
ORF 522

Linear Programming and Convex Analysis

Integer Linear Programming

Marco Cuturi

Princeton ORF-522 1



Reminder

• Integer programming formulations

◦ Interest of integer programming to model real-life problems
◦ Examples of reformulations
◦ Relaxations and strong formulations

⊲ X = {x ∈ N
n |Ax ≥ b, A ∈ Z

m×n,b ∈ Z
m} feasible set of an IP.

⊲ If we were able to defined a matrix M ∈ Z
p×n (with p ≫ m usually) such

that
〈X〉={x ∈ R

n |Mx ≥ d, M ∈ Z
p×n,d ∈ Z

p}

then we would be saved: solution is an extreme point, hence integer.
⊲ Very hard to obtain M directly.
⊲ Instead look for M,d such that the two sets are not too different.

Princeton ORF-522 2



Today

• Integer programming algorithms

◦ Cutting plane methods
◦ Branch & Bound, Branch & Cut
◦ Dynamic Programming

• Duality for IP.

Princeton ORF-522 3



Methods

Princeton ORF-522 4



Overview of Methods

• Three main categories of algorithms:

◦ Exact algorithms: guaranteed to find an exact optimum, but may take
exponential time.
⊲ cutting plane methods
⊲ branch & bound, branch & cut
⊲ dynamic programming (for some problems)

◦ Approximation algorithms: polynomial time with a bound on suboptimality.
Only work as specialized solutions that use advanced tricks.

◦ Heuristic algorithms: no theoretical guarantee at all, but acceptable to
good practical performance. Usually fall in local-minima.

• We will focus on exact algorithms.

Princeton ORF-522 5



Cutting Plane Methods

Princeton ORF-522 6



Updating recursively the relaxation of an IP

• Remember that for an integer program (IP)

minimize cTx
subject to Ax = b

x ∈ N

its linear programming relaxation (LPR) is defined as

minimize cTx
subject to Ax = b

x ≥ 0

• The main idea behind cutting plane algorithms:

1. Solve (LPR), get an optimal solution x⋆.
2. If x⋆ is integer, stop with that solution for (IP).
3. If not, add an inequality constraint to (LPR) that integer solutions of (IP)

satisfy but that x⋆ does not. Go back to 1.

Princeton ORF-522 7



Gomory Cutting Plane Algorithm

• Gomory (1958) proposed a way to generate such inequalities with the simplex.

• Suppose we have an optimum x⋆ of (LPR) with index set I = {i1, · · · , im}.

• We write O for {1, · · · , n} \ I.

• As usual, x⋆
ik

= (B−1
I b)k and x⋆

j = 0 when j ∈ O.

• For any feasible integer solution x of (IP), Ax = b can be decomposed as

B−1
I AIxI + B−1

I AOxO = B−1
I b, or equivalently

xI + B−1
I AOxO = B−1

I b.

• For any 1 ≤ j ≤ n, we write yj = B−1
I aj. For each ik of I, the kth line of the

vector equality above yields

xik +
∑

j∈O

(yj)k xj = (B−1
I b)k = x⋆

ik

Princeton ORF-522 8



Non-integer optimal solution and constraint derivation

• There must be an index in I such that x⋆
ik

is fractional. Suppose it is ir. Then,

xir +
∑

j∈O

⌊(yj)r⌋xj ≤ xir +
∑

j∈O

(yj)r xj = x⋆
ir

• Since the xj are integers,

xir +
∑

j∈O

⌊(yj)r⌋xj ≤ ⌊x⋆
ir
⌋

• This inequality is valid for all integer solutions

• It is invalid for x⋆ since x⋆
j = 0 and x⋆

ir
6= ⌊x⋆

ir
⌋ ⇒ what we wanted.

• Practical implementation?

◦ add constraints: dual simplex.
◦ Performance is relatively poor. More structure is needed to improve the cuts.

Princeton ORF-522 9



Branch-and-bound / Branch-and-cut

Princeton ORF-522 10



Branch-and-bound

• Family of algorithms proposed in the 60’s

• Use the divide and conquer approach to tackle an optimization problem.

• Start from a program
minimize cTx
subject to x ∈ F

divide it into subprograms, where
⋃k

i=1 Fi = F , to compute for each
i = 1, · · · , k

minimize cTx
subject to x ∈ Fi,

• A subprogram on Fi may be equally difficult as on F . Divide again:

F

F1

F2

F3

F32

F33

F31

Princeton ORF-522 11



Branch-and-bound

• So far, the divide part is intuitive.

