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Today

• Some applications of LP in finance.

• Portfolio management. Similar to Mean-Variance optimization / Markowitz
theory.

• LP duality and the existence of a risk-neutral probability.
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An Example from Portfolio Optimization
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Simple Portfolio Theory

• n traded financial assets.

• For each asset a (random) return Rj at horizon T . R = PT

p0
− 1.

• Rj is a [−1,∞)-valued random variable. not much more...
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Simple Portfolio Theory

• A (long) portfolio is a vector of Rn which represents the proportion of wealth
invested in each asset.

• Namely x such that x1, · · · , xn ≥ 0 and
∑

xi
= 1.

• In $ terms, Given M dollars, hold M · xi of asset i.

• The performance of the portfolio is a random variable, ρ(x) =
∑n

i=1 xiRi.

• Suppose x = [ 1
3

1
3

1
3 ]T in the previous example.

• the realized value for ρ(x) is 4.1%
3 + 5.8%

3 + 4.2%
3 = 4.7% = 0.047.
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Simple Portfolio Theory

• For a second, imagine we know the actual return realizations rj.

• Where would you invest?

• A bit ambitious.. we’re not likely to be able see the future.

• Imagine we can guess realistically the expected returns E(Rj).

• For instance, E[Rgoog] = .5 = 50%, E[Ribm] = .05 = 5%, E[Rdow] = .01 = 1%.

• If your goal is to maximize expected return,

x = argmax(E(ρ(x)),

where would you put your money?

• The other question... is that really what you want in the first place?
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Risk?

• PHARMA is a pharmaceutical company working on a new drug.

◦ its researchers (or you) think there is a 50% probability that the new drug
works

◦ Let’s do a binary scenario to keep things simple.
⊲ the drug works and is approved by FDA: PHARMA’s market value is

multiplied by 3. R = 2
⊲ the drug does not work: PHARMA goes bankrupt R = −1.

◦ Expected return: E[RPHARMA] = 2+−1
2 = 1 = 100%. You are expecting to

double your bet.

• BORING is a company that produces and sells screwdrivers.

◦ The return is uniformly distributed between −.01 = −1% and .02 = 2%
◦ Expected return is .0005, that is 0.5%.

• Would you bet everything on PHARMA with these cards? something is
missing in our formulation
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Risk?

• Portfolio optimization needs to input the investor’s aversion to risk.

• Using x = argmax(E(ρ(x)) can lead the investor to forget about risk.

• Solution: include risk in the program. Risk is vaguely a quantification of the
dispersion of the returns of a portfolio.

• Different choices:

◦ Variance:
⊲ C is the covariance matrix of the vector r.v. R takes values in Rn,

C = E[(R − E[R])(R − E[R])T ].
⊲ The variance of ρ(x) is simply x

TCx.
⊲ Maximal expected return under variance constraints = mean-variance

optimization.
◦ Mean-absolute deviation (MAD):

⊲ Namely E [|(ρ(x) − E[ρ(x)])|] = E[|xT R̄|] where R̄ = R − E[R].
⊲ Penalized estimation: x = argmax

x≥0,xT1n=1

λ︸︷︷︸
trade-off

· E[ρ(x)]
︸ ︷︷ ︸

expected return

−E[|xT R̄|]
︸ ︷︷ ︸

risk

.
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Risk

• The variance formulation leads to a quadratic program:

maximize x
T
E[R]

subject to x ≥ 0,xT
1n = 1

x
TCx ≤ λ

• The MAD formulation leads to something closer to linear programming:

maximize λx
T

E[R] − E[|xT R̄|]
subject to x ≥ 0,xT

1n = 1

• Problem: lots of expectations E...

• We need to fill in some expected values above by some guesses.
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Approximations

• We write r̃ for E[R] which can be guessed according to...

◦ research, analysts playing with excel, valuation models.
◦ historical returns.

• We also need to approximate E[|xT R̄|].

