ORF 522

Linear Programming and Convex Analysis

Linear Equations in Semidefinite Matrices

Marco Cuturi

Reminder

Convexity

- Affine independence.
- Faces, Dimension, Interior.
- Krein-Milman.
- No straight lines in a closed convex-set \Rightarrow ∃ extreme point.
- Positive semidefinite matrices
 - \circ Identify \mathbf{Sym}_n with $\mathbb{R}^{n(n+1)/2}$ although Frobenius dot-product slightly different.
 - \circ $\mathbf{S}_n^+ =$ subset of matrices of \mathbf{Sym}_n with nonnegative eigenvalues
 - A interior point of $\mathbf{S}_n^+ \leftrightarrow A$ is positive definite.

Today

- A few more results on \mathbf{S}_n^+
- "Linear" programming \rightarrow study linear equations in \mathbf{S}_n^+ .
- A simple application in embeddings.

Further results on S_n^+

\mathbf{S}_n^+ is a closed-convex cone with no straight lines

Proposition 1. The set of positive semidefinite matrices is a closed convex cone which does not contain straight lines.

- $A, B \in \mathbf{S}_n^+, \, \alpha, \beta \ge 0$ then $\forall \mathbf{x} \in \mathbf{R}^n \ \mathbf{x}^T (\alpha A + \beta B) \mathbf{x} = \alpha \mathbf{x}^T A \mathbf{x} + \beta \mathbf{x}^T B \mathbf{x} \ge 0.$
- closed: convergence of nonnegative eigenvalues.
- straight lines: for any two matrices A, B, any line {B + λA, λ ∈ ℝ}, cannot be entirely in S⁺_n.

Faces of S_n^+

Proposition 2. Let $A \in \mathbf{S}_n^+$. Suppose that $\operatorname{Rank}(A) = r$. If r = n, A is an interior point of \mathbf{S}_n^+ . If r < n, A is an interior point of a face F of \mathbf{S}_n^+ , where $\dim(F) = r(r+1)/2$. There is a rank-preserving isometry identifying F with \mathbf{S}_r^+ .

- r = n proved in previous theorem.
- Suppose Rank(A) = r < n. We build a suitable hyperplane H ⊂ Sym_n which contains A and isolates S⁺_n.
 - Let $\lambda_1, \dots, \lambda_r$ the non-zero eigenvalues of A.
 - Define U orthogonal such that $A = UDU^T$ and $D = \operatorname{diag}(\lambda_1, \cdots, \lambda_r, 0, \cdots, 0).$
 - Let $C = \operatorname{diag}(0, \dots, 0, 1, \dots, 1)$ be the diagonal matrix of r zeroes and n r ones.
 - Let $Q = UCU^T$. Obviously $Q \in \mathbf{S}_n^+$ and $\langle A, Q \rangle = 0$.
 - Furthermore, $\forall Y \in \mathbf{S}_n^+, \langle Y, Q \rangle = \langle U^T Y U, C \rangle \ge 0.$
 - Therefore $H = \{X \in \mathbf{Sym}_n | \langle Q, X \rangle = 0\}$ isolates \mathbf{S}_n^+ and contains A.
 - Set $F = \mathbf{S}_n^+ \cap H$. The map $\varphi : X \to Y = U^T X U$ maps Q onto C and A onto D.
 - $\circ \ \varphi(F)=F'=\{Y\in \mathbf{Sym}_n|\langle C,Y\rangle=0\}. \ \text{Let}\ Y\in F'.$

• By nonnegativity of its diagonal elements, $y_{jj} = 0$ for $j \ge r + 1$. Y must thus have the following block structure

$$Y = \begin{bmatrix} W_{r \times r} & \mathbf{0}_{r \times n-r} \\ \mathbf{0}_{n-r \times r} & \mathbf{0}_{n-r \times n-r} \end{bmatrix},$$

with $W_{r \times r} \in \mathbf{S}_r^+$

- \circ Hence the face F' can be identified with \mathbf{S}_r^+
- \circ **S**⁺_r contains *D* in its interior.
- $\circ~{\rm Since}~\varphi^{-1}:Y\mapsto X=UYU^T$ is a
 - ▷ non-degenerate linear transformation,
 - \triangleright which maps D to A and F' to F,
- we have $\dim(F) = r(r+1)/2$ and F contains A in its interior.

