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So far

• Linear programming in Rn

◦ Simplex
◦ Duality, dual simplex,
◦ Structured constraints: network flows
◦ Complexity: ellipsoid method
◦ Efficiency: Interior Point Methods
◦ Applications: OR, finance etc.

• A first generalization: Integer programs

◦ cutting planes
◦ branch& bound, branch & cut.

• Another?
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Today

• finish this course with a window on semi-definite programs.

• A transition to ORF523.

• Semidefinite programming = linear programming in the cone of positive
semidefinite matrices.

• typically
minimize 〈C,X〉
subject to 〈A1,X〉 = b1

〈A2,X〉 = b2
... = ...

〈Am, X〉 = bm

X � 0

• Very very powerful tool. hot topic in last twenty years.

• Nesterov/Nemirovskii (1988) prove that IPM can be generalized to SDP’s.

• After integer programs, a further generalization of LP’s.

• Goal: focus on the cone of semidefinite matrices and its properties.
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Faces and the Krein Milman Theorem
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Reminder on Faces and Dimensions of Convex Sets

Definition 1. Let C be a closed convex set. A set F ⊂ C is called a face of C if
there exists an affine hyperplane H which isolates C and such that F = C ∩H.

Definition 2. The dimension of a convex set C ⊂ Rd is the dimension of the
smallest affine subspace that contains K

• remark

1. A face K of dimension 0 is an exposed point.
2. A face K of dimension 1 is an edge.
3. A face K of dimension d − 2 is called a ridge.
4. A face K of dimension d − 1 is called a facet.
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Combinations of Points

Given points x1, · · · ,xm, x is a

• linear combination if ∃λ1, · · · , λm such that

• affine combination if ∃λ1, · · · , λm,
∑m

i=1 λi = 1 such that

• convex combination if ∃λ1, · · · , λm≥ 0,
∑

m

i=1
λi = 1 such that

• conic combination if ∃λ1, · · · , λm≥ 0 such that

x =

m
∑

i=1

λixi
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Affine independence
Definition 3. Points x1,x2, · · · ,xk in Rn are affinely independent (a.i.) if

a1x1 + a2x2 + · · · + akxk = 0, a1 + a2 + · · · + ak = 0
⇓

a1 = a2 = · · · = ak = 0

One can show that all the following statements are equivalent

(i) x1,x2, · · · ,xk ∈ Rn are affinely independent

(ii) ∀i ∈ {1, · · · , k} vectors {xj − xi, j = 1, · · · , k; j 6= i} are l.i.

(iii) dim(〈x1,x2, · · · ,xk〉) = k − 1

(iv) Every point of 〈x1,x2, · · · ,xk〉 can be described as a unique convex
combination of x1,x2, · · · ,xk. → “barycentric” coordinates.

(v)









... ... · · · ...
x1 x2 · · · xk
... ... · · · ...
1 1 · · · 1









is invertible.
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Interior points and Dimensionality
Theorem 1. Let C ⊂ Rn be a convex set. If

◦

C = ∅ then there exists an affine
subspace L ⊂ Rn such that C ⊂ L and dimL < n.

• Proof: no n + 1 affinely independent points in C.

◦ if not, set ∆ = 〈x1,x2, · · · ,xn+1〉 and we have ∆ ⊂ C.
◦ Let u = 1

n+1

∑n+1
i=1 xi be the barycenter of ∆.

◦ For ε small enough Bε(u) ⊂ ∆. Use invertibility of the matrix above.
◦ Hence ∆ has an interior point, C too, which is absurd.

• Let k < n + 1 be the maximal number of affinely independent points in C.

• Then for each point x of C, there exists a collection of weights

α1x1 + · · · + αkxk + αx = 0, α1 + · · · + αk + α = 0, with α 6= 0

• x can be expressed as the affine combination

x = −
α1

α
x1 −

α1

α
x2 − · · · −

αk

α
xk

• Thus C lies in the affine hull L of x1, · · · ,xk whose dimension is k − 1 < n.
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Reminder on Faces

Lemma 1. Let C be a closed convex set, and F a face of C such that
F = C ∩ H 6= ∅ where H is a supporting hyperplane of C. Then any extreme
point of F is an extreme point of C.

