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Today

e Integer programming formulations

o Interest of integer programming for modeling real-life problems
o Examples of reformulations
o Relaxation and strong formulations

Princeton ORF-522



Integer Programming Formulations
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So far...

e \We have often referred to mathematical programs:

minimize  fo(x)
subject to  fi(x) <0, i=1,....m
—0. i

where z € D C R".

e For linear objectives, linear constraints and D = R’ things have worked well
so far:

o solutions can be computed.
o simplex, dual simplex, etc.
o ellipsoid method, interior point method, etc.

e What if D is a bit different?
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Integer Linear Programs

e What if D is discrete?

e Some decision variables are integers, not fractional numbers:

o Finance, number of stocks purchased,
o Number of workers hired for a task,
o Units of goods ordered/stored at a shop/deposit.

e Sometimes, decision variables are binary:

o have an airplane take/not take off,
o accept/reject a certain share of applications for a job/grant/journal paper.

e do off-the-shelf algorithms we know always work in such situations?

e no, unfortunately.
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Integer Linear Programs

e An integer linear program is the following program
minimize c'x
subjectto Ax=Db

x € N"

e A mixed integer linear program:

minimize c¢ix+dY
subjectto Ax+ By =b
XY Z 07X e IN"

e A binary or zero-one integer program :

minimize c¢fx
subjectto Ax=Db

x €40,1}"
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Integer Linear Programs

e pros of such formulations:

o by tweaking D, we can incorporate a wide variety of discrete optimizations
with such formulations.

o Indeed, we can considerably enrich the class of problems attacked by LP’s.
o Adding richer conditional constraints.

e cons: no universal algorithm.

o Worse: the resolution of a problem depends heavily on the formulation used.
o In practice, formulation matters.

o Important difference with standard LP algorithms, where formulations
matter less (e.g.canonical and standard formulations, primal & dual)

Let’s review some useful formulations
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Binary Variables

e Set a variable to 0 or 1: Example: The knapsack problem.

e Knapsack (from German knappsack): a bag (as of canvas or nylon) strapped
on the back and used for carrying supplies or personal belongings

e Given objects with weights and values what is the maximal value you can you
fit in the bag knowing that it can only accommodate up to a certain weight?
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Binary Variables

e This problem is called the (0-1) knapsack problem.
e 1. items, jth item has value c¢; and weight w; = vectors ¢ and w.
e Variable x € {0,1}" where ; = 1 means the object is in the knapsack.

e A bound K on the maximum weight that can be carried by the knapsack.

maximize c¢lx

subject to wix < K
x € {0,1}"
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Contextual Constraints

e For some practical problems, a decision B can only be taken if another decision
A has already been made.

e This can be modelled by adding binary constraints.

o Let x4 stand for decision A being taken or not, z4 € {0, 1}.
o Let xp stand for decision B being taken or not, zp € {0,1}

e if B can only be selected if A is, then this can be naturally formulated:

rp < TA
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Example: Optimizing Facility Locations

e n potential facility locations to service m existing clients.

e Setting up facility j has a cost of ¢; while servicing client ¢ from facility j has
a cost of d;;.

e Problem: decide which facilities to set-up, while minimizing costs.

o y € {0,1}" defines whether facility j is set up or not through y;.
o x € {0, 1}™*™ defines whether client i is services by facility j.

minimize Z?:l CjY; + Z?le Z?:l d;;Tij
subject to Y7, @i = 1,Vi
y € {0,1}",x € {0,1}"*™
o x;; <y, : if no facility j, client ¢ cannot be serviced by j.
n . .
o > j—1Tij =1:aclienti
> can only be serviced by at most one facility and
> needs to be serviced by at least one facility.
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Disjunctive Constraints

e |In some cases it is sufficient that a variable satisfies at least one among
possible constraints.

e Example: alx > bor c!'x > d with a,c > 0.

e Modelization: a’x > yb or c¢!'x > (1 —y)d, y € {0,1}.

e More generally, suppose we are given m constraints al x > b;.
e We require that at least k of such constraints are satisfied.

e Can be formulated as:

subject to alx > y;b;,i=1,---,m

Zqﬁly’i >k
x>0,y € {0,1}™

e second constraint < k constraints among m are at least verified.
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Restricted Range of Values

e Imagine a variable x is constrained to take values in a subset {a1,a9, -+ ,am}

e Turn a discrete problem on integers into a discrete problem on arbitrary values:

x ZZﬁl a;Y;,
Zj:l yj — ]-7
Yj € {07 1}
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Piecewise Linear Cost Functions

e Suppose a1 < ag < ai and that a function f is piecewise linear.
e f is defined between a; and a; by the pairs (a;, )

e For any x € |ay, ax], there exists coefficients A; such that

k k
1=1 1=1

e This representation is not unique.
e |t becomes unique if we require that all but two consecutive )\; are zero.

e In that case, if x € |a;,a;11],x is uniquely defined as

T = A@; + Aip1aip1, With Aj + A1 =1, A, X410 20

e \We then have for such an z.

m

F(@) = Aif (ai) + Xz f(aivn) = ) Nif(aq).

