
ORF 522

Linear Programming and Convex Analysis

Network Flows & Ford-Fulkerson

Marco Cuturi

Princeton ORF-522 1

Reminder

• Network Problems

◦ a graph topology
◦ additional information

• Some canonical problems.

• Light formulation:

◦ m nodes, n arcs
◦ node-arc incidence matrix A ∈ {0, 1,−1}m×n. last line removed for l.i.

• Tree solutions for a directed network with n arcs A and m nodes N :

◦ choose m− 1 arcs in A that form a spanning tree T.
◦ set flows on arcs not in the tree to zero.
◦ flow conditions determine uniquely flow values at the arcs of T.
◦ equivalent to basic solutions in standard LP’s.

Princeton ORF-522 2

Today

• Update and improve a tree solution: network simplex.

◦ graph interpretation and efficiency
◦ implementation speed-ups compared to the simplex
◦ complexity

• Generalization to capacitated networks flows.

• The max-flow problem and the Ford-Fulkerson algorithm.

Princeton ORF-522 3

Network Simplex

Princeton ORF-522 4

Recapitulating

• Basic feasible solutions ⇔ Tree feasible solutions

◦ intuition: a set of edges that form trees lead to invertible matrices.
◦ why? because they are triangular with suitable reordering.
◦ if not a tree, there is a cycle in a set of edges I. what happens to BI?

• The basic solution fT can be computed directly. Just by starting from the
leaves of T and going up to the root.

• No need to invert BT.

• Degeneracy: some flows in arcs belonging to T might be 0. The same flow
might correspond to different trees.

Princeton ORF-522 5

Changing the basis, changing the tree

• Remember the primal simplex:

◦ Given I, identify an entering column or variable w.r.t. reduced costs.
◦ identify an exit column variable that conserves feasibility.

• Same idea here:

◦ Given T, identify an entering arc of A \T that will improve the objective
◦ Find an exit arc of T to remove that ensures we still have a feasible tree

Princeton ORF-522 6

Changing the basis, changing the tree

• More precisely:

• Pick an arc (i, j) not in T. Add it to the tree.

• Obtain a cycle C that includes (i, j).

• Choose the orientation of C such that i, (i, j), j is in C.

• (i, j) is a forward arc of C. Label other arcs as Forward or Backward.

• Push θ of the circulation C into f . The flow vector f becomes

◦ fa ←

fa + θ if a ∈ F,
fa − θ if a ∈ B,
fa otherwise.

◦ To ensure feasibility, that is nonnegativity, the largest possible value for θ is

θ⋆ = min
(k,l)∈B

fk,l or ∞ if B = ∅. (1)

◦ If (k, l) is the argmin, remove it from T and we get a new tree flow.

Princeton ORF-522 7

Changing the basis, changing the tree

s2 − d1 + s1 + s3

s3

s3

s2

d1

s1

d2

d1 − s1 − s3
s12f

3f

1f

T

2s

1s
d1 − s1 − s3

s2 − d1 + s1 + s3

s1

1f

new arc2s

1s

2f

• The amount θ⋆ and (k, l) depends only on the actual values of flows of
backward arcs: s1 and s2 − d1 + s1 + s3.

hC

1

−1
1

−1

C

2s

1s

2f

1f

Princeton ORF-522 8

Changing the basis, changing the tree

• suppose s1 is smaller. Then θ∗ = s1 the new values at the cycle are:

d1 − s1 − s3+s1

s1

0

s2 − d1 + s1 + s3−s1
2s

1s

2f

1f

s1

s3

s3

s2

d1

s1

d2

s2 − d1 + s3

d1 − s3
2f

3f

1f

T′

2s

1s

• We have a new tree feasible solution

• If we push θ units of flow, the objective changes by

θ∗

∑

(k,l)∈F

ck,l −
∑

(k,l)∈B

ckl

︸ ︷︷ ︸
reduced cost

.

Princeton ORF-522 9

Reduced Cost Coefficient For an Arc

• This coefficient provides a criterion to select entering arc (i, j). We used a
cycle C to define it, is it unique?

• For each arc (i, j) of A \T, there is only one cycle (up to shifts) obtained by
adding arc (i, j) and which has (i, j) as a forward arc. (why?)

• We can thus define a vector r of size n, ra = 0 for a ∈ T and for (i, j) /∈ T,

r(i,j) =

∑

(k,l)∈F

ck,l −
∑

(k,l)∈B

ck,l

 .

which is called the reduced cost coefficient vector.

• Same quantity than if we had gone through the simplex computations.

• Yet looks more tedious to compute in this form... → use duality

Princeton ORF-522 10

Reduced Cost Computation

• Recall the reduced cost vector formula:

r = c−ATµ,

• where the dual vector µ corresponds to the base I, namely B−1
I

cI.

• µ ∈ Rm−1 (# nodes -1).

• AT ∈ Rn×(m−1) has n rows with only a 1, a −1 and 0’s (except for the last
one).

• We thus have

r(i,j) =

c(i,j) − (µi − µj), for i 6= j ≤ m− 1,
c(i,j) − µi, for j = m
c(i,j) + µj, for i = m.

Princeton ORF-522 11

Reduced Cost Computation

• We define the mth coordinate of µ, µm = 0.

• We then have
∀(i, j) ∈ A, r(i,j) = c(i,j) − (µi − µj). (2)

• How do we compute µ = B−1
I

cI?

• We use the fact that the reduced cost coefficient of a basic variable is zero, i.e.

∀(i, j) ∈ T, µi − µj = cij

we have m− 1 linear relationships for m− 1 unknown variables..

Princeton ORF-522 12

Reduced Cost Computation

• In practice, start from the last node and cascade through all edges in T.

c53

c23

c14

c24

c54

c13

µ3 = c14 − c54 − c13

µ2 = c14 − c54 − c13 + c23

µ1 = c14 − c54 last node

µ5 = 0

T

4

3

1

2

5

µ4 = −c54

• Once this is done, compute r using Equation (2), only for arcs (i, j) /∈ T

Princeton ORF-522 13

Recapitulation

• Input: directed graph G(N ,A), cost vector c.

• Algorithm: minimize cT f under flow constraints, including nonnegativity.

◦ Start with a feasible tree T.
◦ Set fa, a ∈ T following the flow conservation equations. For a /∈ T, fa = 0.
◦ Compute dual variables µ1, · · · , µm−1 by starting from the root µm = 0.
◦ Compute reduced costs: rij = cij − (µi − µj) for (i, j) /∈ T.
◦ If ra ≥ 0 for all arcs of A \T, T is optimal.
◦ otherwise, choose e in {a ∈ A \ T | ra < 0} and add it to T.
◦ Set the cycle C such that a is a forward arc of C.
◦ Determine θ∗ according to Equation (1).
◦ Update the flow vector using hC, namely

fa ←

fa + θ∗ if e ∈ F.
fa − θ∗ if e ∈ B.
fa, otherwise.

Princeton ORF-522 14

Computational Insights

Princeton ORF-522 15

Unimodular Matrices: Another Property

Definition 1. A square integer matrix is unimodular if its determinant is

−1 or +1

• Easy to remark that for a choice of edges T that corresponds to a tree BT is
unimodular.

Definition 2. The inverse of a unimodular matrix is unimodular.

• Proof ?

◦ For a matrix A, Minor Mij = det([Akl]k 6=,l 6=j), Cofactor Cij = (−1)i+jMij.
◦ Cramer’s rule: A−1 = 1

det(A)C
T .

• Hence if b is integer valued, all tree flows are integers!

• If b is rational, multiply by GCD.

• In all cases, substantial gain in memory for practical implementations.

Princeton ORF-522 16

Initialization of the network simplex

• Find a spanning tree? off-the-shelf algorithms: depth-first/breadth-first
searches, worst-case complexity of O(n + m).

• Initialization: find a feasible spanning trees. Phase I type method:

◦ Start with origins, choose forward arcs, and destinations, with backward arcs.
◦ Build F-paths from origin and B-paths from destinations until they meet.
◦ Complete to form a spanning tree that connects all nodes.
◦ Assign values of with flow conservation equations. Set A′ = A.
◦ If f(i,j) for an arc is negative, add if necessary A′ ← A′ ∪ (j, i),
◦ set f(j,i)← −f(i,j) and f(i,j)← 0.
◦ Drive out artificial arcs: min. ω =

∑

a∈A′ δa/∈Afa, use the network simplex.
◦ If ω > 0 then infeasibility.
◦ If ω = 0, fa = 0 for a in A′ \ A and we have an initial feasible tree.

• M-type methods are also possible:

◦ add artificial edges with very high costs that link pairs of source-destinations
◦ complete the tree, incorporate these costs in the overall cost criterion.

Princeton ORF-522 17

Complexity of the network simplex

• Given a tree T, the time consuming steps at each iteration:

◦ Computing dual variables takes O(m) operations,
◦ Computing reduced costs takes O(n) operations,
◦ Updating flows in T takes O(m) operations.

• since n ≥ m− 1, O(n) operations in total.

• Compares favorably with the O(mn) operations of the simplex pivot.

• What about the total number of iterations?

Princeton ORF-522 18

Complexity of the network simplex

• Open questions: how many solutions at most?

◦ For LP’s, only approximations: #{extreme points of the feasible set}.
◦ Cayley: complete undirected graph of n nodes ⇒ nn−2 spanning trees.

• For the more general case, Kirchhoff formula:

◦ Laplacian matrix L of undirected graph (N , E):
⊲ L is a m×m matrix (nodes × nodes).

⊲ li,i = deg(i), li,j =

{
−1 if {i, j} ∈ E
0 otherwise

⊲ L is not invertible. λ1 = 0 is an eigenvalue. The multiplicity of 0 gives the
number of connected subgraphs of G.

◦ Kirchhoff: the number t(G) of spanning trees of G is equal to

t(G) =
1

m
λ2λ3 · · ·λm.

• Bottom line: Usually complexity of O(m) but there exist examples where the
network simplex takes exponential number of steps.

Princeton ORF-522 19

Capacitated Problems

Princeton ORF-522 20

Network Simplex for Capacitated Problems

• We now deal with the general capacitated case, i.e.

da ≤ fa ≤ ua, a ∈ A

• By basic solution we usually mean:

◦ Select a tree T ⊂ A.
◦ Set the flow values to zero for arcs in A \T.
◦ Fill in values for fT through flow conservation.

• In the capacitated case, this will become

◦ Select a tree T ⊂ A.
◦ For arcs in A \T, split them into two subsets U and D.

⊲ arcs in U have maximal flows fa = ua.
⊲ arcs in D have minimal flows fa = da.
◦ Fill in values for fT through flow conservation equations.

Princeton ORF-522 21

Network Simplex for Capacitated Problems

• Suppose a tree T is given, with other arcs in U or D.

• How should we look for the arcs to add e / remove r from the basis T?

• As before, compute reduced costs vector for arcs of U and D.

• If any arc a in D has a negative reduced cost,

◦ choose cycle C that contains a as a forward arc.
◦ pushing θ units of flow through that cycle we improve the objective.

• If any arc a in U has a positive reduced cost,

◦ choose cycle C that contains a as a backward arc.
◦ pushing θ units of flow through that cycle we improve the objective.

Princeton ORF-522 22

Network Simplex for Capacitated Problems

• In both cases, objective improve. We need to be sure feasibility is ensured.

• Whatever the considered cycle,

◦ arcs in F see their flow increased: check ≤ u·.
◦ arcs in B see their flow decreased: check ≥ d·.

• hence

θ∗ = min

{

min
a∈B

(fa − da), min
a∈F

(ua − fa)

}

. (1)

• There will be (at least) one arc r of T which will be saturated, either equal to
dr or ur.

• r will leave T and enter U or D.

• This arc will be usually replaced by a which was selected because of its
reduced cost coefficient.

• Why usually? because in some cases a flow that was equal to ui we want to
enter T might become equal to di. We’ve added/removed the same flow in
one operation.

Princeton ORF-522 23

Capacitated Network Simplex

• Input: directed graph G(N ,A), cost vector c, capacities d,u.

• Algorithm: minimize cT f under flow and capacities constraints.

◦ Start with a tree T with BFS, and a partition D,U of A \T.
◦ fa = da for arcs in D, fa = ua for arcs in U, and fa feasible following the

flow conservation equations.
◦ Compute dual variables µ1, · · · , µm−1 by starting from the root µm = 0.
◦ Compute reduced costs: rij = cij − (µi − µj) for (i, j) /∈ T.
◦ If ra ≥ 0 for all arcs in D and ra ≤ 0 for all arcs in U, T is optimal.
◦ otherwise, choose e in either {a ∈ D| ra < 0} or {a ∈ U| ra > 0}. By

adding e to T we obtain a cycle.

2

3

1

6

T

U

D

4

5

Princeton ORF-522 24

Capacitated Network Simplex

◦ Choose the cycle C such that
⊲ e is a forward arc of C if e was in D,
⊲ e is a backward arc of C if e was in U.
◦ Determine θ∗ according to Equation (1).
◦ Update the flow vector using hC, namely

fa ←

fa + θ∗ if a ∈ F.
fa − θ∗ if a ∈ B.
fa, otherwise.

◦ Update the sets T,U,D and repeat.

Princeton ORF-522 25

Maximum-flow

and

the Ford-Fulkerson Algorithm

Princeton ORF-522 26

Direct formulation

We considered the following flow example:

• m nodes,

• n arcs,

◦ Each arcs a carries a flow fa its flow.
◦ Each edge has a bounded capacity (pipe width) 0 ≤ fa ≤ uj

• One source node s, one sink node t. bs > 0, bt < 0, bs + bt = 0. The other
supplies are zero.

• A possible formulation would be to maximize bs given all flow constraints:

bs

bt = −bs

s
t

Princeton ORF-522 27

Network Flow Formulation

• Maximizing a supply is not exactly what we considered in our programs.

• We add an artifical edge a = (t, s) instead,

uts =∞

s
t

(t, s)

and reformulate the problem as

minimize −ft,s

subject to Af = 0,
0 ≤ f ≤ u.

• Using this reformulation, solve solve with the network simplex.

Princeton ORF-522 28

Network Flow Formulation

• More efficient algorithms exist. We look for the biggest bs possible.

• Let’s start with the definition of augmenting paths

Definition 3. Let f be a feasible flow vector to the max-flow problem. An

augmenting path is a path from s to t such that fa < ua for all forward

arcs F and fa > 0 for all backward arcs B of the path.

• An augmenting path is also called an unsaturated path.

• With an augmenting path P , we can change the flow along every arc:

◦ increase by θ for forward arcs,
◦ decrease by θ for backward arcs.

• The maximal increase/decrease is

θ(P) = min

{

min
a∈F

(ua − fa), min
a∈B

fa

}

.

Princeton ORF-522 29

Ford-Fulkerson Algorithm

• Here is a high-level description, we check details later

1. Start with a feasible flow f . The zero-flow is valid at first iteration.
2. Search for an augmenting path P .
3. If no augmenting path can be found, terminate.
4. If an augmenting path can be found, then
(a) if θ(P) <∞ push θ(P) units of flow along P .
(b) if θ(P) =∞, terminate.

• Remark: if all capacities are integer or infinite, and the algorithm is
initialized with an integer feasible flow, then if the optimum is finite the
algorithm terminates after a finite number of steps.

• Why? flow increases by θ(P) ∈ N, θ(P) > 1. If optimum the algorithm must
stop in a finite number of steps.

• Can be generalized to rational numbers.

Princeton ORF-522 30

Search for an augmenting path P

• The search itself is known as the labeling algorithm.

• The labeling algorithm is a simple brute-force search that explores the graph
from s to t looking for such paths.

• Some intuitions:

◦ Suppose we have an augmenting path from s to an intermediary node i. if,
⊲ (i, j) ∈ A and f(i,j) < uij or
⊲ (j, i) ∈ A and f(j,i) > 0,
then we can start looking from j to find an augmenting path.

• The process of examining all nodes j neighboring node i is called scanning i.

• Idea:

◦ keep track in I of labelled nodes, that is nodes for which an augmenting
path from s to i exists, which have not been scanned yet.
◦ scan the nodes of I, remove them and move forward along the graph by

adding eventually labelled nodes.

Princeton ORF-522 31

The Labeling algorithm

• Initialize the algorithm with I = {s}.

• Loop:

(i) If I = ∅ there is no augmenting path.
(ii) If node t ∈ I terminate with an augmenting path.
(iii) Otherwise scan any element of I, say i:
◦ Remove i from I.
◦ Look for all neighbors j of i that satisfy the augmenting path condition,

that is
⊲ if (i, j) ∈ A and f(i,j) < uij or
⊲ if (j, i) ∈ A and f(j,i) > 0.
⊲ Add these nodes j’s into I.

• Complexity: O(#(A))

Princeton ORF-522 32

Cuts

• We introduce cuts, both to prove the convergence of Ford-Fulkerson and
introduce a parallel with duality.

• An (s− t) cut is a subset S of nodes such that s ∈ S and t /∈ S.

• The capacity of the cut is the sum of the capacities of the arcs that cross from
S to its complement T = N \ S,

C(S) =
∑

(i,j)∈A | i∈S,j∈T

u(i,j)

• Additionally, any overall flow from s to t crosses at different points the line
between a node i ∈ S and a node j ∈ T .

• Hence for every cut S the flow supplied to the network bs is upperbounded by

bs ≤ C(S),

• cuts provide a family of upperbounds. What about the minimal cut?... see
slides on duality.

Princeton ORF-522 33

Cuts

7

6

u47

u45

c32

u43

u67

C(S) = u45 + u47 + u43 + u67

S = {1, 2, 4, 6}

T

1

2

4

b1

b7

3

5

Princeton ORF-522 34

Cut Upperbound

Cut capacity = 30 ! Flow value " 30

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4

Capacity = 30

 A

Princeton ORF-522 35

Cut Upperbound

Value of flow = 28
Cut capacity = 28 ! Flow value " 28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0
 A

Princeton ORF-522 36

Ford-Fulkerson converges to the optimum

Theorem 1. If the Ford-Fulkerson algorithm terminates because no

augmenting path can be found, then the current flow is optimal.

Proof idea:

• if no augmenting path has been found, the labeling algorithm has failed.

• Let S denote the set of nodes that were included in I at some point.

• Obviously t /∈ S and s ∈ S. Therefore S is a cut.

• We can show that the current flow is equal to the capacity of that cut C(S)
and is hence optimal.

Princeton ORF-522 37

