ORF 522

Linear Programming and Convex Analysis

Network Flows & Ford-Fulkerson

Marco Cuturi

Princeton ORF-522

Reminder

- Network Problems
 - \circ a graph topology
 - \circ additional information
- Some canonical problems.
- Light formulation:
 - $\circ m$ nodes, n arcs
 - node-arc incidence matrix $A \in \{0, 1, -1\}^{m \times n}$. last line removed for *l.i.*
- Tree solutions for a directed network with n arcs \mathcal{A} and m nodes \mathcal{N} :
 - \circ choose m-1 arcs in \mathcal{A} that form a spanning tree \mathbf{T} .
 - $\circ\,$ set flows on arcs not in the tree to zero.
 - $\circ~$ flow conditions determine uniquely flow values at the arcs of T.
 - equivalent to basic solutions in standard LP's.

Today

- **Update** and **improve** a tree solution: network simplex.
 - graph interpretation and efficiency
 - $\circ~$ implementation speed-ups compared to the simplex
 - complexity
- Generalization to capacitated networks flows.
- The max-flow problem and the **Ford-Fulkerson** algorithm.

Network Simplex

Recapitulating

• Basic feasible solutions \Leftrightarrow **Tree feasible** solutions

intuition: a set of edges that form trees lead to invertible matrices.
why? because they are triangular with suitable reordering.
if not a tree, there is a cycle in a set of edges I. what happens to B_I?

- The basic solution $f_{\rm T}$ can be computed directly. Just by starting from the leaves of ${\rm T}$ and going up to the root.
- No need to invert $B_{\mathbf{T}}$.
- **Degeneracy**: some flows in arcs belonging to \mathcal{T} might be 0. The same flow might correspond to different trees.

- Remember the primal simplex:
 - Given I, identify an entering column or variable w.r.t. reduced costs.
 identify an exit column variable that conserves feasibility.

• Same idea here:

◦ Given T, identify an entering arc of $A \setminus T$ that will improve the objective ◦ Find an exit arc of T to remove that ensures we still have a feasible tree

- More precisely:
- Pick an arc (i, j) not in **T**. Add it to the tree.
- Obtain a cycle C that includes (i, j).
- Choose the orientation of C such that i, (i, j), j is in C.
- (i, j) is a **forward** arc of C. Label other arcs as **F**orward or **B**ackward.
- Push θ of the circulation C into f. The flow vector \mathbf{f} becomes

$$\circ f_a \leftarrow \begin{cases} f_a + \theta & \text{if } a \in F, \\ f_a - \theta & \text{if } a \in B, \\ f_a & \text{otherwise.} \end{cases}$$

 $\circ\,$ To ensure **feasibility**, that is nonnegativity, the largest possible value for θ is

$$\theta^{\star} = \min_{(k,l)\in B} f_{k,l} \text{ or } \infty \text{ if } B = \emptyset.$$
(1)

• If (k, l) is the argmin, remove it from T and we get a **new tree flow**.

 The amount θ^{*} and (k, l) depends only on the actual values of flows of backward arcs: s₁ and s₂ - d₁ + s₁ + s₃.

• suppose s_1 is smaller. Then $\theta^* = s_1$ the new values at the cycle are:

- We have a new tree feasible solution
- If we push θ units of flow, the objective changes by

$$\theta^* \underbrace{\left(\sum_{(k,l)\in F} c_{k,l} - \sum_{(k,l)\in B} c_{kl}\right)}_{\text{reduced cost}}$$

Reduced Cost Coefficient For an Arc

- This coefficient provides a criterion to select entering **arc** (*i*, *j*). We used a cycle C to define it, is it **unique**?
- For each arc (i, j) of A \ T, there is only one cycle (up to shifts) obtained by adding arc (i, j) and which has (i, j) as a forward arc. (why?)
- We can thus define a vector \mathbf{r} of size n, $r_a = 0$ for $a \in \mathbf{T}$ and for $(i, j) \notin \mathbf{T}$,

$$r_{(i,j)} = \left(\sum_{(k,l)\in F} c_{k,l} - \sum_{(k,l)\in B} c_{k,l}\right).$$

which is called the **reduced cost coefficient** vector.