Linear Equations in S_n^+

Linear Equations in S_n^+

Proposition 3. Let us fix k matrices A_1, \dots, A_k matrices in \mathbf{Sym}_n and k real numbers $\alpha_1, \dots, \alpha_k$. If there exists a matrix $X \in \mathbf{S}_n^+$ such that

$$\langle A_i, X \rangle = \alpha_i, i = 1, \cdots, k$$

then there exists a matrix $X_0 \in \mathbf{S}_n^+$ such that

$$\langle A_i, X_0 \rangle = \alpha_i, i = 1, \cdots, k$$

and additionally such that $\operatorname{Rank}(X_0) \leq \lfloor \frac{\sqrt{8k+1}-1}{2} \rfloor$.

is equivalent to

Proposition 4. Let $\mathcal{A} \subset \mathbf{Sym}_n$ be an affine subspace such that the intersection $\mathbf{S}_n^+ \cap \mathcal{A}$ is non-empty. Suppose $\dim(\mathcal{A}) > n(n+1)/2 - (r+1)(r+2)/2$ for some non-negative integer r. Then there is a matrix X in $\mathbf{S}_n^+ \cap \mathcal{A}$ such that $\mathbf{Rank}(X) \leq r$

Linear Equations in S_n^+

• Proof of equivalence:

• Let $A = \{X \in \mathbf{Sym}_n : \langle A_i, X \rangle = \alpha_i, i = 1, \cdots, k\}$. • Then $\dim(A) \ge n(n+1)/2 - k$. • Moreover k < (r+2)(r+1)/2 iff $r \le \lfloor \frac{\sqrt{8k+1}-1}{2} \rfloor$ • why? if x = (y+2)(y+1)/2 then $y = \frac{\pm \sqrt{8x+1}-1}{2}$.

• **Proof**: we prove the second proposition.

- Let $\mathcal{K} = \mathcal{A} \cap \mathbf{S}_n^+$. The set \mathcal{K} is non empty, closed and does not contain straight lines \rightarrow it contains an extreme point X_0 .
- Suppose $\operatorname{Rank}(X_0) = m$. Thus by Proposition 2 X_0 must be an interior point of a face F of \mathbf{S}_n^+ , embedded in \mathbf{S}_m^+ of dimension m(m+1)/2.
- $X_0 \in \mathcal{K}$. X_0 is an interior point of the intersection $F \cap \mathcal{A}$.
- Since X_0 is an extreme point, we must have $\dim(F \cap \mathcal{A}) = 0$ (why?).
- This implies $\dim(F) + \dim(\mathcal{A}) < n(n+1)/2$ hence $\dim(\mathcal{A}) > n(n+1)/2 - (m+1)(m+2)/2.$
- Hence $m \leq r$ and $\exists X_0 \in \mathcal{A} \cap \mathbf{S}_n^+$ such that $\operatorname{\mathbf{Rank}}(X_0) \leq r$.

Some further comments

• In the real case, solutions of

$$A\mathbf{x} = \mathbf{b}, \ A \in \mathbf{R}^{m \times n},$$

can be found such that \mathbf{x} has at least n - m zero components or up to n non-zero components.

• In the psd case, representing $X \in \mathbf{S}_n^+$ by a vector X(:) of size n(n+1)/2,

$$\mathbf{A}X(:) = \mathbf{b}, \ \mathbf{A} \in \mathbf{R}^{m \times n\frac{n+1}{2}}$$

we have the result that a solution X with up to $\lfloor \frac{\sqrt{8k+1}-1}{2} \rfloor$ non-zero eigenvalues can be obtained.

• Some work on extensions of the simplex show that "extreme points" on the set \mathcal{A} are low (r such that $r(r+1)/2 \leq m$ more precisely) rank matrices (Pataki, 1996). generalization is not straightforward however.