• the conquer can be achieved is we have a cheap way to estimate a lower
bound of the objective on Fi, that is l(Fi) such that

l(Fi) ≤ min
x∈Fi

cTx

• A lower bound can be typically obtained by using a relaxation, or duality.

Princeton ORF-522 12



Branch-and-bound: intuitions

• Suppose an optimum on F1 has been computed as p⋆
1 = U

F

F1

F2

F3

F32

F33

F31
p⋆

1 = U

• If l(F2) ≥ U then no need to check F2 in detail.

• Skip to F3. Suppose l(F3) ≤ U .

• We do not know whether a better point might be in F3 but need to check

F

F1

F2

F3

F32

F33

F31
p⋆

1 = U

Princeton ORF-522 13



Branch-and-bound: intuitions

• Suppose l(F32) ≥ U and l(F33) ≥ U . No need to check further.

• Suppose l(F31) ≤ U . Then we compute (expensive) the optimum on F31:

F

F1

F2

F3

F32

F33

F31
p⋆

1 = U
p⋆

31
= V

• Suppose p⋆
31

= V < U ⇒ we have found the optimum.

Princeton ORF-522 14



Branch-and-bound: Generic Algorithm

Algorithm Steps:

1. Select an active subproblem defined on Fi.

2. If Fi is infeasible, delete it.

3. If not, compute l(Fi). If l(Fi) ≥ U , delete it

4. If l(Fi) < U , then either partition Fi either compute the optimum on Fi.

• Only a concept so far: a lot of free parameters.

◦ how to choose the active subproblem?.
◦ how to obtain the lower bound l? LP relaxation, dual.
◦ how to define the partitions given a set F?

• Intuition: the tighter the lower bound, the better.

Princeton ORF-522 15



Branch-and-cut: Generic Algorithm

• A mixture of cuts and branch-and-bound

Algorithm Steps:

1. Select an active subproblem defined on Fi.

2. If Fi is infeasible, delete it.

3. If not, compute l(Fi). If l(Fi) ≥ U , delete it

4. If l(Fi) = V < U ,

(a) use cuts to obtain a series of increasing lower bounds
V ≤ V1 ≤ V2 ≤ · · · ≤ Vn.

(b) n is defined adaptively.
(c) Partition Fi, select an active subset Fij and use Vn.

• Even more parameters.. becomes more something of an art.

Princeton ORF-522 16



Dynamic Programming

Princeton ORF-522 17



Dynamic Programming Philosophy

• Dynamic programming is a family of recursive methods to solve programs.

• Cannot be applied to all integer programs unfortunately.

• First, turn a program into a sequence of decisions where each variable is
iteratively modified.

• dynamic programming works when the principle of optimality is satisfied.

principle of optimality (Bellman, 1957)

An optimal policy has the property that whatever the initial state and initial

decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision.

Princeton ORF-522 18



Dynamic Programming Philosophy

• Dynamic programming is one of the most widely used algorithms class.

• Used to compare complex structures, find optimal allocations, optimal control.

• A non-exhaustive list of examples:

◦ to compare sequences by considering alignments
⊲ Speech (Dynamic Time Warping),
⊲ biological sequence analysis (Smith Waterman),
⊲ text analysis (Levenshtein distance), detect common subsequences.

◦ Viterbi algorithm for Hidden Markov Processes.
◦ Selinger algorithm for query optimization in databases.
◦ Recursive least-squares in statistics.
◦ Bellman-Ford algorithm to compute shortest distance on a graph.
◦ Pricing of American type Options.
◦ Optimal control for trading strategies.

• The underlying idea of these algorithms is Bellman’s principle of optimality.

Princeton ORF-522 19



Example

Discrete Allocation

• A company has 5 million $ to allocate to 3 different plants.

• Each plants has a few projects which have costs and expected revenues.

(1) has 3 projects: (2) has 4 projects: (3) has 2 projects:

(a) do nothing (0, 0).

(b) small exp. (1,5).

(c) med. exp. (2,6).

(a) nothing (0,0).

(b) med. exp. (2, 8).

(c) large exp. (3, 9).

(d) XL exp. (4,12).

(a) do nothing (0,0).

(b) small exp. (1,4).