- Same quantity than if we had gone through the simplex computations.
- Yet looks more tedious to compute in this form... \rightarrow use duality

Reduced Cost Computation

• Recall the reduced cost vector formula:

$$\mathbf{r} = \mathbf{c} - A^T \boldsymbol{\mu},$$

• where the **dual vector** μ corresponds to the base I, namely $B_{\mathbf{I}}^{-1}\mathbf{c}_{\mathbf{I}}$.

•
$$\mu \in {f R}^{m-1}$$
 ($\#$ nodes -1).

- A^T ∈ R^{n×(m-1)} has n rows with only a 1, a −1 and 0's (except for the last one).
- We thus have

$$r_{(i,j)} = \begin{cases} c_{(i,j)} - (\mu_i - \mu_j), & \text{for } i \neq j \leq m - 1, \\ c_{(i,j)} - \mu_i, \text{ for } j = m \\ c_{(i,j)} + \mu_j, \text{ for } i = m. \end{cases}$$

Reduced Cost Computation

- We define the *m*th coordinate of μ , $\mu_m = 0$.
- We then have

$$\forall (i,j) \in \mathcal{A}, \quad r_{(i,j)} = c_{(i,j)} - (\mu_i - \mu_j).$$

$$(2)$$

- How do we compute $\mu = B_{\mathbf{I}}^{-1} \mathbf{c}_{\mathbf{I}}$?
- We use the fact that the reduced cost coefficient of a basic variable is zero, *i.e.*

$$\forall (i,j) \in \mathbf{T}, \quad \mu_i - \mu_j = c_{ij}$$

we have m-1 linear relationships for m-1 unknown variables..

Reduced Cost Computation

• In practice, start from the last node and cascade through all edges in T.

• Once this is done, compute \mathbf{r} using Equation (2), only for arcs $(i, j) \notin \mathbf{T}$

Recapitulation

- Input: directed graph $\mathcal{G}(\mathcal{N}, \mathcal{A})$, cost vector c.
- Algorithm: minimize $c^T f$ under flow constraints, including nonnegativity.
 - $\circ~$ Start with a feasible tree ${\bf T}.$
 - Set $f_a, a \in \mathbf{T}$ following the flow conservation equations. For $a \notin \mathbf{T}, f_a = 0$.
 - Compute dual variables μ_1, \dots, μ_{m-1} by starting from the root $\mu_m = 0$.
 - Compute reduced costs: $r_{ij} = c_{ij} (\mu_i \mu_j)$ for $(i, j) \notin \mathbf{T}$.
 - If $r_a \ge 0$ for all arcs of $\mathcal{A} \setminus \mathbf{T}$, \mathbf{T} is **optimal**.
 - otherwise, choose e in $\{a \in \mathcal{A} \setminus \mathcal{T} | r_a < 0\}$ and add it to **T**.
 - \circ Set the cycle C such that a is a **forward arc** of C.
 - Determine θ^* according to Equation (1).
 - $\circ~$ Update the flow vector using \mathbf{h}^{C} , namely

$$f_a \leftarrow \begin{cases} f_a + \theta^* & \text{if } e \in F. \\ f_a - \theta^* & \text{if } e \in B. \\ f_a, & \text{otherwise.} \end{cases}$$

Computational Insights

Unimodular Matrices: Another Property

Definition 1. A square integer matrix is unimodular if its determinant is -1 or +1

• Easy to remark that for a choice of edges T that corresponds to a tree B_T is unimodular.

Definition 2. The inverse of a unimodular matrix is unimodular.

- **Proof** ?
 - For a matrix A, Minor $M_{ij} = \det([A_{kl}]_{k \neq , l \neq j})$, Cofactor $C_{ij} = (-1)^{i+j} M_{ij}$. ◦ Cramer's rule: $A^{-1} = \frac{1}{\det(A)} C^T$.
- Hence if b is integer valued, all tree flows are integers!
- If b is rational, multiply by GCD.
- In all cases, substantial gain in memory for practical implementations.

