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Reminder

• The ellipsoid method.

• A method that tries to exhibit a point in a polyhedron or state its emptiness.

• 2 cases:

◦ some assumptions: the bounded/full-dimensional case
◦ the general case

• Ellipsoid method for optimization is either

◦ a direct application to the primal/dual feasible problem
◦ a sliding ellipsoid method

• Poor performance in practice
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Today

• A brief description of 3 interior point methods.

◦ Affine scaling algorithm (goes back to ’67, Dikin)
◦ Potential reduction algorithm (Karmarkar, ’84)
◦ Central Path following algorithm, just an intro (traces back to Frisch, ’56)
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Then...
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Affine Scaling
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Main ideas

• We consider a primal (standard) dual (canonical, free variables) pair,
minimize cTx
subject to Ax = b

x ≥ 0
,

maximize bTµ
subject to ATµ ≤ c

• consider the feasible set P = {x ∈ Rn | Ax = b, x ≥ 0}

• its interior
◦

P = {x ∈ Rn | Ax = b, x>0} is called the set of interior points.

• The algorithm

◦ starts from a point x0 in
◦

P and defines E0 = E(x0,D)⊂
◦

P .
◦ loops starting with t = 0

⊲ finds the optimum xt+1 of cTx in Et (analytical solution)

⊲ defines a new ellipsoid Et+1 = E(xt+1,Dt+1) still inscribed in
◦

P .
⊲ t← t + 1
◦ controls convergence checking dual gap.
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Preliminary results: Inscribed ellipsoid

• an interesting prior lemma

Lemma 1. Let β ∈ (0, 1) be a scalar and y ∈ Rn satisfy y > 0. if

S =

{

x ∈ Rn |
n∑

i=1

(xi − yi)
2

y2
i

≤ β2

}

,

then x > 0 for every x ∈ S.

Proof. Let x ∈ S.

◦ then for all i, (xi − yi)
2 ≤ β2y2

i < y2
i ,

◦ hence |xi − yi| < yi, in particular −xi + yi < yi thus xi > 0
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Preliminary results: Linear objective on ellipsoids

• For a vector y ∈ Rn such that y > 0, and Ay = b, let
Y = diag(y1, y2, · · · , yn) denote a n× n invertible diagonal matrix.

• S in lemma 1 is equivalent to S = {x | ‖Y −1(x− y)‖2 ≤ β2} = E(y, β2Y 2).

• We consider the problem of minimizing cTx over {Ax = b} ∩ {E(y, βY )},

minimize cTx
subject to Ax = b,

‖Y −1(x− y)‖ ≤ β

which can be reformulated, using d = x− y,

minimize cTd
subject to Ad = 0,

‖Y −1d‖ ≤ β
(1)

• This can be solved explicitly.
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Preliminary results: Linear programming on ellipsoids

Lemma 2. Assume that the rows of A are linearly independent and that c is

not a linear combination of the rows of A. Let y be a positive vector. Then an

optimal solution to problem

minimize cTd
subject to Ad = 0,

‖Y −1d‖ ≤ β,

is given by

d⋆ = −β
Y 2(c− ATµ)

‖Y (c−ATµ)‖,

where

µ = (AY 2AT )−1AY 2c,

and we observe that

cTx = cTy − β‖Y (c− ATµ)‖ < cTy.
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Proof

• existence of d⋆:

◦ AY 2AT is invertible. If not,
∃x | xTAY 2Ax = 0⇒ Y Ax = 0⇒ Ax = 0⇒ rows of A l.d.
◦ since c is not a linear combination of rows of A,∀µ, c−ATµ 6= 0.

• feasibility of d⋆:

◦ Y −1d⋆ = −β Y (c−AT µ)

‖Y (c−AT µ)‖
⇒ ‖Y −1d⋆‖ = β.

◦ From the definition of µ, AY 2(c−Aµ) = 0.

