
ORF 522

Linear Programming and Convex Analysis

Integer Linear Programming

Marco Cuturi

Princeton ORF-522 1



Today

• Integer programming formulations

◦ Interest of integer programming for modeling real-life problems
◦ Examples of reformulations
◦ Relaxation and strong formulations
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Integer Programming Formulations
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So far...

• We have often referred to mathematical programs:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where x ∈ D ⊂ Rn.

• For linear objectives, linear constraints and D = Rn
+ things have worked well

so far:

◦ solutions can be computed.
◦ simplex, dual simplex, etc.

◦ ellipsoid method, interior point method, etc.

• What if D is a bit different?
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Integer Linear Programs

• What if D is discrete?

• Some decision variables are integers, not fractional numbers:

◦ Finance, number of stocks purchased,
◦ Number of workers hired for a task,
◦ Units of goods ordered/stored at a shop/deposit.

• Sometimes, decision variables are binary:

◦ have an airplane take/not take off,
◦ accept/reject a certain share of applications for a job/grant/journal paper.

• do off-the-shelf algorithms we know always work in such situations?

• no, unfortunately.
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Integer Linear Programs

• An integer linear program is the following program

minimize cTx
subject to Ax = b

x ∈ N
n

• A mixed integer linear program:

minimize cTx + dy

subject to Ax + By = b
x,y ≥ 0,x ∈ N

n

• A binary or zero-one integer program :

minimize cTx
subject to Ax = b

x ∈ {0, 1}n
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Integer Linear Programs

• pros of such formulations:

◦ by tweaking D, we can incorporate a wide variety of discrete optimizations
with such formulations.

◦ Indeed, we can considerably enrich the class of problems attacked by LP’s.
◦ Adding richer conditional constraints.

• cons: no universal algorithm.

◦ Worse: the resolution of a problem depends heavily on the formulation used.
◦ In practice, formulation matters.

◦ Important difference with standard LP algorithms, where formulations
matter less (e.g. canonical and standard formulations, primal & dual)

Let’s review some useful formulations
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Binary Variables

• Set a variable to 0 or 1: Example: The knapsack problem.

• Knapsack (from German knappsack): a bag (as of canvas or nylon) strapped
on the back and used for carrying supplies or personal belongings

• Given objects with weights and values what is the maximal value you can you
fit in the bag knowing that it can only accommodate up to a certain weight?
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Binary Variables

• This problem is called the (0-1) knapsack problem.

• n items, jth item has value cj and weight wj ⇒ vectors c and w.

• Variable x ∈ {0, 1}n where xj = 1 means the object is in the knapsack.

• A bound K on the maximum weight that can be carried by the knapsack.

maximize cTx
subject to wTx ≤ K

x ∈ {0, 1}n
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Contextual Constraints

• For some practical problems, a decision B can only be taken if another decision
A has already been made.

• This can be modelled by adding binary constraints.

◦ Let xA stand for decision A being taken or not, xA ∈ {0, 1}.
◦ Let xB stand for decision B being taken or not, xB ∈ {0, 1}

• if B can only be selected if A is, then this can be naturally formulated:

xB ≤ xA
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Example: Optimizing Facility Locations

• n potential facility locations to service m existing clients.

• Setting up facility j has a cost of cj while servicing client i from facility j has
a cost of dij.

• Problem: decide which facilities to set-up, while minimizing costs.

◦ y ∈ {0, 1}n defines whether facility j is set up or not through yj.
◦ x ∈ {0, 1}n×m defines whether client i is services by facility j.

minimize
∑n

j=1
cjyj +

∑m

i=1

∑n

j=1
dijxij

subject to
∑n

j=1
xij = 1,∀i

xij ≤ yj, ∀(i, j)
y ∈ {0, 1}n,x ∈ {0, 1}n×m

◦ xij ≤ yj : if no facility j, client i cannot be serviced by j.
◦

∑n

j=1
xij = 1 : a client i

⊲ can only be serviced by at most one facility and

⊲ needs to be serviced by at least one facility.
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Disjunctive Constraints

• In some cases it is sufficient that a variable satisfies at least one among
possible constraints.

• Example: aTx ≥ b or cTx ≥ d with a, c ≥ 0.

• Modelization: aTx ≥ yb or cTx ≥ (1 − y)d, y ∈ {0, 1}.

• More generally, suppose we are given m constraints aT
i x ≥ bi.

• We require that at least k of such constraints are satisfied.

• Can be formulated as:

subject to aT
i x ≥ yibi, i = 1, · · · , m

∑m

i=1
yi ≥ k

x ≥ 0,y ∈ {0, 1}m

• second constraint ⇔ k constraints among m are at least verified.
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Restricted Range of Values

• Imagine a variable x is constrained to take values in a subset {a1, a2, · · · , am}

• Turn a discrete problem on integers into a discrete problem on arbitrary values:

x =
∑m

j=1
ajyj,

∑m

j=1
yj = 1,

yj ∈ {0, 1}
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Piecewise Linear Cost Functions

• Suppose a1 < a2 < ak and that a function f is piecewise linear.

• f is defined between a1 and ak by the pairs (ai, )

• For any x ∈ [a1, ak], there exists coefficients λi such that

x =

k
∑

i=1

λiai,

k
∑

i=1

λi = 1, λi ≥ 0.

• This representation is not unique.

• It becomes unique if we require that all but two consecutive λi are zero.

