ORF 522

Linear Programming and Convex Analysis

Network Flows & Ford-Fulkerson

Marco Cuturi

Princeton ORF-522

Reminder

e Network Problems

o a graph topology
o additional information

e Some canonical problems.
e Light formulation:

o m nodes, n arcs
o node-arc incidence matrix A € {0,1, —1}™*". last line removed for /.i.

e Tree solutions for a directed network with n arcs A and m nodes N

choose m — 1 arcs in A that form a spanning tree T.
set flows on arcs not in the tree to zero.
flow conditions determine uniquely flow values at the arcs of T.

O
O
O
o equivalent to basic solutions in standard LP’s.

Princeton ORF-522

Today

e Update and improve a tree solution: network simplex.

o graph interpretation and efficiency
o implementation speed-ups compared to the simplex
o complexity

e Generalization to capacitated networks flows.

e The max-flow problem and the Ford-Fulkerson algorithm.

Princeton ORF-522

Network Simplex

Princeton ORF-522

Recapitulating

e Basic feasible solutions < Tree feasible solutions

o intuition: a set of edges that form trees lead to invertible matrices.
o why? because they are triangular with suitable reordering.
o If not a tree, there is a cycle in a set of edges I. what happens to By?

e The basic solution fr can be computed directly. Just by starting from the
leaves of T' and going up to the root.

e No need to invert Br.

e Degeneracy: some flows in arcs belonging to 7 might be 0. The same flow
might correspond to different trees.

Princeton ORF-522

Changing the basis, changing the tree

e Remember the primal simplex:

o Given I, identify an entering column or variable w.r.t. reduced costs.
o identify an exit column variable that conserves feasibility.

e Same idea here:

o Given T, identify an entering arc of A\ T that will improve the objective
o Find an exit arc of T to remove that ensures we still have a feasible tree

Princeton ORF-522

Changing the basis, changing the tree

e More precisely:

e Pick an arc (¢,7) not in T. Add it to the tree.

e Obtain a cycle C' that includes (i, 7).

e Choose the orientation of C' such that ¢, (7,7),j is in C.

e (i,7) is a forward arc of C. Label other arcs as Forward or Backward.

e Push 6 of the circulation C' into f. The flow vector f becomes

fo+0 ifaekF,
0 fo — fo—0 ifaeB,
fa otherwise.
o To ensure feasibility, that is nonnegativity, the largest possible value for 6 is

60* = mi if B =1). 1
hin Sk Of 00 i 0 (1)

o If (k,l) is the argmin, remove it from T and we get a new tree flow.

Princeton ORF-522 7

Changing the basis, changing the tree

oo — di + 51 + 53 @ new arc

S1

@)

e The amount 6* and (k,[) depends only on the actual values of flows of
backward arcs: s; and so — di + s1 + s3.

Princeton ORF-522

Changing the basis, changing the tree

e suppose si is smaller. Then 8* = s; the new values at the cycle are:
d2 >
-

82—d1—|—83

d1.~ s3 4
Sy — dy + 81 + s3—s81 :
d1 — 81 — Sg—|—81>D Q d1
s3 T
|
|

e \We have a new tree feasible solution

e |f we push 6 units of flow, the objective changes by

0™ Z Ck,l — Z Ckl

(k,0)EF (k,l)eB

WV
reduced cost

Princeton ORF-522

Reduced Cost Coefficient For an Arc

e This coefficient provides a criterion to select entering arc (¢, 7). We used a
cycle C to define it, is it unique?

e For each arc (i,7j) of A\ T, there is only one cycle (up to shifts) obtained by
adding arc (i, j) and which has (i, j) as a forward arc. (why?)

e We can thus define a vector r of size n, r, =0 for a € T and for (¢,5) ¢ T,
"(i,5) = Z Ck,l — Z Ck,l
(k,)EF (k,)EB

which is called the reduced cost coefficient vector.
e Same quantity than if we had gone through the simplex computations.

e Yet looks more tedious to compute in this form... — use duality

Princeton ORF-522 10

Reduced Cost Computation

e Recall the reduced cost vector formula:

r=c— Alyp,

e where the dual vector 1 corresponds to the base I, namely BI_ch.
e 1t € R™ ™ (# nodes -1).

o AT ¢ R"*(™=1 has n rows with only a1, a —1 and 0's (except for the last
one).

e We thus have
Cig) — (i — Hg), for i 7#j <m—1,

T(i,5) = C(i,5) — Mi, forj =m
C(i,j) T Mjs for : = m.