Initialization of the network simplex

- Find a spanning tree? off-the-shelf algorithms: depth-first/breadth-first searches, worst-case complexity of O(n+m).
- Initialization: find a feasible spanning trees. Phase I type method:
 - Start with origins, choose forward arcs, and destinations, with backward arcs.
 - Build F-paths from origin and B-paths from destinations until they meet.
 - Complete to form a **spanning tree** that connects all nodes.
 - Assign values of with flow conservation equations. Set $\mathcal{A}' = \mathcal{A}$.
 - If $f_{(i,j)}$ for an arc is negative, add if necessary $\mathcal{A}' \leftarrow \mathcal{A}' \cup (j,i)$,
 - \circ set $f_{(j,i)} \leftarrow -f_{(i,j)}$ and $f_{(i,j)} \leftarrow 0$.
 - Drive out artificial arcs: min. $\omega = \sum_{a \in \mathcal{A}'} \delta_{a \notin \mathcal{A}} f_a$, use the **network simplex**.
 - If $\omega > 0$ then infeasibility.
 - If $\omega = 0$, $f_a = 0$ for a in $\mathcal{A}' \setminus \mathcal{A}$ and we have an **initial feasible tree**.
- M-type methods are also possible:

add artificial edges with very high costs that link pairs of source-destinations
 complete the tree, incorporate these costs in the overall cost criterion.

Complexity of the network simplex

- Given a tree \mathbf{T} , the time consuming steps at each iteration:
 - $\circ~$ Computing dual variables takes O(m) operations,
 - \circ Computing reduced costs takes O(n) operations,
 - Updating flows in T takes O(m) operations.
- since $n \ge m 1$, O(n) operations in total.
- Compares favorably with the O(mn) operations of the simplex pivot.

• What about the **total number** of iterations?

Complexity of the network simplex

- Open questions: how many solutions at most?
 - For LP's, only approximations: #{extreme points of the feasible set}.
 - Cayley: complete undirected graph of n nodes $\Rightarrow n^{n-2}$ spanning trees.
- For the more general case, **Kirchhoff formula**:
 - Laplacian matrix L of undirected graph $(\mathcal{N}, \mathcal{E})$:
 - $\triangleright L \text{ is a } m \times m \text{ matrix (nodes } \times \text{ nodes).}$

$$\triangleright l_{i,i} = \deg(i), \quad l_{i,j} = \begin{cases} -1 \text{ if } \{i,j\} \in \\ 0 \text{ otherwise} \end{cases}$$

- \triangleright L is not invertible. $\lambda_1 = 0$ is an eigenvalue. The multiplicity of 0 gives the number of **connected subgraphs** of \mathcal{G} .
- $\circ\,$ Kirchhoff: the number $t(\mathcal{G})$ of spanning trees of \mathcal{G} is equal to

$$t(\mathcal{G}) = \frac{1}{m} \lambda_2 \lambda_3 \cdots \lambda_m.$$

• Bottom line: Usually complexity of O(m) but there exist examples where the network simplex takes exponential number of steps.

Capacitated Problems

Network Simplex for Capacitated Problems

• We now deal with the general capacitated case, *i.e.*

 $d_a \le f_a \le u_a, a \in \mathcal{A}$

- By basic solution we usually mean:
 - \circ Select a tree $\mathbf{T} \subset \mathcal{A}$.
 - Set the flow values to zero for arcs in $\mathcal{A} \setminus \mathbf{T}$.
 - $\circ\,$ Fill in values for $f_{\rm T}$ through flow conservation.
- In the capacitated case, this will become
 - \circ Select a tree $\mathbf{T} \subset \mathcal{A}$.
 - For arcs in $\mathcal{A} \setminus \mathbf{T}$, split them into two subsets U and D. • arcs in U have maximal flows $f_a = u_a$.
 - \triangleright arcs in O have maximal nows $j_a = u_a$.
 - \triangleright arcs in **D** have minimal flows $f_a = d_a$.
 - $\circ\,$ Fill in values for $f_{\rm T}$ through flow conservation equations.

Network Simplex for Capacitated Problems

- Suppose a tree ${\bf T}$ is given, with other arcs in ${\bf U}$ or ${\bf D}.$
- How should we look for the arcs to add $e \ /$ remove r from the basis \mathbf{T} ?
- \bullet As before, compute reduced costs vector for arcs of ${\bf U}$ and ${\bf D}.$
- If any arc a in D has a **negative** reduced cost,

choose cycle C that contains a as a forward arc.
pushing θ units of flow through that cycle we improve the objective.

• If any arc *a* in **U** has a **positive** reduced cost,

 \circ choose cycle C that contains a as a **backward** arc.