• Suppose we have a history of N returns (r1, · · · , rN) where each r ∈ Rn.

◦ Write r̄ =
∑N

j=1 r
j.

◦ in practice, approximate E[|xT R̄| ≈
∑N

j=1 |x
T (rj − r̄)|

• this becomes:

maximize λx
T
r − 1

N

∑N

j=1 |x
T (rj − r̄)|

subject to x ≥ 0,xT
1n = 1

• Now add artificial variables yj = |xT (rj − r̄)|. One for each observation. Now,

maximize λx
T
r − 1

N

∑N

j=1 yj

subject to x ≥ 0, yj ≥ 0,xT
1n = 1,

−yj ≤ x
T (rj − r̄) ≤ yj, j = 1, · · · , N
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LP’s, Duality and Arbitrage
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Duality and Arbitrage

• We propose in this an economic interpretation of duality

• Due to Arrow, Debreu, in the 50’s. . .

• Used every day on financial markets (sometimes unknowingly)

• Simple LP duality result, but underpins most of modern finance theory. . .

Princeton ORF-522 12



One period model

• As in the previous section, basic discrete, one period model on a single asset.

• Its price today is q1. Its (random) price time T ahead is x.

• Assume x can only take any of the following values

x ∈ {x1, . . . , xn}

at a maturity date T , and that we have an estimate of their probabilities,

{p1, · · · , pn}.

• We have discretized the space of possibilities.

• We can only trade today and at maturity

• There is a cash security worth $1 today, that pays $1 at maturity

• near-zero interest rates. sounds familiar?
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One period model

• There are also m − 1 other securities with payoffs at maturity given by

hk(xi) if x = xi at time T

for k = 2, . . . , m − 1.

• The payoffs are arbitrary functions of the n possible values of the asset at
time T .

• We could have hk(x) = x2. Or that for i ≤ j, hk(xi) = 0, i > j, hk(xi) = 1.

• We denote by qk the price today of security k with payoff hk(x).

All these securities are tradeable, can we use them to get information on the price
of another security with payoff h0(x)?
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Static Arbitrage

Remember:

• We can only trade today and at maturity.

• We can only trade in securities which are priced by the market.

We want to exclude arbitrage strategies

• If the payoff of a portfolio A is always larger than that of a portfolio B then
Price(A) ≥ Price(B).

• The price of the sum of two products is equal to the sum of the prices.
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Simplest Example: Put Call Parity

payoff

K

KK S

Put Call−

− =

= K − S
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Price bounds

Suppose that we form a portfolio of cash, stocks and securities hk(x) with
coefficients λk:

λ0 in cash
λ1 in stock
λk in security hk(x)

• All portfolios that satisfy

λ0 + λ1xi +
m∑

k=2

λkhk(xi) ≥ h0(xi) i=1,. . . ,n

must be more expensive than the security h0(x)

• All portfolios that satisfy the opposite inequality must be cheaper

• For portfolios that satisfy neither of these, nothing can be said. . .

• We are just comparing portfolios dominated for all outcomes of x.

Princeton ORF-522 17



Price bounds

• For each of these portfolios, we get an upper/lower bound on the price today
of the security h0(x).

• We can look for optimal bounds. . .

• We can solve:

minimize λ0 + λ1q1 +
∑m

k=1 λkqk

subject to λ0 + λ1xi +
∑m

k=2 λkhk(xi) ≥ h0(xi), i = 1, . . . , n

◦ Linear program in the variable λ ∈ R(m+1)

◦ Produces an optimal upper bound on the price today of the security h0(x)
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Linear Programming Duality

• The original linear program looks like:

minimize cTλ

subject to Aλ ≥ b

which is a linear program in the variable λ ∈ Rm.

• We can form the Lagrangian

L(λ, p) = cTλ + yT (b − Aλ)

in the variables λ ∈ Rm and y ∈ Rn, with y � 0.

