ORF 522

Linear Programming and Convex Analysis

A window on semidefinite programming

Marco Cuturi

So far

- Linear programming in \mathbf{R}^n
 - Simplex
 - Duality, dual simplex,
 - $\circ\,$ Structured constraints: network flows
 - $\circ\,$ Complexity: ellipsoid method
 - $\circ\,$ Efficiency: Interior Point Methods
 - Applications: OR, finance etc.
- A first generalization: Integer programs
 - cutting planes
 - branch& bound, branch & cut.
- Another?

Today

- finish this course with a **window** on **semi-definite programs**.
- A transition to ORF523.
- Semidefinite programming = linear programming in the cone of positive semidefinite matrices.
- typically

$$\begin{array}{lll} \text{minimize} & \langle C, X \rangle \\ \text{subject to} & \langle A_1, X \rangle &= b_1 \\ & \langle A_2, X \rangle &= b_2 \\ & \vdots &= \vdots \\ & \langle A_m, X \rangle &= b_m \\ & X \succ \mathbf{0} \end{array}$$

- Very very powerful tool. hot topic in last twenty years.
- Nesterov/Nemirovskii (1988) prove that IPM can be generalized to SDP's.
- After integer programs, a **further generalization** of LP's.
- Goal: focus on the **cone of semidefinite matrices** and its properties.

Faces and the Krein Milman Theorem

Reminder on Faces and Dimensions of Convex Sets

Definition 1. Let C be a closed convex set. A set $F \subset C$ is called a **face** of C if there exists an affine hyperplane H which isolates C and such that $F = C \cap H$.

Definition 2. The dimension of a convex set $C \subset \mathbf{R}^d$ is the dimension of the smallest affine subspace that contains K

remark

- 1. A face K of dimension 0 is an **exposed point**.
- 2. A face K of dimension 1 is an **edge**.
- 3. A face K of dimension d-2 is called a ridge.
- 4. A face K of dimension d-1 is called a facet.

Combinations of Points

Given points $\mathbf{x}_1, \cdots, \mathbf{x}_m$, \mathbf{x} is a

- linear combination if $\exists \lambda_1, \cdots, \lambda_m$ such that
- affine combination if $\exists \lambda_1, \cdots, \lambda_m, \ \sum_{i=1}^m \lambda_i = 1$ such that
- convex combination if $\exists \lambda_1, \cdots, \lambda_m \ge 0$, $\sum_{i=1}^m \lambda_i = 1$ such that
- conic combination if $\exists \lambda_1, \cdots, \lambda_m \geq \mathbf{0}$ such that

$$\mathrm{x} = \sum_{i=1}^m \lambda_i \mathrm{x}_i$$

Affine independence

Definition 3. Points $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_k$ in \mathbf{R}^n are affinely independent (a.i.) if

One can show that all the following statements are equivalent

(i)
$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \mathbf{R}^n$$
 are affinely independent
(ii) $\forall i \in \{1, \dots, k\}$ vectors $\{\mathbf{x}_j - \mathbf{x}_i, j = 1, \dots, k; j \neq i\}$ are l.i.
(iii) $\dim(\langle \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \rangle) = k - 1$

(iv) Every point of $\langle \mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_k \rangle$ can be described as a **unique convex** combination of $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_k$. \rightarrow "barycentric" coordinates.

(v)
$$\begin{pmatrix} \vdots & \vdots & \cdots & \vdots \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_k \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$
 is invertible.

Interior points and Dimensionality

Theorem 1. Let $C \subset \mathbb{R}^n$ be a convex set. If $C = \emptyset$ then there exists an affine subspace $L \subset \mathbb{R}^n$ such that $C \subset L$ and dim L < n.

