# ORF 522

# **Linear Programming and Convex Analysis**

#### **Integer Linear Programming**

Marco Cuturi

Princeton ORF-522

# Today

- Integer programming formulations
  - Interest of integer programming for modeling real-life problems
  - Examples of reformulations
  - $\circ~$  Relaxation and strong formulations

# **Integer Programming Formulations**

#### So far...

• We have often referred to mathematical programs:

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $h_i(x) = 0$ ,  $i = 1, ..., p$ 

where  $x \in \mathcal{D} \subset \mathbf{R}^n$ .

- For linear objectives, linear constraints and D = R<sup>n</sup><sub>+</sub> things have worked well so far:
  - solutions can be computed.
  - simplex, dual simplex, *etc.*
  - ellipsoid method, interior point method, etc.
- What if  ${\mathcal D}$  is a bit different?

## **Integer Linear Programs**

- What if  $\mathcal{D}$  is discrete?
- Some decision variables are **integers**, not fractional numbers:
  - Finance, number of stocks purchased,
  - Number of workers hired for a task,
  - Units of goods ordered/stored at a shop/deposit.
- Sometimes, decision variables are **binary**:
  - have an airplane take/not take off,
  - accept/reject a certain share of applications for a job/grant/journal paper.
- do off-the-shelf algorithms we know always work in such situations?
- **no**, unfortunately.

#### **Integer Linear Programs**

• An integer linear program is the following program

 $\begin{array}{ll} \text{minimize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \in \mathbb{N}^n \end{array}$ 

• A *mixed* integer linear program:

$$\begin{array}{ll} \text{minimize} & \mathbf{c}^T \mathbf{x} + \mathbf{d}^\mathbf{y} \\ \text{subject to} & A \mathbf{x} + B \mathbf{y} = \mathbf{b} \\ & \mathbf{x}, \mathbf{y} \geq 0, \mathbf{x} \in \mathbb{N}^n \end{array}$$

• A binary or zero-one integer program :

minimize 
$$\mathbf{c}^T \mathbf{x}$$
  
subject to  $A\mathbf{x} = \mathbf{b}$   
 $\mathbf{x} \in \{0,1\}^n$ 

## **Integer Linear Programs**

- **pros** of such formulations:
  - $\circ\,$  by tweaking  ${\cal D},$  we can incorporate a wide variety of discrete optimizations with such formulations.
  - Indeed, we can considerably enrich the class of problems attacked by LP's.
  - Adding richer conditional constraints.
- **cons**: no universal algorithm.
  - Worse: the resolution of a problem depends heavily on the formulation used.
    In practice, formulation matters.
  - Important difference with standard LP algorithms, where formulations matter less (*e.g.* canonical and standard formulations, primal & dual)

#### Let's review some useful formulations

# **Binary Variables**

- Set a variable to 0 or 1: Example: The knapsack problem.
- **Knapsack** (from German knappsack): a bag (as of canvas or nylon) strapped on the back and used for carrying supplies or personal belongings
- Given **objects** with **weights and values** what is the maximal value you can you fit in the bag knowing that it can only accommodate up to a certain weight?



## **Binary Variables**

- This problem is called the (0-1) knapsack problem.
- *n* items, *j*th item has value  $c_j$  and weight  $w_j \Rightarrow$  vectors **c** and **w**.
- Variable  $\mathbf{x} \in \{0,1\}^n$  where  $x_j = 1$  means the object is in the knapsack.
- A bound K on the maximum weight that can be carried by the knapsack.

$$\begin{array}{ll} \text{maximize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & \mathbf{w}^T \mathbf{x} \leq K \\ & \mathbf{x} \in \{0,1\}^n \end{array}$$

## **Contextual Constraints**

- For some practical problems, a decision *B* can only be taken if another decision *A* has already been made.
- This can be modelled by adding binary constraints.
  - Let  $x_A$  stand for decision A being taken or not,  $x_A \in \{0, 1\}$ . • Let  $x_B$  stand for decision B being taken or not,  $x_B \in \{0, 1\}$
- if B can only be selected if A is, then this can be naturally formulated:

$$x_B \le x_A$$

### **Example: Optimizing Facility Locations**

- n potential facility locations to service m existing clients.
- Setting up facility j has a cost of c<sub>j</sub> while servicing client i from facility j has a cost of d<sub>ij</sub>.
- **Problem**: decide which facilities to set-up, while minimizing costs.