A more advanced result

Proposition 5. Let us fix k matrices A_1, \dots, A_k matrices in \mathbf{Sym}_n , where k = (r+1)(r+2)/2 with r > 0 and $n \ge r+2$, and k real numbers $\alpha_1, \dots, \alpha_k$. If there exists a matrix $X \in \mathbf{S}_n^+$ such that

$$\langle A_i, X \rangle = \alpha_i, i = 1, \cdots, k$$

and the set of all solutions to these equations is bounded, then there exists a matrix $X_0 \in \mathbf{S}_n^+$ such that

$$\langle A_i, X \rangle = \alpha_i, i = 1, \cdots, k$$

and additionally such that $\operatorname{Rank}(X_0) \leq r$.

is equivalent to **Proposition 6.** Let $\mathcal{A} \subset \mathbf{Sym}_n$ be an affine subspace such that the intersection $\mathbf{S}_n^+ \cap \mathcal{A}$ is non-empty and bounded. Suppose

$$\dim(\mathcal{A}) = n(n+1)/2 - (r+1)(r+2)/2$$

for some positive integer r and $n \ge r+2$. Then there is a matrix X in $\mathbf{S}_n^+ \cap \mathcal{A}$ such that $\operatorname{\mathbf{Rank}}(X) \le r$

What is the difference

- Proof is quite involved (a few pages, uses topology)
- In practice, for a number of constraints k if the set of solutions is not empty, the minimal rank solution is of rank r,
 - ∘ k = 3, r ≤ 1,∘ k = 6, r ≤ 2,∘ k = 10, r < 3
- compared to the bounds of Proposition 3:

k = 3, r ≤ 2
k = 6, r ≤
$$\frac{\sqrt{8 \cdot 6 + 1} - 1}{2} = 3$$
k = 10, r ≤ $\frac{\sqrt{8 \cdot 10 + 1} - 1}{2} = 4$

- Existence theorems only.
- Recovering a solution of low rank from an arbitrary solution requires iterative algorithms

Approximation

Proposition 7. Let us fix k matrices A_1, \dots, A_k matrices in \mathbf{S}_n^+ , k nonnegative numbers $\alpha_1, \dots, \alpha_k$ and a number $0 < \varepsilon < 1$. If there exists a matrix $X \in \mathbf{S}_n^+$ such that

$$\langle A_i, X \rangle = \alpha_i, i = 1, \cdots, k$$

then, letting m be a positive integer such that

$$m \ge \frac{8}{\varepsilon^2} \ln(4k),$$

there exists a matrix $X_0 \in \mathbf{S}_n^+$ such that

$$\alpha_i(1-\varepsilon) \leq \langle A_i, X_0 \rangle \leq \alpha_i(1+\varepsilon), i = 1, \cdots, k$$

and additionally such that $\operatorname{Rank}(X_0) \leq m$.

- No proof, but look at the improvement with approximation: from Rank(X₀) = O(√k) to Rank(X₀) = O(ln k).
- These results are in Barvinok (2002)

An application: Graph Realizability

Gram matrices

• For $\mathbf{x}_1, \cdots, \mathbf{x}_m$ vectors in \mathbf{R}^n , the matrix

$$K = [k_{ij}]_{1 \le i,j \le n},$$

defined as

$$k_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

is called the Gram matrix of vectors $\mathbf{x}_1, \cdots, \mathbf{x}_m$.

• $\operatorname{\mathbf{Rank}}(K) = \dim(\operatorname{span}\{\mathbf{x}_1, \cdots, \mathbf{x}_m\}) \le \min(n, m)$ why?

• Set
$$X = [\mathbf{x}_1, \cdots, \mathbf{x}_m] \in \mathbf{R}^{n \times m}$$
.

• Then
$$K = X^T X \in \mathbf{R}^{m \times m}$$

• Can show that $\ker(K) = \ker(X)$

 Conversely, can prove that if K ∈ S⁺_n and Rank(K) ≤ r then K is the gram matrix of vectors in R^r

Graph Realization Problem

• Suppose we are given an undirected weighted graph $\mathcal{G}=(\mathcal{N},\mathcal{E},\rho)$ where

- $\circ \mathcal{N}$ is the set of nodes (v_1, \cdots, v_n)
- $\circ~\mathcal{E}$ the set of edges
- ρ is a family of weights indexed by the edges $\rho_e \in \mathbf{R}$ for every $e \in \mathcal{E}$.