- **Proof**: no n + 1 affinely independent points in C.
 - \circ if not, set $\Delta = \langle \mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{n+1} \rangle$ and we have $\Delta \subset C$.
 - Let $\mathbf{u} = \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbf{x}_i$ be the barycenter of Δ .
 - For ε small enough $B_{\varepsilon}(\mathbf{u}) \subset \Delta$. Use invertibility of the matrix above.
 - $\circ~$ Hence Δ has an interior point, C too, which is absurd.
- Let k < n+1 be the maximal number of affinely independent points in C.
- Then for each point \mathbf{x} of C, there exists a collection of weights

$$\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k + \alpha \mathbf{x} = \mathbf{0}, \ \alpha_1 + \dots + \alpha_k + \alpha = 0, \text{ with } \alpha \neq 0$$

• x can be expressed as the affine combination

$$\mathbf{x} = -\frac{\alpha_1}{\alpha} \mathbf{x}_1 - \frac{\alpha_1}{\alpha} \mathbf{x}_2 - \dots - \frac{\alpha_k}{\alpha} \mathbf{x}_k$$

• Thus C lies in the affine hull L of $\mathbf{x}_1, \cdots, \mathbf{x}_k$ whose dimension is k - 1 < n.

Reminder on Faces

Lemma 1. Let C be a closed convex set, and F a face of C such that $F = C \cap H \neq \emptyset$ where H is a supporting hyperplane of C. Then any extreme point of F is an extreme point of C.

- *F* is a non-empty closed convex set.
- Let $H_{\mathbf{c},z}$ be a supporting hyperplane at $\mathbf{c} \in C$ and write $F = H_{\mathbf{c},z} \cap C$.
- an extreme point of F is an extreme point of C
 - suppose $\mathbf{x} \in F$, that is $\mathbf{c}^T \mathbf{x} = z$, is **not** an ext. point of C, i.e $\exists \mathbf{x}_1 \neq \mathbf{x}_2 \in C$ such that $\mathbf{x} = \frac{\mathbf{x}_1 + \mathbf{x}_2}{2}$.
 - If $\mathbf{x}_1 \notin F$ or $\mathbf{x}_2 \notin A$ then $\frac{1}{2}\mathbf{c}^T(\mathbf{x}_1 + \mathbf{x}_2) > z = \mathbf{c}^T\mathbf{x}$ hence $\mathbf{x}_1, \mathbf{x}_2 \in F$ and thus \mathbf{x} is **not** an ext. point of F.

Krein Milman

Theorem 2. Let $C \subset \mathbb{R}^n$ be a compact convex set. Then C is the convex hull of the set of its extreme points, that is $C = \langle \mathbf{Ex}(C) \rangle$.

- **Proof**: by induction on the dimension n of the ambient space.
- if n = 0 then C is a point and the result follows.
- suppose n > 0. if $\check{C} = \emptyset$ then it lies on a space of lower dimension and result is proved.
- suppose n > 0 and $\overset{\circ}{C} \neq \emptyset$. Let $\mathbf{u} \in C$.
 - \circ if \mathbf{u} is a boundary point, $\mathbf{u} \in \partial C$,
 - \triangleright u belongs to a face F of C whose dimension is lower than n.
 - \triangleright by recursion $\mathbf{u} \in \langle \mathbf{Ex}(F) \rangle$ and $\mathbf{Ex}(F) \subset \mathbf{Ex}(C)$.
 - \circ if $\mathbf{u} \in \check{C}$,
 - ▷ let *L* be any arbitrary line (affine subspace of dim. 1) that contains **u**. ▷ $L \cap C = [\mathbf{a}, \mathbf{b}]$ where $\mathbf{a}, \mathbf{b} \in \partial C$.
 - \triangleright **u** is a **convex** combination of **a**, **b** which resp. belong to $\langle \mathbf{Ex}(C) \rangle$.

Existence of Extreme Points

Lemma 2. Let $C \subset \mathbb{R}^n$ be a non-empty closed convex set which does not contain straight lines. Then C has an extreme point.

- **Proof**: similar to Krein-Milman..
- let's do it together.

• Direct corollary: a non-empty compact convex set has an extreme point.

Convex Cones

Cones

• A set $K \subset \mathbf{R}^n$ is called a **cone** if $\forall \mathbf{x} \in K, \lambda \ge 0 \Rightarrow \lambda \mathbf{x} \in K$.

