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Reminder

• Convexity

◦ Affine independence.
◦ Faces, Dimension, Interior.
◦ Krein-Milman.
◦ No straight lines in a closed convex-set ⇒ ∃ extreme point.

• Positive semidefinite matrices

◦ Identify Symn with R
n(n+1)/2 although Frobenius dot-product slightly

different.
◦ S+

n = subset of matrices of Symn with nonnegative eigenvalues
◦ A interior point of S+

n ↔ A is positive definite.
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Today

• A few more results on S+
n

• “Linear” programming → study linear equations in S+
n .

• A simple application in embeddings.
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Further results on S+
n
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S+
n is a closed-convex cone with no straight lines

Proposition 1. The set of positive semidefinite matrices is a closed convex

cone which does not contain straight lines.

• A, B ∈ S+
n , α, β ≥ 0 then ∀x ∈ Rn xT (αA + βB)x = αxTAx + βxTBx ≥ 0.

• closed: convergence of nonnegative eigenvalues.

• straight lines: for any two matrices A, B, any line {B + λA, λ ∈ R}, cannot be
entirely in S+

n .
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Faces of S+
n

Proposition 2. Let A ∈ S+
n . Suppose that Rank(A) = r. If r = n, A is an

interior point of S+
n . If r < n, A is an interior point of a face F of S+

n ,

where dim(F ) = r(r + 1)/2. There is a rank-preserving isometry identifying F
with S+

r .

• r = n proved in previous theorem.

• Suppose Rank(A) = r < n. We build a suitable hyperplane H ⊂ Symn

which contains A and isolates S+
n .

◦ Let λ1, · · · , λr the non-zero eigenvalues of A.
◦ Define U orthogonal such that A = UDUT and

D = diag(λ1, · · · , λr, 0, · · · , 0).
◦ Let C = diag(0, · · · , 0, 1, · · · , 1) be the diagonal matrix of r zeroes and

n − r ones.
◦ Let Q = UCUT . Obviously Q ∈ S+

n and 〈A,Q〉 = 0.
◦ Furthermore, ∀Y ∈ S+

n , 〈Y,Q〉 = 〈UTY U,C〉 ≥ 0.
◦ Therefore H = {X ∈ Symn|〈Q,X〉 = 0} isolates S+

n and contains A.
◦ Set F = S+

n ∩ H. The map ϕ : X → Y = UTXU maps Q onto C and A
onto D.

◦ ϕ(F ) = F ′ = {Y ∈ Symn|〈C, Y 〉 = 0}. Let Y ∈ F ′.
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◦ By nonnegativity of its diagonal elements, yjj = 0 for j ≥ r + 1. Y must
thus have the following block structure

Y =

[

Wr×r 0r×n−r

0n−r×r 0n−r×n−r

]

,

with Wr×r ∈ S+
r

◦ Hence the face F ′ can be identified with S+
r

◦ S+
r contains D in its interior.

◦ Since ϕ−1 : Y 7→ X = UY UT is a
⊲ non-degenerate linear transformation,
⊲ which maps D to A and F ′ to F ,

◦ we have dim(F ) = r(r + 1)/2 and F contains A in its interior.
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Linear Equations in S+
n

Princeton ORF-522 8



Linear Equations in S+
n

Proposition 3. Let us fix k matrices A1, · · · , Ak matrices in Symn and k real

numbers α1, · · · , αk. If there exists a matrix X ∈ S+
n such that

〈Ai, X〉 = αi, i = 1, · · · , k

then there exists a matrix X0 ∈ S+
n such that

〈Ai,X0〉 = αi, i = 1, · · · , k

and additionally such that Rank(X0) ≤ ⌊
√

8k+1−1
2 ⌋.

is equivalent to

Proposition 4. Let A ⊂ Symn be an affine subspace such that the intersection

S+
n ∩ A is non-empty. Suppose dim(A) > n(n + 1)/2 − (r + 1)(r + 2)/2 for

some non-negative integer r. Then there is a matrix X in S+
n ∩ A such that

Rank(X) ≤ r
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Linear Equations in S+
n

• Proof of equivalence:

◦ Let A = {X ∈ Symn : 〈Ai, X〉 = αi, i = 1, · · · , k}.
◦ Then dim(A) ≥ n(n + 1)/2 − k.