Princeton ORF-522 19



Linear Programming Duality

• We then minimize in λ to get the dual function

g(y) = inf
λ

cTλ + yT (b − Aλ)

for y � 0, which is again

g(y) = inf
λ

yT b + λT (c − ATy)

and we get:

g(y) =

{
yT b if c − ATy = 0
−∞ if not.
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Linear Programming Duality

• With

g(y) =

{
yT b if c − ATy = 0
−∞ if not.

• we get the dual linear program as:

maximize bTy

subject to ATy = c

y ≥ 0

which is also a linear program in x ∈ Rn.
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LP duality: summary

• The primal LP is the original linear program looks like:

minimize cTλ

subject to Aλ ≥ b

• its dual is then given by:

maximize bTy

subject to ATy = c

y ≥ 0

Strong duality: both optimal values are equal
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LP duality & arbitrage

• Let’s look at what this produces for the portfolio problem. . .

◦ The primal problem in the variable λ ∈ Rm is given by:

pmax := min. λ0 + λ1q1 +
∑m

k=2 λkqk

s.t. λ0 + λ1xi +
∑m

k=2 λkhk(xi) ≥ h0(xi), i = 1, . . . , n

◦ The dual in the variable y ∈ Rn is then

pmax := max.
∑n

i=1 yih0(xi)

s.t.
∑n

i=1 yihk(xi) = qk, k = 2, . . . , m
∑n

i=1 yixi = q1∑n

i=1 yi = 1
y ≥ 0
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LP duality & arbitrage

• The last two constraints {
∑n

i=1 yi = 1, y ≥ 0} mean that y is a probability
measure.

• We can rewrite the previous program as:

pmax := max. Ey[h0(x)]

s.t. Ey[hk(x)] = qk, k = 2, . . . , m
Ey[x] = q1

y is a probability

• We can compute pmin by minimizing instead.
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LP duality & arbitrage

• What does this mean?

• There are three ranges of prices for the security with payoff h0(x):

◦ Prices above pmax: these are not viable, you can get a cheaper portfolio
with a payoff that always dominates h0(x).

◦ Prices in [pmin, pmax]: prices are viable, i.e. compatible with the absence of
arbitrage.

◦ Prices below pmin: these are not viable, you can get a portfolio that is more
expensive than h0(x) with a payoff that is always dominated by h0(x).
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Price bounds

• Example:

◦ Suppose the product in the objective is a call option:

h0(x) = (x − K)+

where K is called the strike price.
◦ Suppose also that we know the prices of some other instruments
◦ We get upper and lower price bounds on the price of this call for each strike K

• On a graphic. . .
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Price Bounds

strike price

op
ti
on

pr
ic

e

arbitrage

arbitrage

model prices
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LP duality & arbitrage

• What if there is no solution y and the linear program is infeasible?

◦ Then the original data set q must contain an arbitrage.
◦ Start with one product, stock and cash. . . and test.
◦ Increase the number of products. . .
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LP duality & arbitrage

Fundamental theorem of asset pricing

Theorem 1. In the one period model, there is no arbitrage between the prices
{q0, . . . , qm} of securities with payoffs at maturity {h0(x), . . . , hm(x)}

m

There exists a probability y (with
∑n

i=1 yi = 1 and y ≥ 0) such that

qk = Ey[hk(x)], k = 0, . . . ,m
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LP duality & arbitrage

• Because prices are computed using expectations under y (and not expected
utility/certain equivalent), we call the probability y risk-neutral.

• In particular, it satisfies q1 = Ey[x]

• If there are constant interest rates, simply use discounted values for prices at
maturity. . .

• This probability y has nothing to do with the observed distribution of the
asset x or its past distribution! (Very common mistake)
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LP duality & arbitrage

• Because one can trade

◦ the asset
◦ derivative products based on the asset

to form portfolios to hedge/replicate other products, it is possible to evaluate
these products using expected value under an appropriate choice of
probability.

• Again, the risk-neutral probability y is a tool inferred from market prices,

• it has nothing to do with the statistical properties of the underlying asset x.