• F is a non-empty closed convex set.

• Let Hc,z be a supporting hyperplane at c ∈ C and write F = Hc,z ∩ C.

• an extreme point of F is an extreme point of C

◦ suppose x ∈ F , that is cTx = z, is not an ext. point of C, i.e
∃x1 6= x2 ∈ C such that x = x1+x2

2 .
◦ If x1 /∈ F or x2 /∈ A then 1

2c
T (x1 + x2) > z = cTx hence x1,x2 ∈ F and

thus x is not an ext. point of F .
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Krein Milman

Theorem 2. Let C ⊂ Rn be a compact convex set. Then C is the convex hull
of the set of its extreme points, that is C = 〈Ex(C)〉.

• Proof: by induction on the dimension n of the ambient space.

• if n = 0 then C is a point and the result follows.

• suppose n > 0. if
◦

C = ∅ then it lies on a space of lower dimension and result is
proved.

• suppose n > 0 and
◦

C 6= ∅. Let u ∈ C.

◦ if u is a boundary point, u ∈ ∂C,
⊲ u belongs to a face F of C whose dimension is lower than n.
⊲ by recursion u ∈ 〈Ex(F )〉 and Ex(F ) ⊂ Ex(C).

◦ if u ∈
◦

C,
⊲ let L be any arbitrary line (affine subspace of dim. 1) that contains u.
⊲ L ∩ C = [a,b] where a,b ∈ ∂C.
⊲ u is a convex combination of a,b which resp. belong to 〈Ex(C)〉.
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Existence of Extreme Points

Lemma 2. Let C ⊂ Rn be a non-empty closed convex set which does not
contain straight lines. Then C has an extreme point.

• Proof: similar to Krein-Milman..

• let’s do it together.

• Direct corollary: a non-empty compact convex set has an extreme point.
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Convex Cones
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Cones

• A set K ⊂ Rn is called a cone if ∀x ∈ K, λ ≥ 0 ⇒ λx ∈ K.

a1

K

a2

• Alternatively, a set K is a convex cone if
∀x,y ∈ K,α, β ≥ 0 ⇒ αx + βy ∈ K.

a1

a2

K
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Conic Hull & Rays

• The conic hull Co(S) is the set of all conic combinations of points taken in S.

• The conic hull Co(x) of a singleton {x} is called the ray spanned by x.

• Let K ⊂ Rn be a cone and K1 ⊂ K a ray. K1 is an extreme ray of K if for
any u ∈ K1 and any x,y ∈ K

u =
x + y

2
⇒ x,y ∈ K1

K

a1

a3a2
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Isolating Hyperplanes and Cones

Lemma 3. Let K ⊂ Rn be a cone and let H ⊂ Rn be an affine hyperplane
isolating K and such that K ∩ H 6= ∅. Then 0 ∈ H.

K

Hc,t
0

a2
a1

a3

c

Proof: Let y ∈ K ∩ H. Assume H = Hc,t and K ⊂ H+. By definition of K,
0 ∈ K. Moreover, ∀x ∈ K cTx ≥ cTy. Applying this to 0 we get 0 ≥ t.
Suppose t < 0, that is cTy < 0. Then for λ > 1, λcTy < cTy and thus y is in
H− while λy ∈ K ⊂ H+. Hence t = 0 and 0 ∈ H.
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Positive Definite Matrices
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Symmetric Matrices

Definition 4. A matrix A ∈ Rn×n is called symmetric if AT = A.

• The space Symn of symmetric matrices is a vector space.

• It can be identified with R
n(n+1)

2 .

• A matrix U ∈ Rn×n is orthogonal if UUT = In that is UT = U−1.

• For any matrix A in Symn there exists an orthogonal matrix U such that
UAUT is a diagonal matrix ∆

• This diagonal elements of ∆ are the eigenvalues of A.

• The canonical scalar product of two symmetric matrices A and B is defined as

〈A, B〉 = tr(AB) = tr(BA).

• Note that for any orthogonal matrix U ,

〈A, B〉 = 〈UAUT , UBUT 〉
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Positive Definite Matrices

Definition 5. A matrix A ∈ Symn is positive definite (resp. semi-definite) if
all its eigenvalues are positive (resp. nonnegative).