◦ Moreover k < (r + 2)(r + 1)/2 iff r ≤ ⌊
√

8k+1−1
2 ⌋

◦ why? if x = (y + 2)(y + 1)/2 then y = ±
√

8x+1−1
2 .

• Proof: we prove the second proposition.

◦ Let K = A∩ S+
n . The set K is non empty, closed and does not contain

straight lines → it contains an extreme point X0.
◦ Suppose Rank(X0) = m. Thus by Proposition 2 X0 must be an interior

point of a face F of S+
n , embedded in S+

m of dimension m(m + 1)/2.
◦ X0 ∈ K. X0 is an interior point of the intersection F ∩ A.
◦ Since X0 is an extreme point, we must have dim(F ∩ A) = 0 (why?).
◦ This implies dim(F ) + dim(A) < n(n + 1)/2 hence

dim(A) > n(n + 1)/2 − (m + 1)(m + 2)/2.
◦ Hence m ≤ r and ∃X0 ∈ A ∩ S+

n such that Rank(X0) ≤ r.
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Some further comments

• In the real case, solutions of

Ax = b, A ∈ Rm×n,

can be found such that x has at least n − m zero components or up to n
non-zero components.

• In the psd case, representing X ∈ S+
n by a vector X(:) of size n(n + 1)/2,

AX(:) = b, A ∈ Rm×nn+1
2

we have the result that a solution X with up to ⌊
√

8k+1−1
2 ⌋ non-zero

eigenvalues can be obtained.

• Some work on extensions of the simplex show that “extreme points” on the set
A are low (r such that r(r + 1)/2 ≤ m more precisely) rank matrices (Pataki,
1996). generalization is not straightforward however.

Princeton ORF-522 11



A more advanced result
Proposition 5. Let us fix k matrices A1, · · · , Ak matrices in Symn, where

k = (r + 1)(r + 2)/2 with r > 0 and n ≥ r + 2, and k real numbers α1, · · · , αk.

If there exists a matrix X ∈ S+
n such that

〈Ai, X〉 = αi, i = 1, · · · , k

and the set of all solutions to these equations is bounded, then there

exists a matrix X0 ∈ S+
n such that

〈Ai, X〉 = αi, i = 1, · · · , k

and additionally such that Rank(X0) ≤ r.

is equivalent to
Proposition 6. Let A ⊂ Symn be an affine subspace such that the intersection

S+
n ∩ A is non-empty and bounded. Suppose

dim(A)=n(n + 1)/2 − (r + 1)(r + 2)/2

for some positive integer r and n ≥ r + 2. Then there is a matrix X in S+
n ∩A

such that Rank(X) ≤ r
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What is the difference

• Proof is quite involved (a few pages, uses topology)

• In practice, for a number of constraints k if the set of solutions is not empty,
the minimal rank solution is of rank r,

◦ k = 3, r ≤ 1,
◦ k = 6, r ≤ 2,
◦ k = 10, r ≤ 3

• compared to the bounds of Proposition 3:

◦ k = 3, r ≤ 2
◦ k = 6, r ≤

√
8·6+1−1

2 = 3

◦ k = 10, r ≤
√

8·10+1−1
2 = 4

• Existence theorems only.

• Recovering a solution of low rank from an arbitrary solution requires iterative
algorithms
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Approximation

Proposition 7. Let us fix k matrices A1, · · · , Ak matrices in S+
n
, k nonnegative

numbers α1, · · · , αk and a number 0 < ε < 1. If there exists a matrix X ∈ S+
n

such that

〈Ai, X〉 = αi, i = 1, · · · , k

then, letting m be a positive integer such that

m ≥ 8

ε2
ln(4k),

there exists a matrix X0 ∈ S+
n such that

αi(1 − ε) ≤ 〈Ai,X0〉 ≤ αi(1 + ε), i = 1, · · · , k

and additionally such that Rank(X0) ≤ m.