• Linear programming duality is interpreted as a duality between portfolios on
assets problems and probabilities (models)
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LP duality & arbitrage

In the previous result:

• Set of possible probabilistic models = probability simplex:
pi ≥ 0,

∑

i pi = 1

• Expected value, hence price is linear in the probability pi

E[h(x)] =
∑

i

pih(xi)

• A price constraint is just a linear equality constraint on the probabilities:

∑

i

pih(xi) = bi

• Simple family of distributions.
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Moment constraints

Choices for asset pricing formulas that depend on the prices directly:. . .

• Use indicator function as payoff:

h(x) = 1{x≥K}

to produce the constraint:

∑

i

pi 1{xi≥K} = P (X ≥ K) = b

• Also, quadratic variation:
h(x) = x2

Corresponds to:
∑

i

pi x2
i = E[x2

i ] = b
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Moment constraints

Higher order formulations? Variance?

• We can’t incorporate a variance swap

• A constraint of the form
Variance(x) = qV

why?

• Becomes
∑

i pix
2
i − (

∑

i pixi)
2 = qV ⇒ quadratic constraints in pi.

• Would however works if we also fix the expected value:

E[x] = b

Corresponds to a forward price (EV of the asset):

∑

i

pi xi = qF and Variance(x) =
∑

i

pi x2
i − q2

F = qV

• We came back to a simple linear constraint
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Option price vs. variance

• Fix the forward price (expected value of the asset), move the variance. . .

• We study the price of a call option h0.

maximize
∑

i pi h0(xi)

subject to
∑

i pi xi = S0

∑

i pi x2
i = b2

0 ≤ pi ≤ 1,

• Look at the price as a function of b2. . .
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Option price vs. variance
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Option pricing & LP: example
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Option pricing

Option pricing example. . .

• Study the price CutCall option, with payoff:

h0(X) = (X − K)+1{X≤L}

• Similar to knock-out option but only check at maturity. No knock-out
during its life, european kind of knock-out.

• Get some market prices qk for regular calls:

hk(X) = (X − Kk)
+

• Solve for the maximum CutCall price:

maximize
∑

i pih0(xi)
subject to

∑

i pihk(xi) = qk∑

i pi = 1
pi ≥ 0
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Payoff
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Option pricing

Solve
maximize

∑

i pih0(xi)
subject to

∑

i pihk(xi) = qk∑

i pi = 1
pi ≥ 0

with
K = {50, 80, 110, 120, 150, 280}

and vector of prices for the 6 options.

q = (102.9167, 79.5667, 59.2167, 53.1000, 36.7500, 0.5667)

• Prices were computed above using the uniform distribution on [0, 300]

• Result: maximum price for the CutCall is 59

• Next slide: risk neutral distribution for that maximal price.
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Corresponding Risk-Neutral Probability
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Option pricing

• Problem in dimension 2, price a basket options with payoff

(x1 + x2 − K)+

• The input data set is composed of the asset prices together with the following
call prices:

(.2x1 + x2 − .1)+, (.5x1 + .8x2 − .8)+,

(.5x1 + .3x2 − .4)+, (x1 + .3x2 − .5)+,

(x1 + .5x2 − .5)+, (x1 + .4x2 − 1)+,

(x1 + .6x2 − 1.2)+.
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Option pricing
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Option pricing

Run another test:

• Look at how these bounds evolve as more and more instruments are
incorporated into the data set.

• Fix K = 1, we compute the bounds using only the k first instruments in the
data set, for k = 2, . . . , 7.

• Plot the upper and lower bounds

• Also plot one of the solutions

Conclusion: more market values ⇒ tighter bounds
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Option pricing
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Option pricing

0

0.1

Figure 1: Example of discrete distribution minimizing
the price of (x1 + x2 − K)+.
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Caveats

Size!

• Grows exponentially in kn with the number of points

• Only works with discrete and bounded models

Everything comes at a price. . .
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