 $\circ\,$ pushing $\theta\,$ units of flow through that cycle we improve the objective.

Network Simplex for Capacitated Problems

- In both cases, objective improve. We need to be sure feasibility is ensured.
- Whatever the considered cycle,
 - \circ arcs in *F* see their flow **in**creased: check ≤ *u*.. \circ arcs in *B* see their flow **de**creased: check ≥ *d*..
- hence

$$\theta^* = \min\left\{\min_{a\in B}(f_a - d_a), \min_{a\in F}(u_a - f_a)\right\}.$$
(1)

- There will be (at least) one arc r of T which will be saturated, either equal to d_r or u_r .
- r will leave \mathbf{T} and enter \mathbf{U} or \mathbf{D} .
- This arc will be *usually* replaced by *a* which was selected because of its reduced cost coefficient.
- Why usually? because in some cases a flow that was equal to u_i we want to enter T might become equal to d_i . We've added/removed the same flow in one operation.

Capacitated Network Simplex

- Input: directed graph $\mathcal{G}(\mathcal{N}, \mathcal{A})$, cost vector \mathbf{c} , capacities \mathbf{d}, \mathbf{u} .
- Algorithm: minimize $\mathbf{c}^T \mathbf{f}$ under flow and capacities constraints.
 - $\circ~$ Start with a tree ${\bf T}$ with BFS, and a partition ${\bf D}, {\bf U}$ of ${\cal A} \setminus {\bf T}.$
 - $f_a = d_a$ for arcs in **D**, $f_a = u_a$ for arcs in **U**, and f_a feasible following the flow conservation equations.
 - Compute dual variables μ_1, \cdots, μ_{m-1} by starting from the root $\mu_m = 0$.
 - Compute reduced costs: $r_{ij} = c_{ij} (\mu_i \mu_j)$ for $(i, j) \notin \mathbf{T}$.
 - If $r_a \ge 0$ for all arcs in **D** and $r_a \le 0$ for all arcs in **U**, **T** is **optimal**.
 - otherwise, choose e in either $\{a \in \mathbf{D} | r_a < 0\}$ or $\{a \in \mathbf{U} | r_a > 0\}$. By adding e to \mathbf{T} we obtain a cycle.

Capacitated Network Simplex

- $\circ\;$ Choose the cycle C such that
 - $\triangleright e$ is a **forward arc** of C if e was in **D**,
 - $\triangleright e$ is a **backward arc** of C if e was in U.
- Determine θ^* according to Equation (1).
- $\circ~$ Update the flow vector using \mathbf{h}^{C} , namely

$$f_a \leftarrow \begin{cases} f_a + \theta^* & \text{if } a \in F. \\ f_a - \theta^* & \text{if } a \in B. \\ f_a, & \text{otherwise.} \end{cases}$$

 $\circ~$ Update the sets $\mathbf{T},\mathbf{U},\mathbf{D}$ and repeat.

Maximum-flow and the Ford-Fulkerson Algorithm

Direct formulation

We considered the following flow example:

- *m* nodes,
- n arcs,
 - Each arcs a carries a flow f_a its flow.
 - Each edge has a bounded capacity (pipe width) $0 \le f_a \le u_j$
- One source node *s*, one sink node *t*. $b_s > 0, b_t < 0, b_s + b_t = 0$. The other supplies are zero.
- A possible formulation would be to maximize b_s given all flow constraints:

Network Flow Formulation

- Maximizing a supply is not exactly what we considered in our programs.
- We add an artifical edge a = (t, s) instead,

and reformulate the problem as

$$\begin{array}{ll} \text{minimize} & -f_{t,s} \\ \text{subject to} & A\mathbf{f} = 0, \\ & \mathbf{0} \leq \mathbf{f} \leq \mathbf{u}. \end{array}$$

• Using this reformulation, solve solve with the network simplex.

Network Flow Formulation

- More efficient algorithms exist. We look for the biggest b_s possible.
- Let's start with the definition of **augmenting paths**

Definition 3. Let \mathbf{f} be a feasible flow vector to the max-flow problem. An augmenting path is a path from s to t such that $\mathbf{f}_a < \mathbf{u}_a$ for all forward arcs F and $\mathbf{f}_a > \mathbf{0}$ for all backward arcs B of the path.

