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Reminder

• In previous lectures we have studied

◦ The ellipsoid method;
◦ An interior point method: affine scaling;
◦ Gave you slides about the potential reduction algorithm.

• Namely different methods to compute the optima of linear programs without
using the fact that a solution is a BFS.

• Starting from outside or inside the polyhedron to converge iteratively to the
solution.
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Today : new family of linear problems, Network Flows

• Network flows are linear optimization problems with particular constraints.

• Network flows model interactions between linked locations , i.e. graphs

• Optimization problem: compute optimal flows between the points.

• Practical problem: when n nodes, up to n(n− 1)/2 ≈ n2

2 edges.

• Example: K7, complete graph with 7 nodes and 21 edges.

• If we hundreds of nodes ⇒ very high dimensions...

• Fortunately, constraint matrix has special characteristics⇒ efficient algorithms.
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Graph theory
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Illustrations

• Let’s start with a picture of the countryside

electricity network
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Illustrations

• More sophisticated
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Illustrations

• Definition of Cross-holding: when listed corporations own securities issued by
other listed corporations

• Not a good sign usually... favors manipulations and “poison-pill” schemes
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Illustrations

• Back to more noble causes: biological pathway
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Illustrations

• An everyday graph: highways
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Illustrations

• Another one: trains.
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Illustrations

• One that was recently fashionable to talk about, social networks.
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Some intuitions for a model?

• Networks have different components of interest:

◦ Nodes: cities, stations, houses/factories,... people.
◦ Connections: highways, railways, electrical cables,... knowledge of someone.
◦ Flows: cars, trains, electricity,... text/video/voice.

• Additionally: the connections can be:

◦ unilateral (biological pathways).
◦ bilateral (highways, railways).
◦ undirected (electricity)

• Let’s review a few basic definitions.

• Should be useful to you in many settings and not just network flows studies.

• Graph inference, graphical models (a.k.a bayesian networks), message passing
algorithms, dynamic programming, probabilities/statistics etc...
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Reminders and Definitions
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Building blocks

• Two key objects define a graph: G = (N , E)

◦ set of nodes N .
◦ set of edges E .

• if you add more information, then the graph becomes a network

◦ set of labels L indexed by the edges.
◦ Additional information about the nodes, costs etc..

• A graph is the topological description of a network.

• We will study networks later.
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Nodes

• N will be a finite set.

• We usually identify a node with its number 1 ≤ i ≤ N
def
= #{N}.

• Not much else to say...
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Undirected Edges

The set E describes a connexion between two nodes i, j ∈ N . Two cases:

• Undirected graphs, nodes with edges or links): E ⊂ P2(N ).

◦ E is a set of subsets of N of cardinal 2.
◦ If e is an edge, e ∈ E ⇒ #{e} = 2.
◦ Any edge can be written e = {i, j}, i 6= j.
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{1, 2}
{4, 2}

{3, 2}

{4, 3}

1

⊲ Nodes N = {1, 2, 3, 4}
⊲ Undirected Edges N = {{1, 2}, {4, 2}, {4, 3}, {2, 3}}
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Directed Edges

• Directed graphs, nodes with arrows, arcs: E ⊂ N ×N \∆.

◦ ∆ = {(i, i), i ∈ N}
◦ An edge e = (i, j) and we also assume i 6= j.
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(2, 4)
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(3, 2)

(4, 3)
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⊲ Nodes N = {1, 2, 3, 4}
⊲ Directed Edges E = {(1, 2), (2, 4), (4, 3), (2, 3), (3, 2)}
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Labels on Edges

• Labels L can be assigned to edges (to nodes as well, we do not consider this
by now)

◦ Label function f : E 7→ R.
◦ In practice, a vector labelled by edges in R

E

2

4

(2, 3)

f(1,2)

f(2,3)

(4, 3)

(2, 4)

f(2,4)

(1, 2)

(3, 2)

f(4,3)

f(3,2)

1

3

⊲ Nodes N = {1, 2, 3, 4}
⊲ Directed Edges E = {(1, 2), (2, 4), (4, 3), (2, 3), (3, 2)}
⊲ Labelled Edges L =

{

f(1,2), f(2,4), f(4,3), f(2,3), f(3,2)

}
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Degree, Walks, Paths, Cycles for Undirected Graphs

• The degree of a node is the number of edges incident to that node.

◦ for i ∈ N , d(i) = #{e ∈ E|i ∈ e}

• Given the graph structure, here are some important sequences of nodes:

◦ A walk from node i1 to node it is a finite sequence of nodes i1, i2 · · · , it
such that {ik, ik+1} ∈ E for 1 ≤ k ≤ t− 1.
◦ A path is a walk with no repetitions, i.e.with pairwise distinct nodes.
◦ A cycle i1, · · · , it is a walk such that t ≥ 3, i1 = it and (i1, · · · , it−1) is a

path.