• How can we maximize expected revenue using at most 5 million $?

• direct enumeration: 3 × 4 × 2 = 24 possibilities. Some unfeasible.

• Let’s find a more clever approach.

Princeton ORF-522 20



Example

• This is a linear integer program after all. Can be written as

maximize cTx
subject to x ∈ F

x ∈ {0, 1}9

• Could use branch/bound, cuts etc.

• An important observation: suppose we have an assignment x.

• This assignment can be seen as a sequential decision.

◦ select first a project proposed by (1).
◦ with the remaining money, select a project proposed by (2)
◦ with the remaining money, select finally a project proposed by (3)

somehow an artifical observation, but crucial

Princeton ORF-522 21



Example

Graphically, start from s, go to either 3a or 3b through a path.

s

1a

1b

1c
2d

2c

2b

2a

3a

3b

• how many paths in total?

• how many feasible paths?

• Intuitively, two notable facts:

◦ paths can cross.
◦ when reaching a state with a certain amount of money left, the previously

visited states do not matter to select the next best decision.

Princeton ORF-522 22



Example

• Starting from (1). With a capital between 0 and 5, we should invest in project:

Capital Optimal Project Revenue
0 a 0
1 b 5
2 c 6
3 c 6
4 c 6
5 c 6

• When examining plant (2), suppose we have 4 Mil$ available. For each
choice in (2), there is only one optimal choice to invest the remainder in (1).

Project Cost Revenue Remaining Capital Project (1) Total revenue
a 0 0 4 -0=4 c 0+6=6
b 2 8 4 -2=2 c 8+6=14
c 3 9 4 -3=1 b 9+5=14
d 4 12 4 -4=0 a 12+0=12

Princeton ORF-522 23



Example

• Computing these numbers not only for 4 Mil $, but other values 0,1,2,3,5 as
well, we come up with a similar table for (2):

Capital Optimal Project Revenue for (1) and (2)
0 a 0
1 a 5
2 b 8
3 b 13
4 b,c 14
5 d 17

• We can now look at options for (3). With (3) we only assume we start with 5
Mil$, and invest the remaining in (2), and (1).

Project Cost Revenue Remaining Capital Project (2) Total revenue
a 0 0 5 d 0+17=17
b 1 4 4 b,c 4+14=18

• Optimum? (3): b, (2): b/c (1): c/b

Princeton ORF-522 24



Summing Up

• Let the different nodes be
X = {(1, a), (1, b), (2, a), (2, b), (2, c), (2, d), (3, a), (3, b)}.

• Let r(x) and c(x), x ∈ X be their respective revenues and costs.

• Let fi(C), i ∈ {1, 2, 3} be the maximal revenue achievable when using plants
(1) to (i) with capital C.

• Then we have the following relationships:

f1(C) = max
{x=(j,s)∈X|j=1,c(x)≤C}

r(x),

for i = 2,3, fi(C) = max
{x=(j,s)∈X|j=i,c(x)≤C}

r(x) + fi−1 (C − c(x)) .

• Computing recursively f1, f2, f3 for C = {0, 1, 2, 3, 4, 5} the solution is f3(5).

• That is what we did exactly in the previous slides.

• Could have computed things in exactly the opposite (backward) way.

Princeton ORF-522 25



Dynamic Programming Implementations

Intuition: DP works for programs which have two properties:

• optimal substructure

◦ Reminiscent of the labelling algorithm in Ford-Fulkerson.

◦ Intuitively, additivity of costs plays an important role:
⊲ Example: minimizing air travel distance from NY to Johannesburg.
⊲ Counterexample: minimizing ticket price from NY to Johannesburg.

• overlapping subproblems

◦ a naive implementation would re-compute multiple times the same values.
◦ Consider for instance the Fibonacci series, Fn+2 = Fn+1 + Fn.

◦ Computing F10 involves computing recursively F9 and F8. But F9 = F8 + F7

◦ A recursive implementation would compute en exponential number of times
the terms F1, F2 etc..

Princeton ORF-522 26



Going back to the Zero-One Knapsack Problem

• n items, jth item has value cj and weight wj ⇒ vectors c and w.

• Variable x ∈ {0, 1}n where xj = 1 means the object is in the knapsack.

• A bound K on the maximum weight that can be carried by the knapsack.

maximize cTx
subject to wTx ≤ K

x ∈ {0, 1}n

Princeton ORF-522 27



Dynamic Programming Formulation

• Dynamic programming is dynamic.

