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Reminder

e In previous lectures we have studied

o The ellipsoid method;
o An interior point method: affine scaling;
o Gave you slides about the potential reduction algorithm.

e Namely different methods to compute the optima of linear programs without
using the fact that a solution is a BFS.

e Starting from outside or inside the polyhedron to converge iteratively to the
solution.
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Today : new family of linear problems, Network Flows

e Network flows are linear optimization problems with particular constraints.
e Network flows model interactions between linked locations , i.e. graphs
e Optimization problem: compute optimal flows between the points.
. 2
o Practical problem: when n nodes, up to n(n —1)/2 ~ %- edges.

e Example: K7, complete graph with 7 nodes and 21 edges.

e |f we hundreds of nodes = very high dimensions...

e Fortunately, constraint matrix has special characteristics = efficient algorithms.
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Graph theory
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lllustrations

e |et's start with a picture of the countryside
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Electnioty network

electricity network
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e More sophisticated

[

lllustrations
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lllustrations

e Definition of Cross-holding: when listed corporations own securities issued by
other listed corporations

e Not a good sign usually... favors manipulations and “poison-pill” schemes

Joseph Wan &

Capital Concord b ak Wai Chun
Profits Ltd
50.05% |
18.12%
Kenfair (0223) l
9.43% GRI [0310)
sErrants 2237%
0.14% shares, ‘/»’T |
5.34% warrants | E7a% A0,
‘ 17 44%
2895%
\ Caosma {0120) Iq_

M arket '
0929, Chaoice
Robert Ma 28.079% 2.71% shares, A%

Ching Chung 6.49% CN

3.10%

SRD DB

Princeton ORF-522



lllustrations

e Back to more noble causes: biological pathway
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lllustrations

e An everyday graph: highways
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lllustrations

e Another one: trains.
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lllustrations

e One that was recently fashionable to talk about, social networks.
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Some intuitions for a model?

e Networks have different components of interest:

o Nodes: cities, stations, houses/factories,... people.

o Connections: highways, railways, electrical cables,... knowledge of someone.

o Flows: cars, trains, electricity,... text/video/voice.

e Additionally: the connections can be:

o unilateral (biological pathways).
o bilateral (highways, railways).
o undirected (electricity)

e Let's review a few basic definitions.
e Should be useful to you in many settings and not just network flows studies.

e Graph inference, graphical models (a.k.a bayesian networks), message passing
algorithms, dynamic programming, probabilities/statistics etc...
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Building blocks

e Two key objects define a graph: G = (N, &)

o set of nodes N
o set of edges £.

e if you add more information, then the graph becomes a network

o set of labels L indexed by the edges.
o Additional information about the nodes, costs etc..

e A graph is the topological description of a network.

e We will study networks later.
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Nodes

e N will be a finite set.
e We usually identify a node with its number 1 < i < Ndéf#{J\/'}.

e Not much else to say...

® O
®
ONNG
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Undirected Edges

The set £ describes a connexion between two nodes 7,5 € N'. Two cases:

e Undirected graphs, nodes with edges or links): £ C Po(N).

o & is a set of subsets of A/ of cardinal 2.
o If e is an edge, e € £ = #{e} = 2.
o Any edge can be written e = {i,j},i # j.

>~ Nodes N ={1,2,3,4}
~ Undirected Edges N = {{1,2},{4,2},{4,3},{2,3}}

Princeton ORF-522

16



Directed Edges

e Directed graphs, nodes with arrows, arcs: £ C N x N\ A.
o A ={(i,1),i € N}

o An edge e = (7, ) and we also assume i # j.

(2,4)
(1, 2) (4, 3)
(3,2) :
(2,3)

~ Nodes N = {1,2,3,4}
~ Directed Edges & = {(1,2),(2,4), (4,3),(2,3),(3,2)}
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Labels on Edges
e Labels £ can be assigned to edges (to nodes as well, we do not consider this
by now)

o Label function f : & — R.
o In practice, a vector labelled by edges in R®

(2,3)
/(2,3)

>~ Nodes N = {1,2,3,4)

~ Directed Edges & = {(1,2),(2,4), (4,3),(2,3),(3,2)}

> Labelled Edges £ = { f(1.9), f(2.4), f(4.3), f(2.3): [(3.2)}
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Degree, Walks, Paths, Cycles for Undirected Graphs

e The degree of a node is the number of edges incident to that node.

o forie N, d(i) = #{e € &l|i € e}

e Given the graph structure, here are some important sequences of nodes:

o A walk from node i; to node 7; is a finite sequence of nodes 71,75+ , ¢
such that {ig, iz} € Efor 1 <k <t —1.