• In that case, if x ∈ [ai, ai+1], x is uniquely defined as

x = λiai + λi+1ai+1, with λi + λi+1 = 1, λi, λi+1 ≥ 0

• We then have for such an x.

f(x) = λif(ai) + λi+1f(ai+1) =
m

∑

i=1

λif(ai).
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Piecewise Linear Cost Functions

• Incorporate the two consecutive non-zero coefficients requirement (∗).

• Let yi, i = 1, · · · , k − 1 be such that yi = 1 iff ai ≤ x ≤ ai+1.

• Minimizing f on [a1, ak] thus becomes

minimize
∑k

i=1
λif(ai)

subject to
∑k

i=1
λi = 1,

(∗)







λ1 ≤ y1,

λi ≤ yi−1 + yi, i = 2, · · · , k − 1
λk ≤ yk−1,

∑k−1

i=1
yi = 1 , (x is at most in one interval)

λi ≥ 0, i = 1, · · · , k, yi ∈ {0, 1}
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Relaxations and Formulations
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Mathematical Programs: Relaxation

Definition 1. A mathematical program P ′ is a relaxation of P if:

1. the feasible region of P ′ contains the feasible region of P,

2. the objective value in P ′, say F (x), is no worse than that of P, say f(x),
for all x in the domain of P . e.g. for minimization, this means F (x) ≥ f(x)
for all x in the domain of P .
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Integer Program Relaxation

Definition 2. Given a mixed integer linear program,

minimize cTx + dy

subject to Ax + By = b
x,y ≥ 0,x ∈ N

n

its linear programming relaxation is defined as

minimize cTx + dTy
subject to Ax + By = b

x,y ≥ 0

equivalently, the requirement that x ∈ {0, 1}n is usually relaxed to the

requirement that each component xi of x is such that 0 ≤ xi ≤ 1.
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Formulations and Relaxations

• Facility Location (FL) Problem:

minimize
∑n

j=1
cjyj +

∑m

i=1

∑n

j=1
dijxij

subject to
∑n

j=1
xij = 1,∀i

xij ≤ yj, ∀(i, j)
y ∈ {0, 1}n,x ∈ {0, 1}n×m

• An alternative (lighter) formulation: Aggregate Facility Location (AFL):

minimize
∑n

j=1
cjyj +

∑m

i=1

∑n

j=1
dijxij

subject to
∑n

j=1
xij = 1,∀i

∑n

i=1 xij ≤ myj, ∀j

y ∈ {0, 1}n,x ∈ {0, 1}n×m

• Equivalent formulations but m + n constraints for (AFL), m + mn for (FL).
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Relaxation Polyhedrons

• Let us study the relaxations of the equivalent formulations (FL) and (AFL):

• For the original formulation (FL):

PFL =







(x,y)

∣

∣

∣

∣

∣

∣

∑n

j=1
xij = 1, ∀i

xij ≤ yj, ∀(i, j)
0 ≤ xij ≤ 1, 0 ≤ yj ≤ 1







.

• For its aggregated counterpart (AFL)

PAFL =







(x,y)

∣

∣

∣

∣

∣

∣

∑n

j=1
xij = 1,∀i

∑n

i=1 xij ≤ myj,∀j

0 ≤ xij ≤ 1, 0 ≤ yj ≤ 1







.

• Interestingly, PFL ⊂ PAFL and this inclusion can be strict
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Relaxation & Objectives

• The original feasible set LIP is

LIP =







(x,y)

∣

∣

∣

∣

∣

∣

∑n

j=1
xij = 1, ∀i

xij ≤ yj,∀j

xij, yj ∈ {0, 1}







.

• Of course, LIP ⊂ PFL ⊂ PAFL

• If we write

◦ zIP for the real optimal value,
◦ zFL for the (FL) relaxation,
◦ zAFL for the (AFL) relaxation,

then we naturally have that zIP ≥ zFL ≥ zAFL

The (AFL) formulation is lighter than the FL formulation, but its relaxation
provides a looser lower bound than (FL) which may be preferable.
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Relaxation & Objectives

• Let T = {x1, · · · ,xk} be the bounded set of feasible integer solutions of an IP.

• Consider the convex hull of T ,

〈T 〉 =

{

k
∑

i=1

λixi, λi ≥ 0,
k

∑

i=1

λi = 1

}

• 〈T 〉 is a polyhedron with integer extreme points.

• Any relaxation with feasible set P of an IP defined on T is such that 〈T 〉 ⊂ P .

• Let us imagine a situation where 〈T 〉={x |Dx ≤ d}.

• ⇒ Use directly use LP algorithms to optimize on the set {x |Dx ≤ d}.

• We will get an integer extreme point in T . The relaxation is tight.

Idea: find such a polyhedron {x |Dx ≤ d} when possible. Usually difficult.
Otherwise, prefer a formulation whose relaxation approximates closely 〈T 〉.
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Relaxation & Objectives

Definition 3. Consider an IP with feasible solution set T . For two

formulations A and B of the same program, whose corresponding LP

relaxations have feasible sets PA and PB, formulation A is said to be as

strong as formulation B if

PA ⊂ PB.

• 1st issue: how to find find strong formulations?

• 2nd issue: given a strong formulation, how to compute integer solutions

from a relaxation?
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Relaxation & Objectives

Definition 4. Consider an IP with feasible solution set T . For two

formulations A and B of the same program, whose corresponding LP

relaxations have feasible sets PA and PB, formulation A is said to be as

strong as formulation B if

PA ⊂ PB.

• 1st issue: how to find find strong formulations?

• 2nd issue: given a strong formulation, how to compute integer solutions

from a relaxation?
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Next time

• Practical Methods
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