- An augmenting path is also called an *unsaturated* path.
- With an augmenting path P, we can change the flow along every arc:
 - increase by θ for forward arcs,
 decrease by θ for backward arcs.
- The maximal increase/decrease is

$$\theta(P) = \min\left\{\min_{a\in F} (u_a - f_a), \min_{a\in B} f_a\right\}.$$

Ford-Fulkerson Algorithm

- Here is a high-level description, we check details later
 - 1. Start with a feasible flow f. The zero-flow is valid at first iteration.
 - 2. Search for an augmenting path P.
 - 3. If no augmenting path can be found, terminate.
 - 4. If an augmenting path can be found, then
 - (a) if $\theta(P) < \infty$ push $\theta(P)$ units of flow along P.
 - (b) if $\theta(P) = \infty$, terminate.
- **Remark**: if all **capacities** are **integer** or infinite, and the algorithm is initialized with an **integer feasible flow**, then if the optimum is finite the algorithm terminates after a finite number of steps.
- Why? flow increases by θ(P) ∈ ℝ, θ(P) > 1. If optimum the algorithm must stop in a finite number of steps.
- Can be generalized to rational numbers.

Search for an augmenting path ${\cal P}$

- The search itself is known as the **labeling** algorithm.
- The labeling algorithm is a simple brute-force search that explores the graph from s to t looking for such paths.
- Some intuitions:
 - Suppose we have an augmenting path from s to an intermediary node i. if, $(i, j) \in \mathcal{A}$ and $f_{(i,j)} < u_{ij}$ or $(j, i) \in \mathcal{A}$ and $f_{(j,i)} > 0$, then we can start looking from j to find an augmenting path.
- The process of examining all nodes j neighboring node i is called scanning i.
- Idea:
 - \circ keep track in *I* of **labelled** nodes, that is nodes for which an augmenting path from *s* to *i* exists, which **have not been scanned yet**.
 - scan the nodes of *I*, remove them and move forward along the graph by adding eventually labelled nodes.

The Labeling algorithm

• Initialize the algorithm with $I = \{s\}$.

• Loop:

- (i) If $I = \emptyset$ there is no augmenting path.
- (ii) If node $t \in I$ terminate with an augmenting path.
- (iii) Otherwise scan any element of I, say i:
 - \circ Remove *i* from *I*.
 - $\circ\,$ Look for all neighbors j of i that satisfy the augmenting path condition, that is
 - ${\scriptstyle \vartriangleright} \ \, \text{if} \ (i,j) \in \mathcal{A} \ \text{and} \ f_{(i,j)} < u_{ij} \ \text{or}$
 - \triangleright if $(j,i) \in \mathcal{A}$ and $f_{(j,i)} > 0$.
 - \triangleright Add these nodes *j*'s into *I*.
- Complexity: $O(\#(\mathcal{A}))$

Cuts

- We introduce cuts, both to prove the convergence of Ford-Fulkerson and introduce a parallel with duality.
- An (s-t) cut is a subset S of nodes such that $s \in S$ and $t \notin S$.
- The capacity of the cut is the sum of the capacities of the arcs that cross from S to its complement $T=\mathcal{N}\setminus S$,

$$C(S) = \sum_{(i,j)\in\mathcal{A} \mid i\in S, j\in T} u_{(i,j)}$$

- Additionally, any overall flow from s to t crosses at different points the line between a node $i \in S$ and a node $j \in T$.
- Hence for every cut S the flow supplied to the network b_s is upperbounded by

$$b_s \le C(S),$$

• cuts provide a family of upperbounds. What about the minimal cut?... see slides on duality.

Cuts

Cut Upperbound

Cut capacity = $30 \Rightarrow$ Flow value ≤ 30

Cut Upperbound

Ford-Fulkerson converges to the optimum

Theorem 1. If the Ford-Fulkerson algorithm terminates because no augmenting path can be found, then the current flow is **optimal**.

Proof idea:

- if no augmenting path has been found, the labeling algorithm has failed.
- Let S denote the set of nodes that were included in I at some point.
- Obviously $t \notin S$ and $s \in S$. Therefore S is a cut.
- We can show that the current flow is equal to the capacity of that cut ${\cal C}(S)$ and is hence optimal.