o A path is a walk with no repetitions, i.e.with pairwise distinct nodes.

o A cycle iq,--- ,i; is a walk such that t > 3, i1 =4 and (41, ,4;_1) is a
path.

e An undirected graph is connected if Vi, j € NV, there exists a path from i to j.
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Degree, Walks, Paths, Cycles for Undirected Graphs

e Walk : (1,2,3,4,2,3,4,2,3)
e Path: (3,4,2)
e Cycle: (2,3,4,2)

the graph is connected.
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Directed Graphs

e To remove ambiguity, from now on, when considering directed edges,

o we use the word arc for directed edges.
o and write A instead of £.

e For any arc a = (4,7) in A, i is its start node and j its end node.

e Given a node ¢, define the sets of nodes I(¢) and O(%) of nodes which have
resp.

o an incoming arc towards ¢,
o an outgoing arc from 1.

I(i) ={j e N, (j,i) € A}
O(i) ={j e N, (i,j) € A}
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Ingoing and Outgoing sets of a Directed Graph

2, 4)
(1,2) (4,3)
(3,2) :
(2,3)
o I(4)=1{2},0(4) = {3}

{173}70(2) — {47 3}
0,0(1) = {2}
{4,2},003) = {2}

o ([
NN
~—~~ o~~~
(N}
—_  ~— ~— ~—
I
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An undirected graph corresponding to a directed Graphs

e Build an undirected graph from directed:

o Consider each arc (¢,7) of A and add {7, j} to a set of edges &.
o remove duplicates.

e Our directed graph example can be reduced to the undirected example.

e A directed graph is connected if the corresponding undirected graph is.
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Walks, Paths, Cycles for Directed Graphs

e Walks, paths, cycles: similar definitions than undirected case.
e Some ambiguity to take care of.

e A walk from node 7; to node 7; is a finite sequence of nodes 71,75 -+ ,7; paired
with a sequence a1, --- ,a;_1 of arcs of A such that a equals either (ix,ix11)

or (’Lk, ik+1).

e In a walk, for successive nodes i, i1 there are two possibilities for a; € A,

o if ax = (ik,ix11) then it is called a forward arc.
o if ax = (ix11,%%) then it is called a backward arc.
o Sometimes both (i, ix11), (txr1,7%) € A. need to choose.

e A walk is directed if it only has forward arcs.
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Walks, Paths, Cycles for Directed Graphs

e walk: 1,(1,2),2,(3,2),3,(3,2),2,(4,2
o directed walk 1, (1,2),2,(2,3),3,(3,2),2
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Degrees, Walks, Paths, Cycles for Directed Graphs

e A path is a walk with distinct nodes.

e A cycle i1,---,1%; is a walk such that
ot=>2,
o 41 =14 and (i1, ,4;_1) is a path.

e Like walks, a path and a cycle are directed if they only have forward arcs.

e Remark: only need to keep track of nodes for a directed walk/path/cycle:

(’il, (il, ’ig), ig, (ig, ig), s (it—ly it), it) & directed walk (’il, ig, SR ,’it)
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Degree, Walks, Paths, Cycles for Undirected Graphs

(2,4)
(1,2) (4,3)
(3,2) :
(2,3)
o Path: 1,(1,2),2,(3,2),3,(4,3),4
e directed Path : 1,(1,2),2,(2,3),3
e Cycle: 3,(4,3),4,(2,4),2,(2,3),3
e directed Cycle: 3,(3,2),2,(2,4),4,(4,3),3
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Trees

e An undirected graph G = (N, E) is called a tree if

o it is connected.
o it has no cycles.

e if a node in the tree has a degree equal to 1, it is called a leaf.

e Adding {2,3} would create a cycle with (2,3,4).
e leaves: {1,3,6}.
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Trees

Theorem 1. Fundamental properties:

(i) Every tree with more than one node has at least one leaf.
(1) An undirected graph is a tree iff it is connected and has #(N) — 1 edges.
(ii1) For any i # j two nodes in a tree there exists a unique path from i to j.

(iv) If you add an edge to a tree, the resulting graph contains exactly
one cycle (up to shifting the order of the cycle)
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Fundamental properties: Proofs

(i) If all A nodes had a degree 2 or higher, then one can have paths of
arbitrarily long size, hence create a cycle. So there must be at least one leaf.