Princeton ORF-522

Reduced Cost Computation

e \We define the mth coordinate of u, p,,, = 0.

e \We then have
V(Z,j) € Aa T(i,5) = C(i,5) — (:LL’L — :uj)

e How do we compute p = Bl_ch?

(2)

e \We use the fact that the reduced cost coefficient of a basic variable is zero, i.e.

V(i,j) € T, ;i — p;=ci

we have m — 1 linear relationships for m — 1 unknown variables..

Princeton ORF-522

12

Reduced Cost Computation

e |n practice, start from the last node and cascade through all edges in T.

M1 = C14 — Ch4

€14

€24

%
€23 : :,LL

U9 = C14 — C54 — C13 + C23

@,\M = —cxy

€54

©

€53

last node

ps =0

3= Cl4 — Cs4 — C13

e Once this is done, compute r using Equation (), only for arcs (i,j) ¢ T

Princeton ORF-522

13

Recapitulation

e Input: directed graph G(N, A), cost vector c.
e Algorithm: minimize c’f under flow constraints, including nonnegativity.

Start with a feasible tree T.

Set f,,a € T following the flow conservation equations. For a ¢ T, f, = 0.
Compute dual variables pq, - -, 4,1 by starting from the root u,, = 0.
Compute reduced costs: r;; = ¢;; — (i — p;) for (i,5) ¢ T.

If r, > 0 for all arcs of A\ T, T is optimal.

otherwise, choose e in {a € A\ T|r, <0} and add it to T.

Set the cycle C' such that a is a forward arc of C'.

Determine 0* according to Equation ().

Update the flow vector using h®, namely

© 0O 0O 0o 0o 0o o o o

fo+0" ifeekF.
fas otherwise.

Princeton ORF-522 14

Princeton ORF-522

Computational Insights

15

Unimodular Matrices: Another Property

Definition 1. A square integer matrixz 1s unimodular if its determinant is
—1 or +1

e Easy to remark that for a choice of edges T that corresponds to a tree B is
unimodular.

Definition 2. The inverse of a unimodular matriz is unimodular.

e Proof ?

o For a matrix A, Minor M;; = det([Agi]k£.12;), Cofactor Cy; = (—1)"17M,;.

: CoA—1 1 T
o Cramer's rule: A=+ = det(A)C .

e Hence if b is integer valued, all tree flows are integers!
e If b is rational, multiply by GCD.

e In all cases, substantial gain in memory for practical implementations.

Princeton ORF-522 16

Initialization of the network simplex

e Find a spanning tree? off-the-shelf algorithms: depth-first/breadth-first
searches, worst-case complexity of O(n + m).

e Initialization: find a feasible spanning trees. Phase | type method:

Start with origins, choose forward arcs, and destinations, with backward arcs.
Build F-paths from origin and B-paths from destinations until they meet.
Complete to form a spanning tree that connects all nodes.

Assign values of with flow conservation equations. Set A" = A.

If f;.;) for an arc is negative, add if necessary A" — A" U (j,1),

set f(j1) < —fa.g and fig) < 0.

Drive out artificial arcs: min. w =) _ 1/ d,¢ 4fa, use the network simplex.
If w > 0 then infeasibility.

If w=0, fp =0 forain A"\ A and we have an initial feasible tree.

© O 0O 0O O O O O O

e M-type methods are also possible:

o add artificial edges with very high costs that link pairs of source-destinations
o complete the tree, incorporate these costs in the overall cost criterion.

Princeton ORF-522 17

Complexity of the network simplex

e Given a tree T, the time consuming steps at each iteration:

o Computing dual variables takes O(m) operations,
o Computing reduced costs takes O(n) operations,
o Updating flows in T takes O(m) operations.

e since n > m — 1, O(n) operations in total.

e Compares favorably with the O(mn) operations of the simplex pivot.

e \What about the total number of iterations?

Princeton ORF-522

18

Complexity of the network simplex

e Open questions: how many solutions at most?

o For LP’s, only approximations: #{extreme points of the feasible set}.
o Cayley: complete undirected graph of n nodes = n"~2 spanning trees.

e For the more general case, Kirchhoff formula:

o Laplacian matrix L of undirected graph (N, &):
> L is a m x m matrix (nodes x nodes).