• An undirected graph is connected if ∀i, j ∈ N , there exists a path from i to j.
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Degree, Walks, Paths, Cycles for Undirected Graphs

2

4

3

{1, 2}
{4, 2}

{3, 2}

{4, 3}

1

• Walk : (1, 2, 3, 4, 2, 3, 4, 2, 3)

• Path : (3, 4, 2)

• Cycle : (2, 3, 4, 2)

the graph is connected.
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Directed Graphs

• To remove ambiguity, from now on, when considering directed edges,

◦ we use the word arc for directed edges.
◦ and write A instead of E .

• For any arc a = (i, j) in A, i is its start node and j its end node.

• Given a node i, define the sets of nodes I(i) and O(i) of nodes which have
resp.

◦ an incoming arc towards i,
◦ an outgoing arc from i.

I(i) = {j ∈ N , (j, i) ∈ A}

O(i) = {j ∈ N , (i, j) ∈ A}
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Ingoing and Outgoing sets of a Directed Graph

2

4
(2, 4)

(1, 2)

(2, 3)

(3, 2)

(4, 3)

1

3

• I(4) = {2}, O(4) = {3}

• I(2) = {1, 3}, O(2) = {4, 3}

• I(1) = ∅, O(1) = {2}

• I(3) = {4, 2}, O(3) = {2}
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An undirected graph corresponding to a directed Graphs

• Build an undirected graph from directed:

◦ Consider each arc (i, j) of A and add {i, j} to a set of edges E .
◦ remove duplicates.

• Our directed graph example can be reduced to the undirected example.

• A directed graph is connected if the corresponding undirected graph is.
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Walks, Paths, Cycles for Directed Graphs

• Walks, paths, cycles: similar definitions than undirected case.

• Some ambiguity to take care of.

• A walk from node i1 to node it is a finite sequence of nodes i1, i2 · · · , it paired
with a sequence a1, · · · , at−1 of arcs of A such that ak equals either (ik, ik+1)
or (ik, ik+1).

• In a walk, for successive nodes ik, ik+1 there are two possibilities for ak ∈ A,

◦ if ak = (ik, ik+1) then it is called a forward arc.
◦ if ak = (ik+1, ik) then it is called a backward arc.
◦ Sometimes both (ik, ik+1), (ik+1, ik) ∈ A. need to choose.

• A walk is directed if it only has forward arcs.
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Walks, Paths, Cycles for Directed Graphs
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4
(2, 4)

(1, 2)

(2, 3)

(3, 2)

(4, 3)

1
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• walk: 1, (1, 2), 2, (3, 2), 3, (3, 2), 2, (4, 2), 4

• directed walk 1, (1, 2), 2, (2, 3), 3, (3, 2), 2
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Degrees, Walks, Paths, Cycles for Directed Graphs

• A path is a walk with distinct nodes.

• A cycle i1, · · · , it is a walk such that

◦ t ≥ 2,
◦ i1 = it and (i1, · · · , it−1) is a path.

• Like walks, a path and a cycle are directed if they only have forward arcs.

• Remark: only need to keep track of nodes for a directed walk/path/cycle:

(i1, (i1, i2), i2, (i2, i3), · · · , (it−1, it), it)⇔ directed walk (i1, i2, · · · , it)
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Degree, Walks, Paths, Cycles for Undirected Graphs
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4
(2, 4)

(1, 2)

(2, 3)

(3, 2)

(4, 3)

1
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• Path: 1, (1, 2), 2, (3, 2), 3, (4, 3), 4

• directed Path : 1, (1, 2), 2, (2, 3), 3

• Cycle : 3, (4, 3), 4, (2, 4), 2, (2, 3), 3

• directed Cycle: 3, (3, 2), 2, (2, 4), 4, (4, 3), 3
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Trees and Spanning Trees
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Trees

• An undirected graph G = (N , E) is called a tree if

◦ it is connected.
◦ it has no cycles.

• if a node in the tree has a degree equal to 1, it is called a leaf.

2

4

5
6

1

3

• Adding {2, 3} would create a cycle with (2, 3, 4).

• leaves: {1, 3, 6}.
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Trees

Theorem 1. Fundamental properties:

(i) Every tree with more than one node has at least one leaf.

(ii) An undirected graph is a tree iff it is connected and has #(N )− 1 edges.

(iii) For any i 6= j two nodes in a tree there exists a unique path from i to j.

(iv) If you add an edge to a tree, the resulting graph contains exactly

one cycle (up to shifting the order of the cycle)
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Fundamental properties: Proofs

(i) If all N nodes had a degree 2 or higher, then one can have paths of
arbitrarily long size, hence create a cycle. So there must be at least one leaf.

(ii) • ⇒ : prove recursively.
◦ True if #(N ) = 1. Suppose true for k nodes. Consider tree T with

k + 1 nodes.
◦ There is one leaf in T . Remove the edge that joins it to T .
◦ Resulting tree T ′ has #(N )− 1 nodes hence #(N )− 2 edges.
◦ Hence T has #(N )− 1 edges.
• ⇐ : If not a tree, there is a cycle.
◦ Notice that all nodes of a cycle have degree ≥ 2.
◦ It is thus possible to remove an edge will keeping connectivity.
◦ Repeat this until there is no cycle.
◦ We get a tree out of the process, with #(N )− 1 edges thanks to (i).
• Since we have not added edges but only removed, the original graph was a

tree.
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Fundamental properties: Proofs

(iii) Tree is connected hence such path p = (i0 = i, i1, · · · , im−1, im = j) exists.
Need to prove unicity.