1=1

Princeton ORF-522



Piecewise Linear Cost Functions

e Incorporate the two consecutive non-zero coefficients requirement ().
o lety,,2=1,--- ,k—1besuchthaty; =1iffa; <x < a;y1.

e Minimizing f on |a1, ax] thus becomes

minimize Z,’f:l i f (a;)
subject to Z,’f:l A =1,
>\1 S Y1,
(%)< N <Ym1+yi,i=2,--- k-1
)\k S Yk—1,

Z,’f:_ll y; = 1, (x is at most in one interval)

)\22071:17 7k7 yze{oal}
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Mathematical Programs: Relaxation

Definition 1. A mathematical program P’ is a relaxation of P if:

1. the feasible region of P’ contains the feasible region of P,

2. the objective value in P’, say F(x), is no worse than that of P, say f(x),
for all x in the domain of P. e.q. for minimization, this means F(x) > f(x)
for all x wn the domain of P.
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Integer Program Relaxation

Definition 2. Given a mixed integer linear program,
minimize clx+dY
subject to Ax+ By =Db

x,y > 0,x € N"
its linear programming relaxation is defined as
minimize clx+d'y
subject to Ax+ By =Db
x,y >0

equivalently, the requirement that x € {0,1}" is usually relaxed to the
requirement that each component x; of x is such that 0 < x; < 1.
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Formulations and Relaxations

e Facility Location (FL) Problem:

minimize >0 ¢y 4+ D00 D5y dijTi
subject to Y7, w;; = 1,Vi

Lij S Yj, \V/(Z,])

y € {0,1}",x € {0,1}*™

e An alternative (lighter) formulation: Aggregate Facility Location (AFL):

minimize 2?21 CiYj + D e Z?:l diji
subject to Z?:l Ti; =1, V1

S @iy < my;,Vj
y € {0,1}",x € {0,1}"*™

e Equivalent formulations but m + n constraints for (AFL), m + mn for (FL).
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Relaxation Polyhedrons

e Let us study the relaxations of the equivalent formulations (FL) and (AFL):

e For the original formulation (FL):

Z?:l Lij = 1,V’I,
Peo= 4 (xy) | 25 <yj, V(i,J)
O§x¢j§1,0§yj<1

e For its aggregated counterpart (AFL)

Z?:l ZEij — 1,\V/Z
PapL = (X7 Y) 2?21 Tij < myjavj
0<z; <1,0<y; <1

e Interestingly, Pri C ParL and this inclusion can be strict
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Relaxation & Objectives

e The original feasible set Lip is

2?21 Lij = 1,\V/Z
LIP — (X7Y) Lij < y]avj
LijsYj - {0, 1}

e Of course, Lip C Pr| C ParL

e If we write

o zp for the real optimal value,
o zp for the (FL) relaxation,
o zarL for the (AFL) relaxation,

then we naturally have that zip > zpL > 2aFL

The (AFL) formulation is lighter than the FL formulation, but its relaxation
provides a looser lower bound than (FL) which may be preferable.
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Relaxation & Objectives

o Let T = {x1, - ,Xy} be the bounded set of feasible integer solutions of an IP.

e Consider the convex hull of T,
k k
i=1 i=1

e (T) is a polyhedron with integer extreme points.

e Any relaxation with feasible set P of an IP defined on T is such that (T") C P.

e Let us imagine a situation where (T)={x| Dx < d}.
e = Use directly use LP algorithms to optimize on the set {x| Dx < d}.

e \We will get an integer extreme point in T'. The relaxation is tight.

Idea: find such a polyhedron {x | Dx < d} when possible. Usually difficult.
Otherwise, prefer a formulation whose relaxation approximates closely (7).
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Relaxation & Objectives

Definition 3. Consider an IP with feasible solution set T'. For two
formulations A and B of the same program, whose corresponding LP
relarations have feasible sets P4 and Ppg, formulation A is said to be as

strong as formulation B if
P4 C Pp.

e 1st issue: how to find find strong formulations?

e 2nd issue: given a strong formulation, how to compute integer solutions
from a relaxation?
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Relaxation & Objectives

Definition 4. Consider an IP with feasible solution set T'. For two
formulations A and B of the same program, whose corresponding LP
relarations have feasible sets P4 and Ppg, formulation A is said to be as

strong as formulation B if
P4 C Pp.

e 1st issue: how to find find strong formulations?

e 2nd issue: given a strong formulation, how to compute integer solutions
from a relaxation?
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e Practical Methods
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Next time
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