. —1if{i,jl e €&
> 1 = deg(i), li; = 0 othe{rwisi

> L is not invertible. Ay = 0 is an eigenvalue. The multiplicity of 0 gives the
number of connected subgraphs of G.
o Kirchhoff: the number ¢(G) of spanning trees of G is equal to

1
HG) = —AaAs -+ Am.
m

e Bottom line: Usually complexity of O(m) but there exist examples where the
network simplex takes exponential number of steps.

Princeton ORF-522 19

Princeton ORF-522

Capacitated Problems

20

Network Simplex for Capacitated Problems

e \We now deal with the general capacitated case, i.e.

do < fo <ug,a€ A

e By basic solution we usually mean:

o Select a tree T C A.
o Set the flow values to zero for arcs in A\ T.
o Fill in values for ft through flow conservation.

e |n the capacitated case, this will become

o Select a tree T C A.

o For arcs in A\ T, split them into two subsets U and D.
> arcs in U have maximal flows f, = u,.
> arcs in D have minimal flows f, = d,.

o Fill in values for ft through flow conservation equations.

Princeton ORF-522

21

Network Simplex for Capacitated Problems

e Suppose a tree T is given, with other arcs in U or D.

e How should we look for the arcs to add e / remove r from the basis T7?
e As before, compute reduced costs vector for arcs of U and D.

e If any arc a in D has a negative reduced cost,

o choose cycle C' that contains a as a forward arc.
o pushing 6 units of flow through that cycle we improve the objective.

e If any arc a in U has a positive reduced cost,

o choose cycle C' that contains a as a backward arc.
o pushing 6 units of flow through that cycle we improve the objective.

Princeton ORF-522

22

Network Simplex for Capacitated Problems

e In both cases, objective improve. We need to be sure feasibility is ensured.
e Whatever the considered cycle,

o arcs in F' see their flow increased: check < wu..
o arcs in B see their flow decreased: check > d..

e hence

o = min g, — du). min(u, — £) | (1)

a€EB acF

e There will be (at least) one arc r of T which will be saturated, either equal to
d, or u,.

e 1 will leave T and enter U or D.

e This arc will be usually replaced by a which was selected because of its
reduced cost coefficient.

e Why usually? because in some cases a flow that was equal to u; we want to
enter T might become equal to d;. We've added/removed the same flow in
one operation.

Princeton ORF-522 23

Capacitated Network Simplex

e Input: directed graph G(N, A), cost vector ¢, capacities d, u.
e Algorithm: minimize c’f under flow and capacities constraints.

o Start with a tree T with BFS, and a partition D, U of A\ T.

o f,=d, for arcsin D, f, = u, for arcs in U, and f, feasible following the
flow conservation equations.

Compute dual variables pq, - -, 4,1 by starting from the root u,, = 0.
Compute reduced costs: r;; = ¢;; — (i — p;) for (i,5) ¢ T.

If r, > 0 for all arcs in D and r, < 0 for all arcs in U, T is optimal.
otherwise, choose e in either {a € D|r, < 0} or {a € U|r, > 0}. By
adding e to T we obtain a cycle.

© O O O

T

v

Princeton ORF-522

24

Capacitated Network Simplex

o Choose the cycle C' such that
>~ e i1s a forward arc of C if e was in D,
>~ e is a backward arc of C if e was in U.
o Determine 6* according to Equation ().
o Update the flow vector using h¢ namely

f, 40 ifackF
fo—{ f,—0* ifacB.

fas otherwise.

o Update the sets T, U, D and repeat.

Princeton ORF-522

25

Princeton ORF-522

Maximum-flow
and
the Ford-Fulkerson Algorithm

26

Direct formulation

We considered the following flow example:

e m nodes,
® 7, arcs,

o Each arcs a carries a flow f, its flow.
o Each edge has a bounded capacity (pipe width) 0 < f, < u;

e One source node s, one sink node t. by > 0,b; < 0,bs + by = 0. The other
supplies are zero.

e A possible formulation would be to maximize b, given all flow constraints:

Princeton ORF-522

27

Network Flow Formulation

e Maximizing a supply is not exactly what we considered in our programs.

e \We add an artifical edge a = (¢, s) instead,

and reformulate the problem as

minimize —f; g
subject to Af =0,
0<f<u

e Using this reformulation, solve solve with the network simplex.