• We thus have to make sure objects are ordered.

• Similarly to fi(C) in previous slides, with i ≤ n and u ∈ N, let Wi(u) be the

◦ least possible weight that has to be accumulated,
◦ in order to carry value u,
◦ using only items in {1, · · · , i}.

• Set a few boundary conditions:

Wi(u) = ∞ if infeasibility, W0(0) = 0, W0(u) = ∞ for u > 0.

• We then have the recursion:

Wi+1(u) = min (Wi(u) , Wi(u − ci+1) + wi+1)

Princeton ORF-522 28



Dynamic Programming with Knapsack

• Once all numbers Wi(u) are known, the optimal solution is obtained as

u⋆ = max{u|Wn(u) ≤ K}

• Compute for each relevant (i, u) the number Wi(u) recursively.

• u is an integer. can we upperbound it?

◦ Suppose
cmax = max

i=1,··· ,n
ci.

◦ Then u ≤ ncmax for all feasible choices. Wi(u) = ∞ for u > ncmax.

• On the other hand, 1 ≤ i ≤ n.

Hence the total number of pairs (i, u) of interest is O(n2cmax)

• Using the recursion, we can compute all the values of W in O(n2cmax) time.

Princeton ORF-522 29



Complexity

Theorem 1. The 0-1 knapsack problem can be solved in time O(n2cmax)

• Yet NP-hard problem. Contradiction?

• The size of the data required to described a knapsack problem is
O (n (log cmax + log wmax) + log K).

• Indeed, a number x can be stored in O(log(x)) bits.

• The term cmax is thus exponential in the size, not polynomial.

• Such algorithms are called pseudo-polynomial algorithms.

• For LP’s, the bound was O(n6 log(nU)) ⇒ polynomial.

Princeton ORF-522 30



Duality Theory for Integer Programs

Princeton ORF-522 31



Duality Theory: Formulation

• Not just theoretical interest: very important for branch-and-bound algorithms.

• Let us start from the beginning with a particular problem

minimize cTx
subject to Ax ≤ b

x ∈ X,

where X = {x∈ N |Dx ≥ d}. Suppose zIP is its optimum.

• We assume that optimizations on X can be done effectively (e.g. network flow
constraints). (A,b) are more difficult to handle.

• Introduce dual variables µ (Lagrange multipliers) for all constraints of A.

• The Lagrange dual function of µ is then

Z(µ) = minimize cTx + µT (b− Ax)
subject to x ∈ X,

Princeton ORF-522 32



Duality Theory for Integer Programs

Lemma 1. For all µ ≥ 0, Z(µ) ≤ zIP

• Classic duality.

• Introduce now the Lagrange dual problem:

maximize Z(µ)
subject to µ ≥ 0.

• Write zD for the optimum, maxµ≥0 Z(µ).

• Remember that X is a discrete set. Suppose X = {x1, · · · ,xk}.

Z(µ) = min
1≤i≤k

cTxi + µT (b− Axi)

• Z is the minimum of a finite collection of linear functions of µ, hence
concave/piecewise linear.

Princeton ORF-522 33



Duality Theory for Integer Programs

Lemma 2. We have weak duality: zD ≤ zIP

• Again, classic duality.

• unfortunately, no strong duality result.

• highlights usefulness for branch-and-bound.

• how does zD compare relatively to the relaxation zLP?

• Let us explore further the dual problem with two important theorems

Princeton ORF-522 34



Duality Theory for Integer Programs

Theorem 2. Suppose D,d have integer entries and {x ∈ R
n|Dx ≥ d} 6= ∅.

Then X = {x∈ N |Dx ≥ d} is such that 〈X〉 is a polyhedron in R
n.

• The case where X is finite is covered in the Weyl-Minkowski theorem

• Counterexamples exit when X is infinite, in this case the result holds.

Princeton ORF-522 35



Duality Theory for Integer Programs

Theorem 3. The optimum zD of the Lagrange dual problem is equal to

minimize cTx
subject to Ax ≤ b

x ∈ 〈X〉,

• Compare with the LP relaxation

minimize cTx
subject to Ax ≤ b

Dx ≥ d,

x ≥ 0.

• 〈X〉 ⊂ {x ≥ 0, Dx ≥ d} hence zLP ≤ zD ≤ zIP.

Princeton ORF-522 36