• Alternative characterization: A is p.d. (resp. p.s.d.) if for all x ∈ Rn, x 6= 0,
xTAx > 0 (resp. xTAx ≥ 0)

• We write S+
n for the set of positive semi-definite matrices of size n

• For any matrix A ∈ S+
n there exists U orthogonal such that A = U∆UT with

∆ a nonnegative diagonal matrix.

Princeton ORF-522 18



A few properties (out of hundreds)

• Note that for all elements of a p.s.d. matrix A,

a2
ij ≤ aiiajj

why? hint: use ∆
1
2 and the Cauchy-Schwartz inequality.

• Any diagonal entry of A ∈ S+
n is non-negative. why? use ei.

• If A ∈ S+
n and P any invertible matrix of Rn×n then PAP−1 ∈ S+

n .

• If A, B ∈ S+
n , 〈A, B〉 ≥ 0. why? hint: decompose B into a sum of rank 1

matrices and compute 〈A, B〉
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Interior of S+
n

Lemma 4. A is an interior point of S+
n iff A is p.d.

• Proof: let A be in S+
n and let U = [u1, · · · ,un] orthogonal such that

A = U∆UT .

• (⇒) suppose ∃ε > 0 such that ∀M ∈ Symn, ‖A − M‖2 < ε ⇒ M ∈ S+
n .

◦ Suppose ∃j such that Auj = 0, i.e. A has a zero eigenvalue δj.
◦ Let A′ = A + tuju

T
j . ‖A − A′‖ = t2 and uT

j A′uj = t.

◦ taking t < 0 with t2 < ε we have A′ ∈ Bε(A) but /∈ S+
n .

• (⇐) suppose A is p.d. For all j = 1, · · · , n, uT
j Auj = λj > 0.

◦ For each j = 1, · · · , n, ∃εj such that ∀M ∈ Bεj
(A), uT

j Muj > 0 by
continuity of the function

Symn 7→ R
M → uT

j Muj
.

◦ Let ε = min εj. Let x ∈ Rn decomposed as
∑n

i=1 xiui not be zero.
◦ For M ∈ Bε(A),xTMx =

∑n

i=1 xi(u
T
j Muj) > 0.
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Faces of S+
n

Proposition 3. Let A ∈ S+
n . Suppose that Rank(A) = r. If r = n, A is an

interior point of S+
n . If r < n, A is an interior point of a face F of S+

n , where
dim(F ) = r(r + 1)/2. There is a rank-preserving isometry identifying F with
Symr.

• r = n has just been solved.

• Suppose Rank(A) = r < n. We build a suitable hyperplane H ⊂ Symn

which contains A and isolates S+
n .

◦ Let λ1, · · · , λr the non-zero eigenvalues of A.
◦ Define U orthogonal such that A = U∆UT and

∆ = diag(λ1, · · · , λr, 0, · · · , 0).
◦ Let C = diag(0, · · · , 0, 1, · · · , 1) be the diagonal matrix of r zeroes and

n − r ones.
◦ Let Q = UCUT . Obviously Q ∈ S+

n and 〈A,Q〉 = 0.
◦ Furthermore, ∀Y ∈ S+

n , 〈Y,Q〉 = 〈UTY U,C〉 ≥ 0.
◦ Therefore H = {X ∈ Symn|〈Q,X〉 = 0} isolates S+

n and contains A.
◦ Set F = S+

n ∩ H. The map ϕ : X → Y = UTXU maps Q onto C and A
onto D.

◦ ϕ(F ) = F ′ = {Y ∈ Symn|〈C, Y 〉 = 0}. Let Y ∈ F ′.
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◦ By nonnegativity of its diagonals, yjj = 0 for j ≥ r + 1. Y must thus have
the following block structure

Y =

[

Wr×r 0r×n−r

0n−r×r 0n−r×n−r

]

,

with Wr×r ∈ S+
r

◦ Hence the face F ′ can be identified with S+
r and S+

r contains D in its
interior.

◦ Since ϕ−1 : Y 7→ X = UY UT is a non-degenerate linear transformation,
which maps D to A and F ′ to F ,

◦ we have dim(F ) = r(r + 1)/2 and F contains A in its interior.
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Next time

• Linear equation in S+
n .
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