• No proof, but look at the improvement with approximation: from
Rank(X0) = O(

√
k) to Rank(X0) = O(ln k).

• These results are in Barvinok (2002)
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An application: Graph Realizability
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Gram matrices

• For x1, · · · ,xm vectors in Rn, the matrix

K = [kij]1≤i,j≤n,

defined as
kij = 〈xi,xj〉

is called the Gram matrix of vectors x1, · · · ,xm.

• Rank(K) = dim(span{x1, · · · ,xm}) ≤ min(n, m) why?

◦ Set X = [x1, · · · ,xm] ∈ Rn×m.
◦ Then K = XTX ∈ Rm×m

◦ Can show that ker(K) = ker(X)

• Conversely, can prove that if K ∈ S+
n and Rank(K) ≤ r then K is the gram

matrix of vectors in Rr
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Graph Realization Problem

• Suppose we are given an undirected weighted graph G = (N , E , ρ) where

◦ N is the set of nodes (v1, · · · , vn)
◦ E the set of edges
◦ ρ is a family of weights indexed by the edges ρe ∈ R for every e ∈ E .

Definition 1. A weighted graph G(N , E , ρ) is d-realizable if there exists a

way to associate to each node v1, · · · , vn vectors v1, · · · ,vn ∈ Rd

respectively such that ‖vi − vj‖ = ρ{i,j}.

• A weighted graph is realizable if it is d-realizable for an certain dimension d.
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Realizability

• An important problem: 3-realizability,

◦ molecular conformation: atoms, distances imposed by physical lows, which
configurations are possible?

◦ industry: in which configurations can a few joints connected by rigid links
move?

◦ sensor network configuration

• Existence of low-realizability given distances is also used in data-visualization
(low dimensional embeddings)
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A straightforward reformulation

• Let v1, · · · ,vn ∈ Rd be a realization of the graph in Rd

• let K = 〈vi,vj〉 be the gram matrix of v1, · · · ,vn.

• K ∈ S+
n . why?

• For any edge {i, j},

ρ2
{i,j} = ‖vi − vj‖2 = ‖vi‖2 + ‖vj‖2 − 2〈vi,vj〉 = kjj + kii − 2kij.

• Can be interpreted as |E| constraints

• The d-realizability problem is equivalent to looking for a matrix X ∈ S+
n with

the additional constraint that Rank(X) ≤ d.
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Realizability and d-realizability

Proposition 8. Suppose that |E| ≤ (d + 1)(d + 2)/2. Then G is d-realizable if

and only if it is realizable. In particular if k ≤ 9 then the graph is realizable iff

it is 3-realizable.

• Proof: follows from of proposition 3.

• Comment: realizability only depends on the number of edges, not nodes.

• Edges for which such a constraint is not given can be freely set.
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With approximations: Johnson-Lindenstrauss Lemma

• Proof uses the approximation result of Proposition 7 we discussed before

Proposition 9. Suppose that a graph G with k edges is realizable. Then for

any 0 < ε < 1 and any m ≥ 8
ε2 ln(4k) one can place the nodes v1, · · · , vn on

points v1, · · · ,vn in Rm so that

ρ{i,j}(1 − ε) ≤ ‖vi − vj‖2 ≤ ρ{i,j}(1 + ε), {i, j} ∈ E .

• Proof

◦ Define a constraint matrix Ai,j for each edge’s constraint.
◦ Show that each constraint matrix Ai,j is S+

n

◦ Since G is realizable, we can use the approximation result of Proposition 7
directly.

• Existence result, often seen as an objective for dimensionality reduction
algorithms
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Final Exam
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Description & Questions

• 3 hours, Thu. 14th, 14:00→ 17:00, room 001 downstairs.

◦ ≈ 1 hour for short questions / multiple choice questions
◦ 2 small exercises to check your understanding of the lectures.
◦ 1 problem to see how you can generalize from lectures.

• Each part graded proportionally.

• A letter format cheat sheet is allowed, nothing else.
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