•  $\mathbf{y} \in \{0,1\}^n$  defines whether facility j is set up or not through  $y_j$ . •  $\mathbf{x} \in \{0,1\}^{n \times m}$  defines whether client i is services by facility j.

$$\begin{array}{ll} \text{minimize} & \sum_{j=1}^{n} \boldsymbol{c_{j}y_{j}} + \sum_{i=1}^{m} \sum_{j=1}^{n} \boldsymbol{d_{ij}x_{ij}} \\ \text{subject to} & \sum_{j=1}^{n} \boldsymbol{x_{ij}} = 1, \forall i \\ & \boldsymbol{x_{ij}} \leq \boldsymbol{y_{j}}, \forall (i, j) \\ & \boldsymbol{y} \in \{0, 1\}^{n}, \boldsymbol{x} \in \{0, 1\}^{n \times m} \end{array}$$

*x<sub>ij</sub>* ≤ *y<sub>j</sub>*: if no facility *j*, client *i* cannot be serviced by *j*.
 ∑<sub>j=1</sub><sup>n</sup> *x<sub>ij</sub>* = 1 : a client *i* ▷ can only be serviced by **at most** one facility **and**

▷ needs to be serviced by **at least** one facility.

#### **Disjunctive Constraints**

- In some cases it is sufficient that a variable satisfies at least one among possible constraints.
- Example:  $\mathbf{a}^T \mathbf{x} \ge b$  or  $\mathbf{c}^T \mathbf{x} \ge d$  with  $\mathbf{a}, \mathbf{c} \ge 0$ .
- Modelization:  $\mathbf{a}^T \mathbf{x} \ge yb$  or  $\mathbf{c}^T \mathbf{x} \ge (1-y)d$ ,  $y \in \{0,1\}$ .
- More generally, suppose we are given m constraints  $\mathbf{a}_i^T \mathbf{x} \geq b_i$ .
- We require that at least k of such constraints are satisfied.
- Can be formulated as:

subject to 
$$\mathbf{a}_i^T \mathbf{x} \ge y_i b_i, i = 1, \cdots, m$$
  
 $\sum_{i=1}^m y_i \ge k$   
 $\mathbf{x} \ge 0, \mathbf{y} \in \{0, 1\}^m$ 

• second constraint  $\Leftrightarrow k$  constraints among m are at least verified.

### **Restricted Range of Values**

- Imagine a variable x is constrained to take values in a subset  $\{a_1, a_2, \cdots, a_m\}$
- Turn a discrete problem on integers into a discrete problem on arbitrary values:

$$x = \sum_{j=1}^{m} a_j y_j, \\ \sum_{j=1}^{m} y_j = 1, \\ y_j \in \{0, 1\}$$

#### **Piecewise Linear Cost Functions**

- Suppose  $a_1 < a_2 < a_k$  and that a function f is piecewise linear.
- f is defined between  $a_1$  and  $a_k$  by the pairs  $(a_i, )$
- For any  $x \in [a_1, a_k]$ , there exists coefficients  $\lambda_i$  such that

$$x = \sum_{i=1}^{k} \lambda_i a_i, \sum_{i=1}^{k} \lambda_i = 1, \lambda_i \ge 0.$$

- This representation is **not unique**.
- It becomes unique if we require that all but two consecutive  $\lambda_i$  are zero.
- In that case, if  $x \in [a_i, a_{i+1}], x$  is uniquely defined as

$$x = \lambda_i a_i + \lambda_{i+1} a_{i+1}$$
, with  $\lambda_i + \lambda_{i+1} = 1, \lambda_i, \lambda_{i+1} \ge 0$ 