• Alternatively, a set K is a convex cone if $\forall \mathbf{x}, \mathbf{y} \in K, \alpha, \beta \ge 0 \Rightarrow \alpha \mathbf{x} + \beta \mathbf{y} \in K.$

Conic Hull & Rays

- The conic hull $\mathbf{Co}(S)$ is the set of all **conic** combinations of points taken in S.
- The conic hull Co(x) of a singleton $\{x\}$ is called the **ray** spanned by x.
- Let K ⊂ Rⁿ be a cone and K₁ ⊂ K a ray. K₁ is an extreme ray of K if for any u ∈ K₁ and any x, y ∈ K

$$\mathbf{u} = \frac{\mathbf{x} + \mathbf{y}}{2} \Rightarrow \mathbf{x}, \mathbf{y} \in K_1$$

Isolating Hyperplanes and Cones

Lemma 3. Let $K \subset \mathbb{R}^n$ be a cone and let $H \subset \mathbb{R}^n$ be an affine hyperplane isolating K and such that $K \cap H \neq \emptyset$. Then $\mathbf{0} \in H$.

Proof: Let $\mathbf{y} \in K \cap H$. Assume $H = H_{\mathbf{c},t}$ and $K \subset \overline{H_+}$. By definition of K, $\mathbf{0} \in K$. Moreover, $\forall \mathbf{x} \in K \ \mathbf{c}^T \mathbf{x} \ge \mathbf{c}^T \mathbf{y}$. Applying this to $\mathbf{0}$ we get $0 \ge t$. Suppose t < 0, that is $\mathbf{c}^T \mathbf{y} < 0$. Then for $\lambda > 1$, $\lambda \mathbf{c}^T \mathbf{y} < \mathbf{c}^T \mathbf{y}$ and thus \mathbf{y} is in H_- while $\lambda \mathbf{y} \in K \subset \overline{H_+}$. Hence t = 0 and $\mathbf{0} \in H$.

Positive Definite Matrices

Symmetric Matrices

Definition 4. A matrix $A \in \mathbf{R}^{n \times n}$ is called symmetric if $A^T = A$.

• The space \mathbf{Sym}_n of symmetric matrices is a vector space.

It can be identified with
$$R^{\frac{n(n+1)}{2}}$$

- A matrix $U \in \mathbf{R}^{n \times n}$ is orthogonal if $UU^T = I_n$ that is $U^T = U^{-1}$.
- For any matrix A in \mathbf{Sym}_n there exists an orthogonal matrix U such that UAU^T is a **diagonal** matrix Δ
- This diagonal elements of Δ are the **eigenvalues** of A.
- The canonical scalar product of two symmetric matrices A and B is defined as

$$\langle A, B \rangle = \operatorname{tr}(AB) = \operatorname{tr}(BA).$$

• Note that for any orthogonal matrix U,

$$\langle A,B\rangle = \langle UAU^T,UBU^T\rangle$$

Positive Definite Matrices

Definition 5. A matrix $A \in \mathbf{Sym}_n$ is positive definite (resp. semi-definite) if all its eigenvalues are positive (resp. nonnegative).

- Alternative characterization: A is p.d. (resp. p.s.d.) if for all $\mathbf{x} \in \mathbf{R}^n$, $\mathbf{x} \neq \mathbf{0}$, $\mathbf{x}^T A \mathbf{x} > 0$ (resp. $\mathbf{x}^T A \mathbf{x} \ge 0$)
- We write \mathbf{S}_n^+ for the set of positive **semi-definite** matrices of size n
- For any matrix $A \in \mathbf{S}_n^+$ there exists U orthogonal such that $A = U\Delta U^T$ with Δ a **nonnegative** diagonal matrix.

A few properties (out of hundreds)

• Note that for all elements of a p.s.d. matrix A,

$$a_{ij}^2 \le a_{ii}a_{jj}$$

why? *hint*: use $\Delta^{\frac{1}{2}}$ and the Cauchy-Schwartz inequality.

- Any diagonal entry of $A \in \mathbf{S}_n^+$ is non-negative. why? use \mathbf{e}_i .
- If $A \in \mathbf{S}_n^+$ and P any invertible matrix of $\mathbf{R}^{n \times n}$ then $PAP^{-1} \in \mathbf{S}_n^+$.
- If A, B ∈ S⁺_n, ⟨A, B⟩ ≥ 0. why? *hint*: decompose B into a sum of rank 1 matrices and compute ⟨A, B⟩

Interior of S_n^+

Lemma 4. A is an interior point of S_n^+ iff A is p.d.