• Optimality of d⋆:

◦ Using the Cauchy-Schwartz inequality, for any feasible d,

cTd = (cT − µTA)d = (cT − µTA)Y Y −1d

≥ −‖Y (c− ATµ)‖ · ‖Y −1d‖ ≥ −β‖Y (c−ATµ)‖
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Proof

◦ on the other hand, for d⋆:

cTd⋆ = (cT − µTA)d⋆ = −(cT − µTA)β
Y 2(c−ATµ)

‖Y 2(c−ATµ)‖

= −β

(
Y (cT − µTA)

)T
Y (c− ATµ)

‖Y (c−ATµ)‖ = −β‖Y (c−ATµ)‖

hence d⋆ is optimal.

• Improved objective: cTx = cTy + cTd⋆ = cTy − β‖Y (c−ATµ)‖ < cTy.

Princeton ORF-522 11



Taking a close look at µ

• We have just seen that µ, defined as

µ = (AY 2AT )−1AY 2c,

plays an important role in the solution. Why write it µ? confusing?

• Suppose y is actually a nondegenerate feasible solution with I corresponding
basis.

• Reorder for convenience the indices, I = {1, · · · ,m} and the n−m remaining
coefficients are nonbasic.

• Y = diag(y1, · · · , ym, 0, · · · , 0
︸ ︷︷ ︸

n−m

) and AY = [BY0 0] and

µ = (AY 2AT )−1AY 2c = B−1
I Y −2

0 B−1
I Y 2

0 cI = B−1
I cI

• when y is a primal BFS, µ is a dual BS. It is thus natural to see µ as a dual

estimate corresponding to the current primal solution.
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Taking a close look at µ

• Moreover, c−ATµ also appears everywhere..

• the (transposed) reduced cost coefficient.

• Suppose r = c−ATµ is nonnegative. Then µ is dual feasible and

rTy = (c−ATµ)Ty = cTy − µTAy = cTy − µTb,

a quantity called the duality gap.

• If rTy = 0 then by weak duality y and µ are the primal and dual optima.
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Dual gap and closeness to optima
Lemma 3. Let y and µ be a primal and dual feasible solution respectively such

that cTy − µTb < ε. Let y⋆ and µ⋆ be optimal primal and dual solutions

respectively. Then,

cTy⋆ ≤ cTy < cTy⋆ + ε
bTµ⋆ − ε < cTµ ≤ bTµ⋆.

or, using the notations below,

p⋆ ≤ cTy < p⋆ + ε
d⋆ − ε < cTµ ≤ d⋆.

• Proof: We use this small drawing

ε

cT ybT µ

d⋆ − ε p⋆ + ε

p⋆ = d⋆ = cTy⋆ = bT µ⋆

ε

ε

Princeton ORF-522 14



Dual gap: a stopping criteria

• To sum up:

◦ run iteration that update the center and the inscribed ellipsoid
◦ whenever r ≥ 0 we have a dual feasible solution.
◦ when rTy < ε then we are near-optimal.

• convergence is thus parameterized by an optimality tolerance ε.

• a conceptual change w.r.t simplex which gives exact solutions

• on the other hand we have a hint of how to round off values, since the solution
must be sparse (have a lot of zeros).
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Summary of the Affine Scaling Algorithm

• To sum up:

◦ Input (A,b, c), initial point x, tolerance ε, β ∈ (0, 1).
◦ Initialization x0 = x, t = 0.
◦ Loop

⊲ Given a feasible xt, consider the corresponding diagonal matrix Xt and

µt = (AX2
t AT )−1AX2

t c
rt = c−ATµt

⊲ optimality check if rt ≥ 0 and rT
t xt < ε then stop with ε-optimal xt.

⊲ unboundedness check if −X2
t rt ≥ 0 stop, optimal cost is −∞.

⊲ update the new solution to

xt+1 = xt − β
X2

t rt

‖Xtrt‖
(2)

⊲ next iteration set with t← t + 1
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Short Matlab Demo
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Variations: short and long steps

• Define the alternative norms for vectors

‖u‖∞ = maxi ‖ui‖,
γ(u) = max{ui|ui > 0}.

then γ(u) ≤ ‖u‖∞ ≤ ‖u‖.
• The previous version we proposed is usually called a short step method.