Definition 1. A weighted graph $\mathcal{G}(\mathcal{N}, \mathcal{E}, \rho)$ is d-realizable if there exists a way to associate to each node v_1, \dots, v_n vectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbf{R}^d$ respectively such that $\|\mathbf{v}_i - \mathbf{v}_j\| = \rho_{\{i,j\}}$.

• A weighted graph is realizable if it is *d*-realizable for an certain dimension *d*.

Realizability

- An important problem: 3-realizability,
 - molecular conformation: atoms, distances imposed by physical lows, which configurations are possible?
 - industry: in which configurations can a few joints connected by rigid links move?
 - $\circ\,$ sensor network configuration
- Existence of low-realizability given distances is also used in data-visualization (low dimensional embeddings)

A straightforward reformulation

- Let $\mathbf{v}_1, \cdots, \mathbf{v}_n \in \mathbf{R}^d$ be a realization of the graph in \mathbf{R}^d
- let $K = \langle \mathbf{v}_i, \mathbf{v}_j \rangle$ be the gram matrix of $\mathbf{v}_1, \cdots, \mathbf{v}_n$.
- $K \in \mathbf{S}_n^+$. why?
- For any edge $\{i, j\}$,

$$\rho_{\{i,j\}}^2 = \|\mathbf{v}_i - \mathbf{v}_j\|^2 = \|\mathbf{v}_i\|^2 + \|\mathbf{v}_j\|^2 - 2\langle \mathbf{v}_i, \mathbf{v}_j \rangle = k_{jj} + k_{ii} - 2k_{ij}.$$

- Can be interpreted as $|\mathcal{E}|$ constraints
- The *d*-realizability problem is equivalent to looking for a matrix $X \in \mathbf{S}_n^+$ with the additional constraint that $\operatorname{\mathbf{Rank}}(X) \leq d$.

Realizability and *d*-realizability

Proposition 8. Suppose that $|\mathcal{E}| \leq (d+1)(d+2)/2$. Then \mathcal{G} is d-realizable if and only if it is realizable. In particular if $k \leq 9$ then the graph is realizable iff it is 3-realizable.

- **Proof**: follows from of proposition 3.
- Comment: realizability only depends on the number of edges, not nodes.
- Edges for which such a constraint is not given can be freely set.

With approximations: Johnson-Lindenstrauss Lemma

• Proof uses the approximation result of Proposition 7 we discussed before

Proposition 9. Suppose that a graph \mathcal{G} with k edges is realizable. Then for any $0 < \varepsilon < 1$ and any $m \ge \frac{8}{\varepsilon^2} \ln(4k)$ one can place the nodes v_1, \dots, v_n on points $\mathbf{v}_1, \dots, \mathbf{v}_n$ in \mathbf{R}^m so that

$$\rho_{\{i,j\}}(1-\varepsilon) \le \|\mathbf{v}_i - \mathbf{v}_j\|^2 \le \rho_{\{i,j\}}(1+\varepsilon), \ \{i,j\} \in \mathcal{E}_{\mathbf{v}}$$

• Proof

- Define a constraint matrix $A_{i,j}$ for each edge's constraint.
- Show that each constraint matrix $A_{i,j}$ is \mathbf{S}_n^+
- $\circ\,$ Since ${\cal G}$ is realizable, we can use the approximation result of Proposition 7 directly.
- Existence result, often seen as an objective for dimensionality reduction algorithms

Final Exam

Description & Questions

- 3 hours, Thu. 14th, $14:00 \rightarrow 17:00$, room 001 downstairs.
 - $\circ~\approx 1$ hour for short questions / multiple choice questions
 - $\circ~2$ small exercises to check your understanding of the lectures.
 - $\circ~1$ problem to see how you can generalize from lectures.
- Each part graded proportionally.
- A letter format cheat sheet is allowed, nothing else.