ORF 522

Linear Programming and Convex Analysis

Network Flows

Marco Cuturi

Princeton ORF-522

Reminder

- Graphs:
 - $\circ~\mathcal{N}$ set of nodes
 - $\circ\,$ directed edges ${\cal E}$ or arcs ${\cal A}$
- Networks:
 - A graph, usually directed,with contextual information.
- Tree: a connected undirected graph with no cycles.
 - $\circ~$ Connected undirected graph with $\#\mathcal{N}-1$ edges.
 - \circ Trees have at least one leaf, *i.e.* a node of degree 1.
 - $\circ~$ Unique path between two nodes i and j.

Network Flows

Mathematical Formulation

A network is a directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{A})$ with side information:

- for a in \mathcal{A} , or equivalently $(i, j) \in \mathcal{A}$, a nonnegative f_a or $f_{(i,j)}$ and usually written f_{ij} quantifies a **flow** between nodes i and j.
- For each node $i \in \mathcal{N}$ b_i is a **supply** to that node from the **exterior**.

• if $b_i > 0$ node *i* is usually called a **source**. • if $b_i < 0$ node *i* is usually called a **sink**.

- Each flow can be **capacitated** that is restricted to be less than $u_{i,j}$.
- When $u_{i,j} = \infty$ the flow is **uncapacitated**.
- Each arc might have a **cost** per unit of flow associated, c_{ij} .

Flow Equations constraints

Natural flow equations imply that

$$b_{i} + \sum_{j \in I(i)} f_{ji} = \sum_{j \in O(i)} f_{ij}$$

$$0 \le f_{ij} \le u_{ij}$$
(1)

in this case,

$$b_2 + f_{12} + f_{32} = f_{24} + f_{23}$$
$$0 \le f_{12}, f_{24}, f_{32}, f_{23} \le \dots$$

Flow Equations constraints

- More terminology: any vector f with indexed by \mathcal{E} is a flow.
- A flow is **feasible** if it satisfies the **linear** equations (1)
- Note that if we sum up Equation (1)

$$\sum_{i \in \mathcal{N}} b_i = \sum_{i \in \mathcal{N}} \left(\sum_{j \in I(i)} f_{ji} - \sum_{j \in O(i)} f_{ij} \right)$$
$$\sum_{i \in \mathcal{N}} b_i = \sum_{a \in \mathcal{A}} f_a - f_a = 0$$

- "what's taken from the environment goes back to the environment"
- or: nodes cannot store flows.

Flow Equations *objectives*

• Most network flow problems deal with the minimization of

• which is, again, linear in f.

Examples of Network Flow Problems

The Transportation Problem

- Holes and piles of Dirt analogy.
- Old problem, first formulated by Monge in 1781 and Kantorovich in the 30's.
- Suppose there are *m* factories and *n* shops that produce/sell computer units.
- Each factory i produces annually $s_i \geq 0$ computers and a shop j wants $d_j \geq 0$ of them.
- Each factory *i* has an arc directed towards each shop *j*.
- We suppose the total supply is equal to the demand, $\sum_{i=1}^{m} s_i = \sum_{j=1}^{n} d_j$.
- The transport problem is then

minimize
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} f_{ij}$$

subject to
$$f_{ij} \ge 0$$
$$\forall i = 1, \dots, m, \quad s_{i} = \sum_{j=1}^{n} f_{ij},$$
$$\forall j = 1, \dots, n, \quad d_{j} = \sum_{i=1}^{n} f_{ij}.$$

The transportation Problem

- 1s, 2s stand for the shops and 1f, 2f, 3f is for factories.
- usually c_{ij} are proportional to distances.

The Assignment Problem

- Special case of the TP:
 - $\circ m = n$, same number of suppliers and consumers.
 - \circ supplies are all equal to 1, demands are all equal to 1.
 - problem is to assign one factory to one shop exactly, with minimal cost.
- Another formulation:
 - \circ *n* employees.
 - \circ *n* tasks.
 - $\circ c_{ij}$ measures how much time employee *i* would spend on task *j*.
 - as a manager, what is the best way to assign tasks that minimizes the total work time?

Other Problems

- The shortest-path problem
 - $\circ\,$ Define the length of a path as the sum of weights of the visited edges.
 - \circ Given two nodes *i* and *j* find the shortest path.
 - $\circ\,$ Show later how this is a LP and related algorithms.
- The maximum flow problem
 - $\circ\,$ sources and sinks, capacitated edges.
 - $\circ~$ Find the optimal distribution to maximize flow
- Minimum spanning tree
 - $\circ\,$ Again, n agents, set of $\mathcal E$ I can choose.
 - Setting up each edge has a cost c_{ij} .
 - $\circ~$ Target: connect them all for a cheap price.
 - Find a tree \mathcal{T} with minimum total cost $\sum_{a \in \mathcal{T}} c_a$.

Matrix Formulations

- **Objective**: rewrite NF problems (constaints, objectives) with **lighter** notations.
- Arcs (variables) numbered from 1 to n,
- **Nodes** (constraints) numbered from 1 to m.
- **Constraints matrix**: the node-arc incidence matrix $A \in \{-1, 0, 1\}^{m \times d}$:

$$A_{ia} = \begin{cases} 1 & \text{if the arc number } a \text{ starts at node } i \\ -1 & \text{if the arc number } a \text{ ends at node } i \\ 0 & \text{otherwise} \end{cases}$$

• Flow conservation:

$$b_i + \sum_{j \in I(i)} f_{ji} = \sum_{j \in O(i)} f_{ij} \quad \Leftrightarrow \quad \sum_{a \text{ start at } i} f_a - \sum_{a \text{ ends at } i} f_a = b_i$$

• Equivalently $A\mathbf{f} = \mathbf{b}$

Matrix Formulations

Note how all columns have exactly one 1 and
$$-1$$
 and lots of zeros (sparse)

• In particular, rows sum to zero... linear dependence if nothing is changed.

Cost Function

- Directly related to the cost per unit of flow through arc \boldsymbol{a}
- The formulation

$$\sum_{(i,j)\in\mathcal{A}} c_{ij} f_{ij}$$

can be written more simply as

$$\sum_{a \in \mathcal{A}} c_a f_a = \mathbf{c}^T \mathbf{f}$$

where both vectors are n-dimensional.

Circulations

- A bit of context: when dealing with $A\mathbf{x} = \mathbf{b}$ and IPM, we introduced directions \mathbf{d} such that $A\mathbf{d} = \mathbf{0}$.
- In the NF context, a flow f such that Af = 0 is called a circulation.
- Suppose there exists a cycle $C = i_1, a_1, i_2, \cdots, a_{k-1}, i_k$ in the graph.
- The arcs are either **forward** or **backward** arcs, grouped in subsets F and B.
- The flow vector associated to a cycle $C,\ \mathbf{h}^C$ defined as

$$h_a^C = \begin{cases} 1 & \text{if arc } a \text{ belongs to } F \\ -1 & \text{if arc } a \text{ belongs to } B \\ 0 & \text{otherwise} \end{cases}$$

is called the simple circulation associated to C.

Circulations

- The cycle satisfies $A\mathbf{h}^C = \mathbf{0}$.
- We also define its cost as $\mathbf{c}^T \mathbf{h}^C$.
- Note that for any feasible flow f, scalar θ and cycle C, we obtain a new flow f + θh^C by pushing θ units of flow around the cycle C in f.
- Cost changes by $\theta \cdot \mathbf{c}^T \mathbf{h}^C$.

Tree Solutions

Standard Network Flow

- In the following $\sum b_i = 0$ and $\mathcal{G}(\mathcal{N}, \mathcal{A})$ is a directed **connected** graph.
- We study **uncapacitated** problems in this lecture:

$$\begin{array}{ll} \text{minimize} & \mathbf{c}^T \mathbf{f} \\ \text{subject to} & A \mathbf{f} = \mathbf{b} \\ & \mathbf{f} \geq 0 \end{array} \tag{1}$$

with

 $\circ \mathbf{f} \in \mathbf{R}^n$ such that $\sum_{i=1^m} b_i = 0$,

• A the corresponding arc-node incidence matrix in $\mathbf{R}^{m \times n}$.

- We have a problem: rank(A) = m 1. All the algebra: basis etc.. wont work.
- We start by making sure we work with a constraint matrix A that has l.i. rows.

Dropping out the constraint on the last node

• We assume A and b have been updated in the following way:

$$A \leftarrow \begin{bmatrix} \cdots & A_1 & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & A_{m-1} & \cdots \end{bmatrix}, \mathbf{b} \leftarrow \begin{bmatrix} b_1 \\ \vdots \\ b_{m-1} \end{bmatrix}.$$

- we have removed the last line of A and last coordinate of \mathbf{b} .
- From now on, $A \in \mathbf{R}^{m-1 \times n}$ and $\mathbf{b} \in \mathbf{R}^{m-1}$.
- In practice: we have **dropped** the **flow constraint** of the last node *m*.