• long step variants update xt in the same direction −X2
t rt but with longer steps.

• Instead of a step −β
X2

t rt

‖Xtrt‖
as in Equation (2),

xt+1 = xt − β
X2

t rt

‖Xtrt‖∞
, or

xt+1 = xt − β
X2

t rt

γ(Xtrt)
.

• Steps are larger and one can show that the updates are still feasible.
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Short Matlab Demo
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Short Matlab Demo
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Complete Implementation: looking for an initial point

• The algorithm requires an initial feasible point x0.

• As with the simplex, we may not have it.

• As with the simplex, we

◦ augment the problem,
◦ use a trivial first feasible point,
◦ make sure artificial variables disappear on convergence.

• Suppose M ≫ 0 and consider the problem

minimize cTx + Mxn+1

subject to Ax + (b−A1)xn+1 = b,
[ x
xn+1 ] ≥ 0

,

• [ x
xn+1 ] = [ 1

1 ] is a positive feasible solution,

• Convergence yields xn+1 = 0 if the problem is feasible.
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Convergence

• Convergence can be proved for both primal and dual under certain assumptions.

• In particular, if

◦ rows of A are l.i. ,
◦ c is not a linear combination of the rows of A,
◦ there exists an optimal solution,
◦ there exists a positive feasible solution,

then everything works with β < 2/3.

• if in addition

◦ All BFS of the primal problem are nondegenerate,
◦ The reduced cost of nonbasic coefficients corresponding to a BFS are

nonzero,

everything works with 0 < β < 1.
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Speed and efficiency

• Still a research topic.

• Although the following example gives a hint of why things may not always be
great:
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Potential Reduction Algorithm
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Using two (almost) standard forms for primal and dual

problems

• Closest to Karmarkar’s algorithm of 1984.

• We consider the primal-dual pair in standardized forms
minimize cTx
subject to Ax = b

x ≥ 0
,

maximize bTµ
subject to ATµ + s = c

s ≥ 0

• Note that primal variable x ∈ Rn. dual variable µ ∈ Rm but s ∈ Rn

• We assume that

◦ A has linearly independent rows
◦ There exist x > 0 and(µ, s), s > 0 which are feasible for the primal and dual

problem respectively.

• We define the potential function

G(x, s) = q log s′x−
n∑

j=1

log xj −
n∑

j=1

log sj

with q ≥ n.
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Reducing the potential function

• Note that the dual gap

cTx− bTµ = (sT + µTA)x− xTATµ = sTx

corresponds to sTx which the potential function aims to minimize.

• Furthermore, the two sums penalize the proximity to the boundary of the
feasible sets of the primal and dual respectively.

Theorem 1. Let x0 > 0 and (µ0, s0) with s0 > 0 be feasible primal and

dual solutions and ε > 0 the optimality tolerance. Any algorithm

that maintains primal and dual feasibility and reduces G(x, s) by at least

δ > 0 at each iteration finds a solution to the primal and dual

problems with duality gap sT
KxK ≤ ε with

K =

⌈
G(x0, s0)− (q − n) log ε− n log n

δ

⌉

iterations
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The potential function

Proof. • We show G(x, s) ≥ n log n + (q − n) log sTx.

◦ G(x, s) = n log sTx−∑n
j=1 xj −

∑n
j=1 log sj + (q − n) log sTx.

◦ let’s do some minimization on n log
∑

sjxj −
∑n

j=1 log xjsj

◦ alternatively study n log
∑n

j=1 uj −
∑n

j=1 log uj with
∑

uj = sTx, which is

minimized for uj = sTx/n (think entropy)
◦ Replace and get the lower bound.

• Fix δ and suppose G(xk+1, sk+1)−G(xk, sk) ≤ −δ

• