## ORF 522

## **Linear Programming and Convex Analysis**

**Network Flows** 

Marco Cuturi

Princeton ORF-522

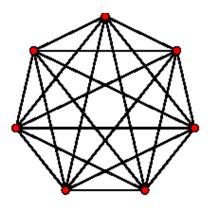
## Reminder

#### • In previous lectures we have studied

- The ellipsoid method;
- An interior point method: affine scaling;
- Gave you slides about the potential reduction algorithm.
- Namely **different methods** to compute the optima of linear programs without using the fact that a solution is a BFS.
- Starting from **outside** or **inside** the polyhedron to converge iteratively to the solution.

## Today : new family of linear problems, Network Flows

- Network flows are linear optimization problems with particular constraints.
- Network flows model interactions between linked locations , *i.e.* graphs
- **Optimization problem**: compute optimal **flows** between the points.
- Practical problem: when n nodes, up to  $n(n-1)/2 \approx \frac{n^2}{2}$  edges.
- Example: K7, complete graph with 7 nodes and 21 edges.



- If we hundreds of nodes  $\Rightarrow$  very high dimensions...
- Fortunately, constraint matrix has special characteristics  $\Rightarrow$  efficient algorithms.

## **Graph theory**

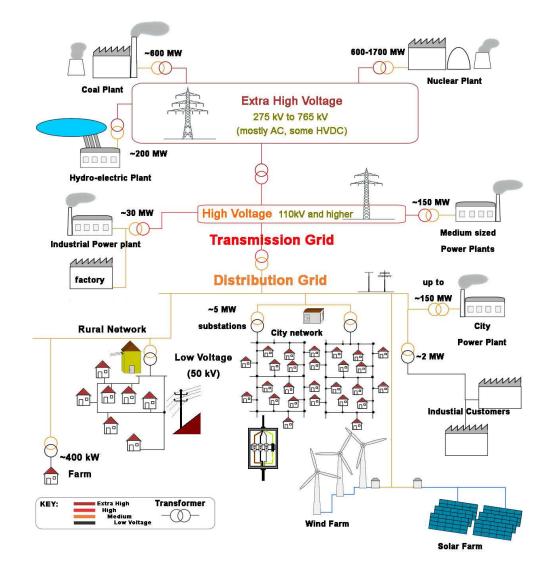
• Let's start with a picture of the countryside



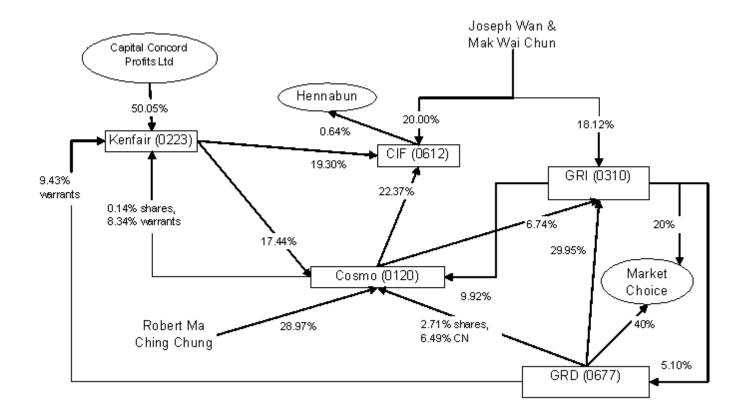
Electricity network

#### electricity network

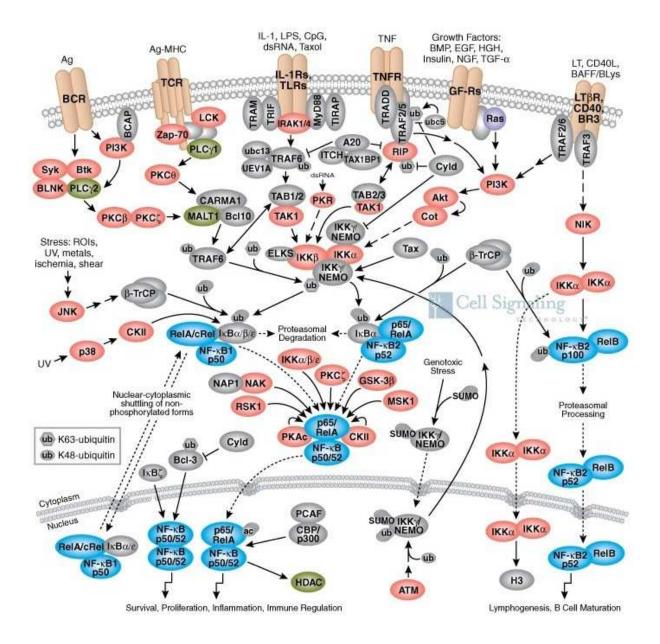
• More sophisticated



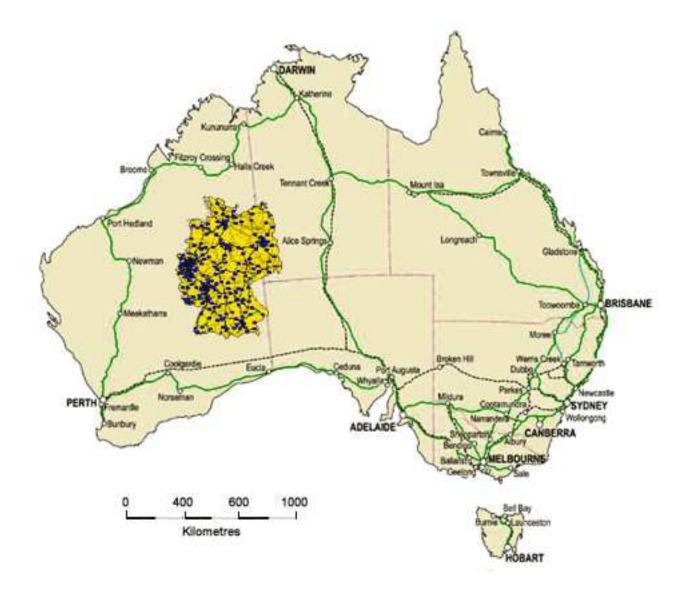
- Definition of **Cross-holding**: when listed corporations own securities issued by other listed corporations
- Not a good sign usually... favors manipulations and "poison-pill" schemes



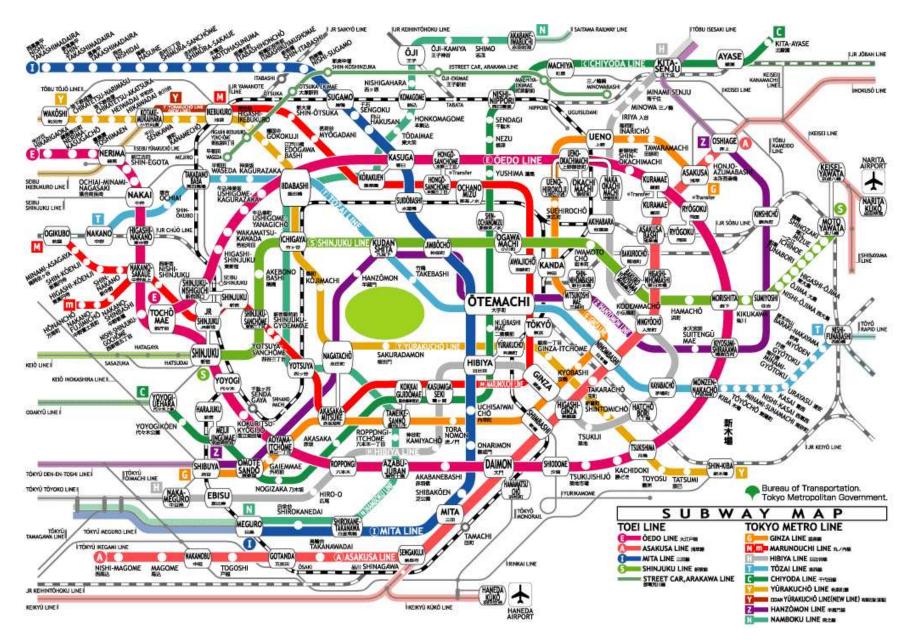
• Back to more noble causes: biological pathway



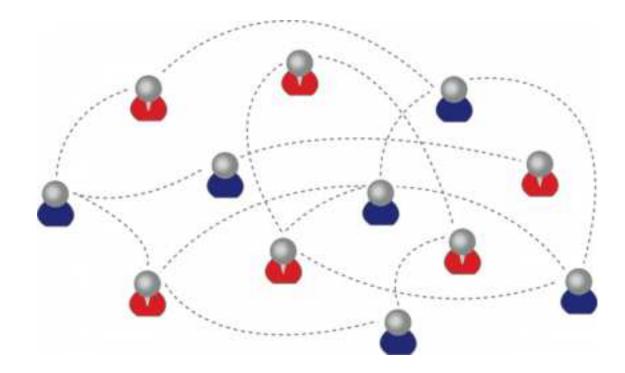
• An everyday graph: highways



• Another one: trains.



• One that was *recently* fashionable to talk about, social networks.



## Some intuitions for a model?

- Networks have different components of interest:
  - **Nodes**: cities, stations, houses/factories,... people.
  - **Connections**: highways, railways, electrical cables,... knowledge of someone.
  - Flows: cars, trains, electricity,... text/video/voice.
- Additionally: the connections can be:
  - unilateral (biological pathways).
  - bilateral (highways, railways).
  - undirected (electricity)
- Let's review a few basic definitions.
- Should be useful to you in many settings and not just network flows studies.
- Graph inference, graphical models (a.k.a bayesian networks), message passing algorithms, dynamic programming, probabilities/statistics etc...

## **Reminders and Definitions**

## **Building blocks**

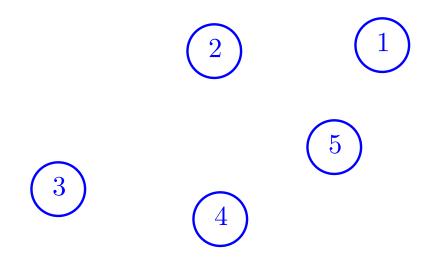
• Two key objects define a graph:  $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ 

 $\circ\,$  set of nodes  ${\cal N}.$ 

- $\circ$  set of edges  $\mathcal{E}$ .
- if you add more information, then the graph becomes a **network** 
  - $\circ\,$  set of labels  ${\cal L}$  indexed by the edges.
  - $\circ\,$  Additional information about the nodes, costs etc..
- A graph is the topological description of a network.
- We will study **networks** later.

## Nodes

- $\mathcal{N}$  will be a finite set.
- We usually identify a node with its number  $1 \le i \le N \stackrel{\text{def}}{=} \# \{ \mathcal{N} \}.$
- Not much else to say...

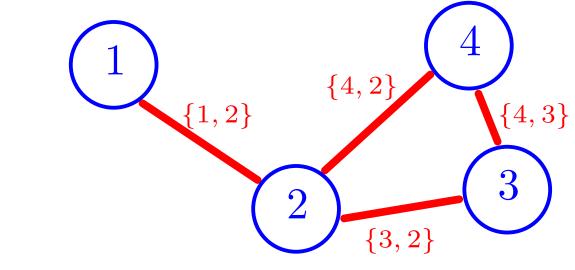


#### **Undirected Edges**

The set  $\mathcal{E}$  describes a connexion between two nodes  $i, j \in \mathcal{N}$ . Two cases:

• **Undirected** graphs, nodes with edges or links):  $\mathcal{E} \subset \mathcal{P}_2(\mathcal{N})$ .

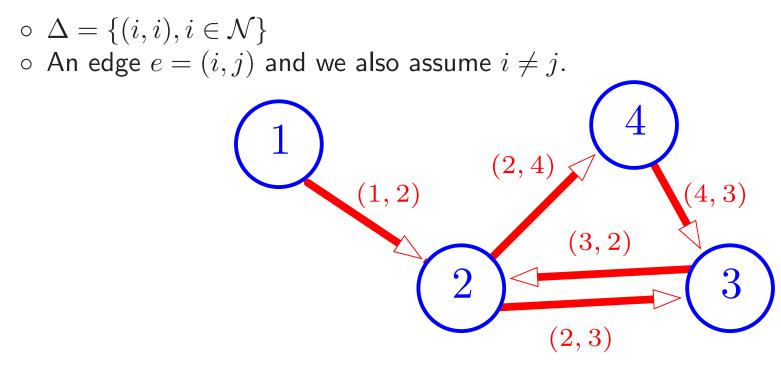
- $\circ~\mathcal{E}$  is a set of subsets of  $\mathcal N$  of cardinal 2.
- If e is an edge,  $e \in \mathcal{E} \Rightarrow \#\{e\} = 2$ .
- Any edge can be written  $e = \{i, j\}, i \neq j$ .



▷ Nodes  $\mathcal{N} = \{1, 2, 3, 4\}$ ▷ Undirected Edges  $\mathcal{N} = \{\{1, 2\}, \{4, 2\}, \{4, 3\}, \{2, 3\}\}$ 

### **Directed Edges**

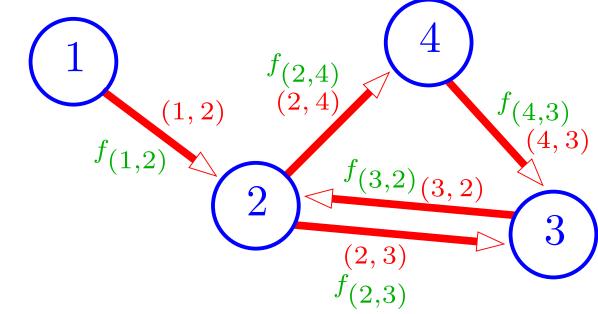
• **Directed** graphs, nodes with arrows, arcs:  $\mathcal{E} \subset \mathcal{N} \times \mathcal{N} \setminus \Delta$ .



▷ Nodes  $\mathcal{N} = \{1, 2, 3, 4\}$ ▷ Directed Edges  $\mathcal{E} = \{(1, 2), (2, 4), (4, 3), (2, 3), (3, 2)\}$ 

## Labels on Edges

- Labels  $\mathcal{L}$  can be assigned to edges (to nodes as well, we do not consider this by now)
  - Label function  $f : \mathcal{E} \mapsto \mathbb{R}$ .
  - $\circ\,$  In practice, a vector labelled by edges in  $\mathbb{R}^{\mathcal{E}}$



- ▷ Nodes  $\mathcal{N} = \{1, 2, 3, 4\}$
- ▷ **Directed Edges**  $\mathcal{E} = \{(1,2), (2,4), (4,3), (2,3), (3,2)\}$
- ▷ Labelled Edges  $\mathcal{L} = \{f_{(1,2)}, f_{(2,4)}, f_{(4,3)}, f_{(2,3)}, f_{(3,2)}\}$

#### Degree, Walks, Paths, Cycles for Undirected Graphs

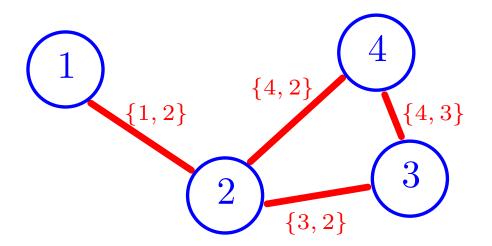
• The **degree** of a node is the number of edges incident to that node.

 $\circ$  for  $i \in \mathcal{N}$ ,  $d(i) = \#\{e \in \mathcal{E} | i \in e\}$ 

• Given the graph structure, here are some important sequences of nodes:

- A walk from node  $i_1$  to node  $i_t$  is a finite sequence of nodes  $i_1, i_2 \cdots, i_t$ such that  $\{i_k, i_{k+1}\} \in \mathcal{E}$  for  $1 \le k \le t - 1$ .
- A path is a walk with no repetitions, *i.e.* with pairwise distinct nodes.
- A cycle  $i_1, \dots, i_t$  is a walk such that  $t \ge 3$ ,  $i_1 = i_t$  and  $(i_1, \dots, i_{t-1})$  is a path.
- An undirected graph is **connected** if  $\forall i, j \in \mathcal{N}$ , there exists a path from i to j.

#### Degree, Walks, Paths, Cycles for Undirected Graphs



- Walk : (1, 2, 3, 4, 2, 3, 4, 2, 3)
- Path : (3, 4, 2)
- Cycle : (2, 3, 4, 2)

the graph is **connected**.

## **Directed Graphs**

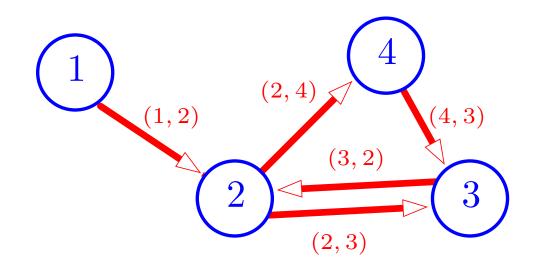
• To remove ambiguity, from now on, when considering **directed edges**,

• we use the word **arc** for directed edges. • and write  $\mathcal{A}$  instead of  $\mathcal{E}$ .

- For any arc a = (i, j) in  $\mathcal{A}$ , i is its **start** node and j its **end** node.
- Given a node i, define the sets of nodes I(i) and O(i) of nodes which have resp.
  - $\circ$  an incoming arc towards i,
  - $\circ$  an outgoing arc from *i*.

 $I(i) = \{ j \in \mathcal{N}, (j, i) \in \mathcal{A} \}$  $O(i) = \{ j \in \mathcal{N}, (i, j) \in \mathcal{A} \}$ 

### Ingoing and Outgoing sets of a *Directed* Graph



• 
$$I(4) = \{2\}, O(4) = \{3\}$$

- $I(2) = \{1, 3\}, O(2) = \{4, 3\}$
- $I(1) = \emptyset, O(1) = \{2\}$
- $I(3) = \{4, 2\}, O(3) = \{2\}$

## An undirected graph corresponding to a *directed* Graphs

- Build an undirected graph from directed:
  - Consider each arc (i, j) of  $\mathcal{A}$  and add  $\{i, j\}$  to a set of edges  $\mathcal{E}$ .
  - remove duplicates.

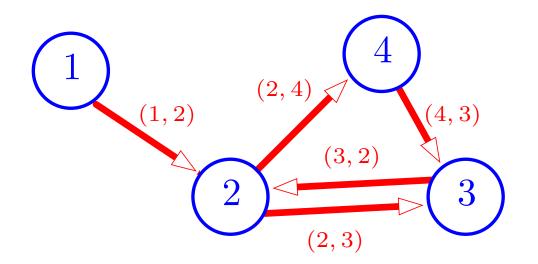
- Our directed graph example can be reduced to the undirected example.
- A directed graph is **connected** if the corresponding undirected graph is.

#### Walks, Paths, Cycles for *Directed* Graphs

- Walks, paths, cycles: *similar* definitions than undirected case.
- Some ambiguity to take care of.
- A walk from node  $i_1$  to node  $i_t$  is a finite sequence of nodes  $i_1, i_2 \cdots, i_t$  paired with a sequence  $a_1, \cdots, a_{t-1}$  of arcs of  $\mathcal{A}$  such that  $a_k$  equals either  $(i_k, i_{k+1})$  or  $(i_k, i_{k+1})$ .

- In a walk, for successive nodes  $i_k, i_{k+1}$  there are two possibilities for  $a_k \in \mathcal{A}$ ,
  - if  $a_k = (i_k, i_{k+1})$  then it is called a **forward** arc.
  - if  $a_k = (i_{k+1}, i_k)$  then it is called a **backward** arc.
  - Sometimes both  $(i_k, i_{k+1}), (i_{k+1}, i_k) \in A$ . need to choose.
- A walk is **directed** if it only has **forward arcs**.

#### Walks, Paths, Cycles for Directed Graphs



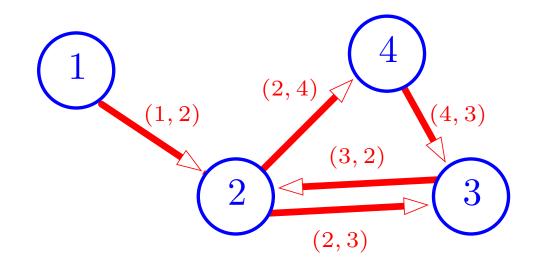
- walk: 1, (1, 2), 2, (3, 2), 3, (3, 2), 2, (4, 2), 4
- directed walk 1, (1, 2), 2, (2, 3), 3, (3, 2), 2

### Degrees, Walks, Paths, Cycles for *Directed* Graphs

- A path is a walk with distinct nodes.
- A cycle  $i_1, \cdots, i_t$  is a walk such that
  - $\circ t \geq 2$ ,  $\circ i_1 = i_t$  and  $(i_1, \cdots, i_{t-1})$  is a path.
- Like walks, a path and a cycle are **directed** if they only have **forward arcs**.
- **Remark**: only need to keep track of nodes for a directed walk/path/cycle:

 $(i_1, (i_1, i_2), i_2, (i_2, i_3), \cdots, (i_{t-1}, i_t), i_t) \Leftrightarrow \text{ directed walk } (i_1, i_2, \cdots, i_t)$ 

#### Degree, Walks, Paths, Cycles for Undirected Graphs

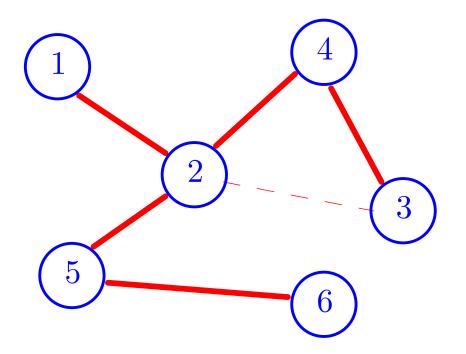


- Path: 1, (1, 2), 2, (3, 2), 3, (4, 3), 4
- directed Path : 1, (1, 2), 2, (2, 3), 3
- Cycle : 3, (4, 3), 4, (2, 4), 2, (2, 3), 3
- directed Cycle: 3, (3, 2), 2, (2, 4), 4, (4, 3), 3

# **Trees and Spanning Trees**

#### Trees

- An undirected graph  $\mathcal{G} = (\mathcal{N}, \mathcal{E})$  is called a tree if
  - it is **connected**.
  - $\circ\,$  it has **no cycles**.
- if a node in the tree has a degree equal to 1, it is called a **leaf**.



- Adding  $\{2,3\}$  would create a cycle with (2,3,4).
- leaves:  $\{1, 3, 6\}$ .

#### Trees

**Theorem 1.** Fundamental properties:

(i) Every tree with more than one node has at least one leaf.

(ii) An undirected graph is a tree iff it is connected and has  $\#(\mathcal{N}) - 1$  edges.

(iii) For any  $i \neq j$  two nodes in a tree there exists a **unique path** from i to j.

(*iv*) If you add an edge to a tree, the resulting graph contains exactly one cycle (up to shifting the order of the cycle)

## **Fundamental properties: Proofs**

- (i) If all  $\mathcal{N}$  nodes had a degree 2 or higher, then one can have paths of arbitrarily long size, hence create a cycle. So there must be at least one leaf.
- (ii)  $\bullet \Rightarrow$ : prove recursively.
  - $\circ\;$  True if  $\#(\mathcal{N})=1.$  Suppose true for k nodes. Consider tree  $\mathcal{T}$  with k+1 nodes.
  - $\circ\,$  There is one leaf in  $\mathcal T.$  Remove the edge that joins it to  $\mathcal T.$
  - Resulting tree  $\mathcal{T}'$  has  $\#(\mathcal{N}) 1$  nodes hence  $\#(\mathcal{N}) 2$  edges.
  - $\circ~$  Hence  ${\mathcal T}~$  has  $\#({\mathcal N})-1~$  edges.
  - $\Leftarrow$  : If not a tree, there is a cycle.
    - $\circ~$  Notice that all nodes of a cycle have degree  $\geq 2.$
    - It is thus possible to remove an edge will keeping connectivity.
    - Repeat this until there is no cycle.
    - We get a tree out of the process, with  $\#(\mathcal{N}) 1$  edges thanks to (i).
  - Since we have not added edges but only removed, the original graph was a tree.

#### **Fundamental properties: Proofs**

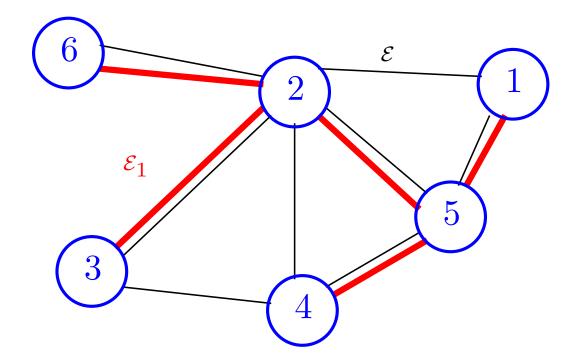
- (iii) Tree is connected hence such path  $p = (i_0 = i, i_1, \dots, i_{m-1}, i_m = j)$  exists. Need to prove **unicity**.
  - Suppose  $\exists p' = (i'_0 = i, i'_1, \cdots, i'_{m'-1}, i'_{m'} = j)$  another path. Write  $n = \min(m, m')$
  - Define  $k = \min\{e \le n | i_e \ne i'_e\}$  and  $M = \max\{e | i_{m-e} \ne i_{m'-e}\}.$
  - $0 \le k \le n M \le n$  are well defined, otherwise p = p'.
  - Can show  $i_{k-1}i_k \cdots i_{m-M}i_{m-M+1}i'_{m'-M}i'_{m'-M-1}\cdots i'_ki_{k-1}$  is a cycle.

(iv) Let  $\mathcal{T} = (\mathcal{N}, \mathcal{E})$  be a tree and add one edge  $\{i, j\}$ .

- With one edge more it cannot be a tree (i) and hence there is a cycle.
- The cycle necessarily includes the new edge  $\{i, j\}$  and nodes i and j.
- The cycle links *i* and *j* through a path which is unique by (iii).
- The cycle is thus unique up to shifting the nodes order.

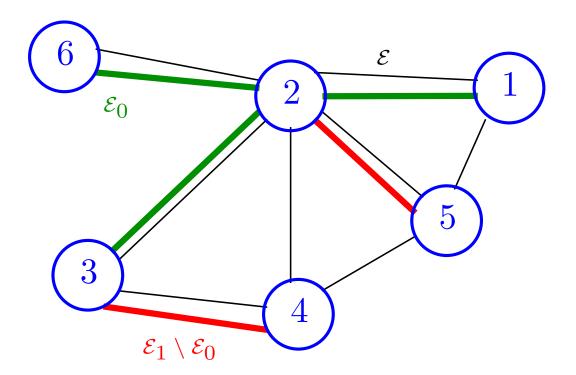
## **Spanning Trees**

- Given a connected undirected graph  $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ , let  $\mathcal{E}_1$  be a subset of  $\mathcal{E}$  such that  $T = (\mathcal{N}, \mathcal{E}_1)$  is a tree.
- Such a tree  $\mathcal{T}$  is called a spanning tree of  $\mathcal{G}$ .



### **Spanning Trees**

**Theorem 2.** Let  $\mathcal{G} = (\mathcal{N}, \mathcal{E})$  be a connected undirected graph and  $\mathcal{E}_0$  a subset of  $\mathcal{E}$ . Suppose that the edges of  $\mathcal{E}_0$  do not form cycles. Then  $\mathcal{E}_0$  can be augmented to a set  $\mathcal{E}_1$  such that  $\mathcal{E}_0 \subset \mathcal{E}_1$  and  $\mathcal{T} = (\mathcal{N}, \mathcal{E}_1)$  is a spanning tree.



#### **Spanning Trees : Proof**

- **Proof**: Suppose  $\mathcal{E}_0 \subset \mathcal{E}$  and that the edges of  $\mathcal{E}_0$  do not form cycles.
- If  $\mathcal{G}$  is a tree done, just set  $\mathcal{E}_1 = \mathcal{E}$
- If not it contains one cycle. Start with  $\mathcal{E}_1 \leftarrow \mathcal{E}$ .
- Repeat the following until  $\mathcal{E}_1$  has no cycle:
  - Consider that cycle c = i<sub>1</sub> ··· i<sub>m</sub> and i<sub>m</sub> = i<sub>1</sub>.
     ∃e ∈ E<sub>1</sub> \ E<sub>0</sub> such that e = {i<sub>k</sub>i<sub>k+1</sub>}.
     Remove that edge from E<sub>1</sub> ← E<sub>1</sub> \ {e}.
- $\mathcal{T}(\mathcal{N}, \mathcal{E}_1)$  is now a tree and  $\mathcal{E}_0 \subset \mathcal{E}_1$ .

## **Network Flows**

#### **Mathematical Formulation**

A **network** is a **directed graph**  $\mathcal{G} = (\mathcal{N}, \mathcal{A})$  with side information, typically  $\mathcal{L}$  and the following quantities:

- for a in  $\mathcal{A}$ , or equivalently  $(i, j) \in \mathcal{A}$ , a nonnegative  $f_a$  or  $f_{(i,j)}$  and usually written  $f_{ij}$  quantifies a **flow** between nodes i and j.
- For each node  $i \in \mathcal{N}$   $b_i$  is a **supply** to that node from the exterior.

• if  $b_i > 0$  node *i* is usually called a **source**. • if  $b_i < 0$  node *i* is usually called a **sink**.

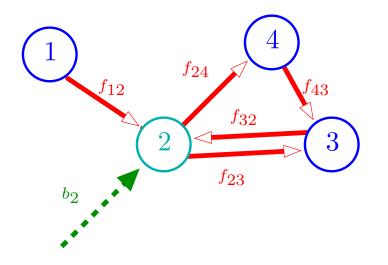
- Each flow can be **capacitated** that is restricted to be less than  $u_{(i,j)}$ .
- When  $u_{(i,j)} = \infty$  the flow is **uncapacitated**.
- Each arc might have a **cost** per unit of flow associated,  $c_{ij}$ .

#### **Flow Equations** constraints

Natural flow equations imply that

$$b_{i} + \sum_{j \in I(i)} f_{ji} = \sum_{j \in O(i)} f_{ij}$$

$$0 \le f_{ij} \le u_{ij}$$
(1)



in this case,

$$b_2 + f_{12} + f_{12} = f_{24} + f_{23}$$
$$0 \le f_{12}, f_{24}, f_{32}, f_{23} \le \dots$$

### **Flow Equations** constraints

- More terminology: any vector f with indexed by  $\mathcal{E}$  is a flow.
- A flow is **feasible** if it satisfies the **linear** equations (??)
- Note that we also have

$$\sum_{i\in\mathcal{N}}b_i=0$$

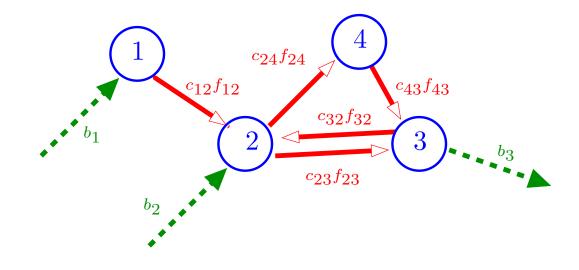
• "what's taken from the environment goes back to the environment"

## Flow equation *objectives*

• Most network flow problems deal with the minimization of



• which is, again, linear in f.



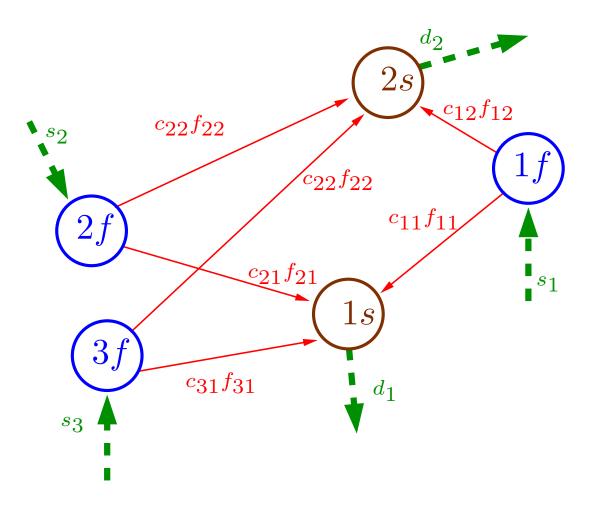
# **Major Examples of Network Flow Problems**

## **The Transportation Problem**

- Holes and piles of Dirt analogy.
- Old problem, formulated by Monge in 1781 and then Kantorovich in the late 30's.
- Suppose there are *m* factories and *n* shops that produce/sell computer units.
- Each factory i produces annually  $s_i \geq 0$  computers and a shop j wants  $d_j \geq 0$  of them.
- Each factory *i* has an arc directed towards each shop *j*.
- We suppose the total supply is equal to the demand,  $\sum_{i=1}^{m} s_i = \sum_{j=1}^{n} d_j$ .
- The transport problem is then

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} f_{ij} \\ \text{subject to} & f_{ij} \geq 0 \\ & \forall i = 1, \dots, m, \quad s_{i} = \sum_{j=1}^{n} f_{ij}, \\ & \forall j = 1, \dots, n, \quad d_{j} = \sum_{i=1}^{n} f_{ij} \end{array}$$

#### **The transportation Problem**



- 1s, 2s stand for the shops and 1f, 2f, 3f is for factories.
- usually  $c_{ij}$  are proportional to distances.

## **The Assignment Problem**

- Special case of the TP:
  - $\circ m = n$ , same number of suppliers and consumers.
  - $\circ$  supplies are all equal to 1, demands are all equal to 1.
  - $\circ\,$  problem is to assign one factory to one shop exactly, with minimal cost.

## **Next Time**

- More examples.
- Provide a more concise description,
- Start describing particular types of solutions.