Tree Solutions

Definition 1. A flow vector **f** is called a **tree solution** if it can be constructed by the following procedure.

- (a) Pick a set $\mathbf{T} \subset \mathcal{A}$ of m-1 arcs that form a **tree** when ignoring their directions.
- (b) Set $f_a = 0$ for all other arcs $a \notin \mathbf{T}$, exactly n (m 1).

(c) Use the flow constraints $A\mathbf{f} = \mathbf{b}$ to set the values of f on arcs of \mathbf{T} .

• Obvious parallel: choose a basis I standard LP's / choose a tree ${f T}$ for NF.

Definition 2. A tree solution **f** that satisfies $f \ge 0$ is called a **feasible tree** solution.

Example

• Choose a tree T and proceed by assigning values on leaves, and go up the tree.

Tree solutions exist for all trees ${\cal T}$

Theorem 1. Let $\mathbf{T} \subset \mathcal{A}$ be a subset of size m - 1 which forms a tree when ignoring their direction. Let $B_{\mathbf{T}}$ be the $m - 1 \times m - 1$ matrix obtained by taking the columns of A labelled by \mathbf{T} . Then $B_{\mathbf{T}}\mathbf{f}_T = \mathbf{b}$ has an unique solution.

• **Proof** We just need to prove that for all \mathbf{T} , $B_{\mathbf{T}}$ is invertible. In order to do that, let's use the following lemma

Lemma: Renumbering Labels and Arcs

Lemma 1. Let $\mathbf{T} \subset \mathcal{A}$ be a subset of size m - 1 which forms a tree when ignoring their direction. Let $B_{\mathbf{T}}$ be the $m - 1 \times m - 1$ matrix obtained by taking the columns of A labelled by \mathbf{T} . Then the rows and columns of $B_{\mathbf{T}}$ can be permuted to make it triangular with ± 1 coefficients on the diagonal.

- **Proof**: We proceed by renaming labels and arcs described in \mathcal{T} , the tree made of arcs \mathbf{T} .
- Start with i = 1 and $\mathcal{T}_1 \leftarrow \mathcal{T}$
 - \circ if $\mathcal{T}_1 \neq \emptyset$ consider one leaf of \mathcal{T}_1 .
 - Number it i and remove it from \mathcal{T}_1 . $i \leftarrow i+1$.
- The loop finishes after exactly m-1 iterations and all nodes of ${\mathcal T}$ have been renumbered.
- Renumber the arcs: If $(i, j) \in \mathbf{T}$, (i, j) receives the number $\min\{i, j\}$.
- Given this renumbering, any path from a leaf to the node labeled m (5 in the example) is unique and increasing with labels.

Lemma: Renumbering Labels and Arcs

- With this numbering, the ith column of B corresponds to the ith arc.
- the *i*th arc joins two nodes *i* and *j* with j > i, i.e. it is either equal to (i, j) or (j, i).
- Thus any nonzero element in column *i* will be in row *i* (on the diagonal) and row *j* (below diagonal).
- Hence $B_{\mathbf{T}}$ is lower triangular with nonzero diagonal \Rightarrow invertible.

Fundamental parallel between tree solutions and basic solutions

Theorem 2. A flow vector is a basic solution if and only if it is a tree solution

Proof

- $(\Rightarrow): n$ variables, m-1 constraints. A tree solution has up to m-1 nonzero variables.
- (⇐) By contradiction: suppose f is not a tree solution. We show it cannot be basic.
 - Let $\mathcal{S} = \{a \in \mathcal{A} | f_a \neq 0\}.$
 - $\circ~\mbox{If}~\#(\mathcal{S})>m-1,$ then ${\bf f}$ cannot be basic.
 - $\circ~$ If ${\mathcal S}$ does not have a cycle it can be completed by labels to a tree with m-1 arcs and is hence a tree solution.
 - Hence $\#(\mathcal{S}) \leq m-1$ and \mathcal{S} has a cycle C.
 - \triangleright Let \mathbf{h}^C be its circulation.
 - \triangleright Note that $\mathbf{h}_a^C = 0$ for arcs $a \notin \mathcal{S}$.
 - ▷ Then $A(\mathbf{f} + \mathbf{h}^{C}) = \mathbf{b}$ and the set of constraints is the same.
 - $_{\triangleright}$ Hence f is not basic otherwise it would have been uniquely determined.

Next time

- Continue with Network simplex
- Some comments on complexity
- Some specialized algorithms : Ford-Fulkerson