• We then have for such an x.

$$f(x) = \lambda_i f(a_i) + \lambda_{i+1} f(a_{i+1}) = \sum_{i=1}^m \lambda_i f(a_i).$$

#### **Piecewise Linear Cost Functions**

- Incorporate the two consecutive non-zero coefficients requirement (\*).
- Let  $y_i, i = 1, \dots, k-1$  be such that  $y_i = 1$  iff  $a_i \leq x \leq a_{i+1}$ .
- Minimizing f on  $[a_1, a_k]$  thus becomes

minimize

$$\sum_{i=1}^k \lambda_i f(a_i)$$

subject to  $\sum_{i=1}^k \lambda$ 

$$\sum_{i=1}^k \lambda_i = 1,$$

(\*) 
$$\begin{cases} \lambda_1 \leq y_1, \\ \lambda_i \leq y_{i-1} + y_i, i = 2, \cdots, k-1 \\ \lambda_k \leq y_{k-1}, \end{cases}$$

 $\sum_{i=1}^{k-1} y_i = 1$ , (x is at most in one interval)

$$\lambda_i \ge 0, i = 1, \cdots, k, \ y_i \in \{0, 1\}$$

# **Relaxations and Formulations**

#### **Mathematical Programs: Relaxation**

**Definition 1.** A mathematical program P' is a relaxation of P if:

1. the feasible region of P' contains the feasible region of P,

2. the objective value in P', say F(x), is no worse than that of P, say f(x), for all x in the domain of P. e.g. for minimization, this means  $F(x) \ge f(x)$ for all x in the domain of P.

#### **Integer Program Relaxation**

**Definition 2.** Given a mixed integer linear program,

 $\begin{array}{ll} \text{minimize} & \mathbf{c}^T \mathbf{x} + \mathbf{d}^{\mathbf{y}} \\ \text{subject to} & A\mathbf{x} + B\mathbf{y} = \mathbf{b} \\ & \mathbf{x}, \mathbf{y} \ge 0, \mathbf{x} \in \mathbb{N}^n \end{array}$ 

its linear programming relaxation is defined as

 $\begin{array}{ll} minimize & \mathbf{c}^T \mathbf{x} + \mathbf{d}^T \mathbf{y} \\ subject \ to & A\mathbf{x} + B\mathbf{y} = \mathbf{b} \\ & \mathbf{x}, \mathbf{y} \ge 0 \end{array}$ 

equivalently, the requirement that  $\mathbf{x} \in \{0, 1\}^n$  is usually relaxed to the requirement that each component  $x_i$  of  $\mathbf{x}$  is such that  $0 \le x_i \le 1$ .

#### **Formulations and Relaxations**

• Facility Location (FL) Problem:

 $\begin{array}{ll} \text{minimize} & \sum_{j=1}^{n} c_{j} y_{j} + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij} \\ \text{subject to} & \sum_{j=1}^{n} x_{ij} = 1, \forall i \\ & x_{ij} \leq y_{j}, \forall (i, j) \\ & \mathbf{y} \in \{0, 1\}^{n}, \mathbf{x} \in \{0, 1\}^{n \times m} \end{array}$ 

• An alternative (lighter) formulation: Aggregate Facility Location (AFL):

minimize  $\sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$ subject to  $\sum_{j=1}^{n} x_{ij} = 1, \forall i$  $\sum_{i=1}^{n} x_{ij} \leq m y_j, \forall j$  $\mathbf{y} \in \{0, 1\}^n, \mathbf{x} \in \{0, 1\}^{n \times m}$ 

• Equivalent formulations but m + n constraints for (AFL), m + mn for (FL).

#### **Relaxation Polyhedrons**

- Let us study the relaxations of the equivalent formulations (FL) and (AFL):
- For the original formulation (FL):

$$P_{\mathsf{FL}} = \left\{ (\mathbf{x}, \mathbf{y}) \mid \begin{array}{l} \sum_{j=1}^{n} x_{ij} = 1, \forall i \\ x_{ij} \le y_j, \forall (i, j) \\ 0 \le x_{ij} \le 1, 0 \le y_j \le 1 \end{array} \right\}$$

•

• For its aggregated counterpart (AFL)

$$P_{\mathsf{AFL}} = \left\{ (\mathbf{x}, \mathbf{y}) \mid \begin{array}{l} \sum_{j=1}^{n} x_{ij} = 1, \forall i \\ \sum_{i=1}^{n} x_{ij} \leq m y_j, \forall j \\ 0 \leq x_{ij} \leq 1, 0 \leq y_j \leq 1 \end{array} \right\}$$

• Interestingly,  $P_{\rm FL} \subset P_{\rm AFL}$  and this inclusion can be strict

• The original feasible set  $L_{\rm IP}$  is

$$L_{\mathsf{IP}} = \left\{ (\mathbf{x}, \mathbf{y}) \mid \begin{array}{l} \sum_{j=1}^{n} x_{ij} = 1, \forall i \\ \mathbf{x}_{ij} \leq y_j, \forall j \\ x_{ij}, y_j \in \{\mathbf{0}, \mathbf{1}\} \end{array} \right\}$$

- Of course,  $L_{\mathsf{IP}} \subset P_{\mathsf{FL}} \subset P_{\mathsf{AFL}}$
- If we write
  - $\circ z_{\mathsf{IP}}$  for the real optimal value,
  - $\circ$   $z_{FL}$  for the (FL) relaxation,
  - $z_{AFL}$  for the (AFL) relaxation,

then we naturally have that  $z_{\text{IP}} \ge z_{\text{FL}} \ge z_{\text{AFL}}$ 

The (AFL) formulation is **lighter** than the FL formulation, but its relaxation provides **a looser lower bound** than (FL) which may be **preferable**.

- Let  $T = {\mathbf{x}_1, \dots, \mathbf{x}_k}$  be the bounded set of feasible integer solutions of an IP.
- Consider the convex hull of T,

$$\langle T \rangle = \left\{ \sum_{i=1}^{k} \lambda_i \mathbf{x}_i, \ \lambda_i \ge 0, \sum_{i=1}^{k} \lambda_i = 1 \right\}$$

- $\langle T \rangle$  is a polyhedron with **integer extreme points**.
- Any relaxation with feasible set P of an IP defined on T is such that  $\langle T \rangle \subset P$ .
- Let us imagine a situation where  $\langle T \rangle = \{ \mathbf{x} \mid D\mathbf{x} \leq \mathbf{d} \}.$
- $\Rightarrow$  Use directly use LP algorithms to optimize on the set  $\{\mathbf{x} | D\mathbf{x} \leq \mathbf{d}\}$ .
- We will get an **integer** extreme point in T. The **relaxation is tight**.

Idea: find such a polyhedron  $\{\mathbf{x} | D\mathbf{x} \leq \mathbf{d}\}\$  when possible. Usually difficult. Otherwise, prefer a formulation whose relaxation approximates **closely**  $\langle T \rangle$ .

**Definition 3.** Consider an IP with feasible solution set T. For two formulations A and B of the same program, whose corresponding LP relaxations have feasible sets  $P_A$  and  $P_B$ , formulation A is said to be as **strong** as formulation B if

$$P_A \subset P_B.$$

- 1st issue: how to find find **strong** formulations?
- 2nd issue: given a strong formulation, how to compute integer solutions from a relaxation?

**Definition 4.** Consider an IP with feasible solution set T. For two formulations A and B of the same program, whose corresponding LP relaxations have feasible sets  $P_A$  and  $P_B$ , formulation A is said to be as **strong** as formulation B if

$$P_A \subset P_B.$$

- 1st issue: how to find find **strong** formulations?
- 2nd issue: given a strong formulation, how to compute integer solutions from a relaxation?

## Next time

• Practical Methods