(ii)) e = : prove recursively.
o True if #(N') = 1. Suppose true for k nodes. Consider tree 7 with
k 4+ 1 nodes.
o There is one leaf in 7. Remove the edge that joins it to 7.
o Resulting tree 7/ has #(N') — 1 nodes hence #(N') — 2 edges.
o Hence 7 has #(N') — 1 edges.
e < : If not a tree, there is a cycle.
o Notice that all nodes of a cycle have degree > 2.
o It is thus possible to remove an edge will keeping connectivity.
o Repeat this until there is no cycle.
o We get a tree out of the process, with #(N) — 1 edges thanks to (7).
e Since we have not added edges but only removed, the original graph was a
tree.
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Fundamental properties: Proofs

(iii) Tree is connected hence such path p = (ig = 4,41, ,%m—_1,%m = j) exists.
Need to prove unicity.

e Suppose dp’ = (iy = 4,47, - , 7

n = min(m, m’)
e Define k = min{e < n| i, #i.} and M = max{e| i;m—e 7# tm/—e}-
e 0<k<n-—M<n are well defined, otherwise p = p'.
o Can show @19k * * * Tn— Mim—M+1%0 1 agbor_pg_1° " Vlk—1 1S @ cycle.

' 1_1,1 , = j) another path. Write

(iv) Let 7 = (N, &) be a tree and add one edge {i,j}.

With one edge more it cannot be a tree (i) and hence there is a cycle.
The cycle necessarily includes the new edge {i,j} and nodes ¢ and j.
The cycle links 7 and j through a path which is unique by (iii).

The cycle is thus unique up to shifting the nodes order.
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Spanning Trees

e Given a connected undirected graph G = (W, &), let £ be a subset of £ such
that T'= (N, &) is a tree.

e Such a tree 7 is called a spanning tree of G.
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Spanning Trees

Theorem 2. Let G = (N, E) be a connected undirected graph and &y a subset of
E. Suppose that the edges of £y do not form cycles. Then &y can be augmented
to a set & such that &g C &1 and T = (N, &) is a spanning tree.
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Spanning Trees : Proof

e Proof: Suppose & C £ and that the edges of £ do not form cycles.
e If G is a tree done, just set &1 = €&

e If not it contains one cycle. Start with & «— £.

e Repeat the following until £ has no cycle:

o Consider that cycle ¢ =141 ---1,, and 2,,, = 11.
o de € & \ Ep such that e = {Z/czk—l—l}
o Remove that edge from & «— & \ {e}.

e 7(N,&1) is now a tree and & C &;.
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Mathematical Formulation

A network is a directed graph G = (N, A) with side information, typically £
and the following quantities:

e for a in A, or equivalently (¢, j) € A, a nonnegative f, or f; ;) and usually
written f;; quantifies a flow between nodes ¢ and j.

e For each node i € NV b; is a supply to that node from the exterior.

o if b; > 0 node 7 is usually called a source.
o if b; < 0 node 7 is usually called a sink.

e Each flow can be capacitated that is restricted to be less than u; ;.
e When u; ;y = oo the flow is uncapacitated.

e Each arc might have a cost per unit of flow associated, c;;.
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Flow Equations constraints

Natural flow equations imply that

JeI(i) J€O(1)
O < flj < /U,zj
f24
f12 f43
/32 :
b, ’1 fa3

In this case,
by + fi2 + fi2 = faa + fo3

0 < fi2, foa, f32, faz < ...
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Flow Equations constraints

e More terminology: any vector f with indexed by £ is a flow.

e A flow is feasible if it satisfies the linear equations (?7)

Zbi:o

e ‘what’s taken from the environment goes back to the environment”

e Note that we also have
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Flow equation objectives

e Most network flow problems deal with the minimization of

Z Cijlij

(4,5)€A

e which is, again, linear in f.

c24.f24
c12f12 / c43f43
c32/32
0 bl
L4

X 4 ... b3

023f23
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Major Examples of Network Flow Problems
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The Transportation Problem

Holes and piles of Dirt analogy.

Old problem, formulated by Monge in 1781 and then Kantorovich in the late
30’s.

Suppose there are m factories and n shops that produce/sell computer units.

Each factory ¢ produces annually s; > 0 computers and a shop j wants d; > 0
of them.

Each factory ¢ has an arc directed towards each shop j.

n

We suppose the total supply is equal to the demand, > 1" | s; = ijl d;.
The transport problem is then

minimize Z:il Z?:l Cijfij

subject to  f;; > 0

Wzl,...,m, Sizzyzlfijv
Vi=1,....n, dj=> ., fi;
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The transportation Problem

e 1s,2s stand for the shops and 1f,2f,3f is for factories.

e usually ¢;; are proportional to distances.
ij
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The Assignment Problem

e Special case of the TP:

o m = n, same number of suppliers and consumers.
o supplies are all equal to 1, demands are all equal to 1.
o problem is to assign one factory to one shop exactly, with minimal cost.
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Next Time

e More examples.
e Provide a more concise description,

e Start describing particular types of solutions.
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