Princeton ORF-522

28

Network Flow Formulation

e More efficient algorithms exist. We look for the biggest b, possible.
e Let's start with the definition of augmenting paths

Definition 3. Let f be a feasible flow vector to the maz-flow problem. An
augmenting path is a path from s to t such that f, < wug for all forward
arcs F' and fo, > 0 for all backward arcs B of the path.

e An augmenting path is also called an unsaturated path.

e With an augmenting path P, we can change the flow along every arc:

o increase by 6 for forward arcs,
o decrease by 6 for backward arcs.

e The maximal increase/decrease is

acF

o(P) = i { i, ~ £)mig £, |

Princeton ORF-522 29

Ford-Fulkerson Algorithm

e Here is a high-level description, we check details later

1. Start with a feasible flow f. The zero-flow is valid at first iteration.
2. Search for an augmenting path P.
3. If no augmenting path can be found, terminate.
4. If an augmenting path can be found, then
(a) if (P) < oo push 6(P) units of flow along P.
(b) if 8(P) = oo, terminate.

e Remark: if all capacities are integer or infinite, and the algorithm is
initialized with an integer feasible flow, then if the optimum is finite the
algorithm terminates after a finite number of steps.

e Why? flow increases by §(P) € IN,0(P) > 1. If optimum the algorithm must
stop in a finite number of steps.

e Can be generalized to rational numbers.

Princeton ORF-522 30

Search for an augmenting path P

e The search itself is known as the labeling algorithm.

e The labeling algorithm is a simple brute-force search that explores the graph
from s to t looking for such paths.

e Some intuitions:

o Suppose we have an augmenting path from s to an intermediary node 7. if,
> (4,7) € Aand f(; ;) < uj or
> (], ’L) e A and f(j,’l,) > 0,
then we can start looking from 5 to find an augmenting path.

e The process of examining all nodes j neighboring node ¢ is called scanning 1.
e |dea:

o keep track in I of labelled nodes, that is nodes for which an augmenting
path from s to 7 exists, which have not been scanned yet.

o scan the nodes of I, remove them and move forward along the graph by
adding eventually labelled nodes.

Princeton ORF-522 31

The Labeling algorithm

e Initialize the algorithm with I = {s}.

e Loop:

(i) If I = () there is no augmenting path.
(ii) If node ¢t € I terminate with an augmenting path.

(iii) Otherwise scan any element of I, say i:

o Remove 7 from 1.
o Look for all neighbors 5 of ¢ that satisfy the augmenting path condition,

that is

> if (Z,]) c A and f(z,j) < Ujj Or
> if (],Z) © ./4 and f(j,z) > 0.

> Add these nodes j's into I.

o Complexity: O(#(A))

Princeton ORF-522

32

Cuts

e We introduce cuts, both to prove the convergence of Ford-Fulkerson and
introduce a parallel with duality.

e An (s —t) cut is a subset S of nodes such that s € S andt ¢ S.

e The capacity of the cut is the sum of the capacities of the arcs that cross from
S to its complement T'= N\ S,

C(S) = Z u(i,j)

(i,j)€A | i€S,J€T

e Additionally, any overall flow from s to ¢ crosses at different points the line
between a node ¢ € S and a node 57 € T..

e Hence for every cut S the flow supplied to the network by is upperbounded by

bs < C(S5),

e cuts provide a family of upperbounds. What about the minimal cut?... see
slides on duality.

Princeton ORF-522 33

Cuts

C'(S) = ugs + ugr + gz + g7

Princeton ORF-522

34

Princeton ORF-522

Cut Upperbound

Cut capacity =30 = Flow value =< 30

9 ®

15 15 10

Capacity = 30

30 @

35

Princeton ORF-522

Cut Upperbound

36

Ford-Fulkerson converges to the optimum

Theorem 1. If the Ford-Fulkerson algorithm terminates because no
augmenting path can be found, then the current flow is optimal.

Proof idea:

e if no augmenting path has been found, the labeling algorithm has failed.
e Let S denote the set of nodes that were included in I at some point.
e Obviously t ¢ S and s € S. Therefore S is a cut.

e We can show that the current flow is equal to the capacity of that cut C'(.5)
and is hence optimal.

Princeton ORF-522

37