• Suppose ∃p′ = (i′0 = i, i′1, · · · , i
′
m′−1, i

′
m′ = j) another path. Write

n = min(m, m′)
• Define k = min{e ≤ n| ie 6= i′e} and M = max{e| im−e 6= im′−e}.
• 0 ≤ k ≤ n−M ≤ n are well defined, otherwise p = p′.
• Can show ik−1ik · · · im−Mim−M+1i

′

m′
−M

i′

m′
−M−1

· · · i′

k
ik−1 is a cycle.

(iv) Let T = (N , E) be a tree and add one edge {i, j}.

• With one edge more it cannot be a tree (i) and hence there is a cycle.
• The cycle necessarily includes the new edge {i, j} and nodes i and j.
• The cycle links i and j through a path which is unique by (iii).
• The cycle is thus unique up to shifting the nodes order.
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Spanning Trees

• Given a connected undirected graph G = (N , E), let E1 be a subset of E such
that T = (N , E1) is a tree.

• Such a tree T is called a spanning tree of G.

E

E1

6

3

1

4

5

2
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Spanning Trees

Theorem 2. Let G = (N , E) be a connected undirected graph and E0 a subset of
E. Suppose that the edges of E0 do not form cycles. Then E0 can be augmented
to a set E1 such that E0 ⊂ E1 and T = (N , E1) is a spanning tree.

E0

E

E1 \ E0

6

3

1

4

5

2
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Spanning Trees : Proof

• Proof: Suppose E0 ⊂ E and that the edges of E0 do not form cycles.

• If G is a tree done, just set E1 = E

• If not it contains one cycle. Start with E1← E .

• Repeat the following until E1 has no cycle:

◦ Consider that cycle c = i1 · · · im and im = i1.
◦ ∃e ∈ E1 \ E0 such that e = {ikik+1}.
◦ Remove that edge from E1← E1 \ {e}.

• T (N , E1) is now a tree and E0 ⊂ E1.
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Network Flows
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Mathematical Formulation

A network is a directed graph G = (N ,A) with side information, typically L
and the following quantities:

• for a in A, or equivalently (i, j) ∈ A, a nonnegative fa or f(i,j) and usually
written fij quantifies a flow between nodes i and j.

• For each node i ∈ N bi is a supply to that node from the exterior.

◦ if bi > 0 node i is usually called a source.
◦ if bi < 0 node i is usually called a sink.

• Each flow can be capacitated that is restricted to be less than u(i,j).

• When u(i,j) =∞ the flow is uncapacitated.

• Each arc might have a cost per unit of flow associated, cij.
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Flow Equations constraints

Natural flow equations imply that

bi +
∑

j∈I(i)

fji =
∑

j∈O(i)

fij

0 ≤ fij ≤ uij

(1)

4
f24

f12

f23

f32

f43

b2

2

1

3

in this case,
b2 + f12 + f12 = f24 + f23

0 ≤ f12, f24, f32, f23 ≤ ...
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Flow Equations constraints

• More terminology: any vector f with indexed by E is a flow.

• A flow is feasible if it satisfies the linear equations (??)

• Note that we also have
∑

i∈N

bi = 0

• “what’s taken from the environment goes back to the environment”
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Flow equation objectives

• Most network flow problems deal with the minimization of

∑

(i,j)∈A

cijfij

• which is, again, linear in f .

4

c23f23

c32f32

2b1

b2

b3

c12f12

c24f24

c43f43

1

3
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Major Examples of Network Flow Problems
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The Transportation Problem

• Holes and piles of Dirt analogy.

• Old problem, formulated by Monge in 1781 and then Kantorovich in the late
30’s.

• Suppose there are m factories and n shops that produce/sell computer units.

• Each factory i produces annually si ≥ 0 computers and a shop j wants dj ≥ 0
of them.

• Each factory i has an arc directed towards each shop j.

• We suppose the total supply is equal to the demand,
∑m

i=1 si =
∑n

j=1 dj.

• The transport problem is then

minimize
∑m

i=1

∑n

j=1 cijfij

subject to fij ≥ 0
∀i = 1, . . . , m, si =

∑n

j=1 fij,

∀j = 1, . . . , n, dj =
∑n

i=1 fij.
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The transportation Problem

c22f22

c11f11

c12f12

c22f22

c21f21

s3

s2

d1

s1

d2

c31f31

2s

1s

2f

3f

1f

• 1s, 2s stand for the shops and 1f, 2f, 3f is for factories.

• usually cij are proportional to distances.
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The Assignment Problem

• Special case of the TP:

◦ m = n, same number of suppliers and consumers.
◦ supplies are all equal to 1, demands are all equal to 1.
◦ problem is to assign one factory to one shop exactly, with minimal cost.

Princeton ORF-522 44



Next Time

• More examples.

• Provide a more concise description,

• Start describing particular types of solutions.
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