) < lvi—vilI* < ppp(+¢), {55} €€

e Proof

o Define a constraint matrix A; ; for each edge’s constraint.

o Show that each constraint matrix A; ; is S

o Since G is realizable, we can use the approximation result of Proposition 7
directly.

e Existence result, often seen as an objective for dimensionality reduction
algorithms
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Description & Questions

e 3 hours, Thu. 14th, 14:00— 17:00, room 001 downstairs.

o = 1 hour for short questions / multiple choice questions

o 2 small exercises to check your understanding of the lectures.

o 1 problem to see how you can generalize from lectures.

e Each part graded proportionally.

e A letter format cheat sheet is allowed, nothing else.
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