- **Proof**: let A be in \mathbf{S}_n^+ and let $U = [\mathbf{u}_1, \cdots, \mathbf{u}_n]$ orthogonal such that $A = U\Delta U^T$.
- (\Rightarrow) suppose $\exists \varepsilon > 0$ such that $\forall M \in \mathbf{Sym}_n, \ \|A M\|^2 < \varepsilon \Rightarrow M \in \mathbf{S}_n^+.$
 - Suppose ∃j such that Au_j = 0, i.e. A has a zero eigenvalue δ_j.
 Let A' = A + tu_ju_j^T. ||A A'|| = t² and u_j^TA'u_j = t.
 taking t < 0 with t² < ε we have A' ∈ B_ε(A) but ∉ S_n⁺.
- (\Leftarrow) suppose A is p.d. For all $j = 1, \dots, n, \ \mathbf{u}_j^T A \mathbf{u}_j = \lambda_j > 0.$
 - For each $j = 1, \dots, n$, $\exists \varepsilon_j$ such that $\forall M \in B_{\varepsilon_j}(A)$, $\mathbf{u}_j^T M \mathbf{u}_j > 0$ by continuity of the function

$$\begin{array}{rccc} \mathbf{Sym}_n & \mapsto & \mathbf{R} \\ M & \rightarrow & \mathbf{u}_j^T M \mathbf{u}_j \end{array}$$

• Let $\varepsilon = \min \varepsilon_j$. Let $\mathbf{x} \in \mathbf{R}^n$ decomposed as $\sum_{i=1}^n x_i \mathbf{u}_i$ not be zero. • For $M \in B_{\varepsilon}(A), \mathbf{x}^T M \mathbf{x} = \sum_{i=1}^n x_i (\mathbf{u}_j^T M \mathbf{u}_j) > 0$.

Faces of S_n^+

Proposition 3. Let $A \in \mathbf{S}_n^+$. Suppose that $\operatorname{\mathbf{Rank}}(A) = r$. If r = n, A is an interior point of \mathbf{S}_n^+ . If r < n, A is an interior point of a face F of \mathbf{S}_n^+ , where $\dim(F) = r(r+1)/2$. There is a rank-preserving isometry identifying F with $\operatorname{\mathbf{Sym}}_r$.

- r = n has just been solved.
- Suppose Rank(A) = r < n. We build a suitable hyperplane H ⊂ Sym_n which contains A and isolates S⁺_n.
 - Let $\lambda_1, \dots, \lambda_r$ the non-zero eigenvalues of A.
 - Define U orthogonal such that $A = U\Delta U^T$ and $\Delta = \operatorname{diag}(\lambda_1, \cdots, \lambda_r, 0, \cdots, 0).$
 - Let $C = \operatorname{diag}(0, \cdots, 0, 1, \cdots, 1)$ be the diagonal matrix of r zeroes and n r ones.
 - Let $Q = UCU^T$. Obviously $Q \in \mathbf{S}_n^+$ and $\langle A, Q \rangle = 0$.
 - Furthermore, $\forall Y \in \mathbf{S}_n^+, \langle Y, Q \rangle = \langle U^T Y U, C \rangle \ge 0.$
 - Therefore $H = \{X \in \mathbf{Sym}_n | \langle Q, X \rangle = 0\}$ isolates \mathbf{S}_n^+ and contains A.
 - Set $F = \mathbf{S}_n^+ \cap H$. The map $\varphi : X \to Y = U^T X U$ maps Q onto C and A onto D.
 - $\circ \ \varphi(F)=F'=\{Y\in \mathbf{Sym}_n|\langle C,Y\rangle=0\}. \ \text{Let}\ Y\in F'.$

• By nonnegativity of its diagonals, $y_{jj} = 0$ for $j \ge r + 1$. Y must thus have the following block structure

$$Y = \begin{bmatrix} W_{r \times r} & \mathbf{0}_{r \times n-r} \\ \mathbf{0}_{n-r \times r} & \mathbf{0}_{n-r \times n-r} \end{bmatrix},$$

with $W_{r \times r} \in \mathbf{S}_r^+$

- Hence the face F' can be identified with \mathbf{S}_r^+ and \mathbf{S}_r^+ contains D in its interior.
- Since $\varphi^{-1}: Y \mapsto X = UYU^T$ is a non-degenerate linear transformation, which maps D to A and F' to F,
- we have $\dim(F) = r(r+1)/2$ and F contains A in its interior.

Next time

• Linear equation in \mathbf{S}_n^+ .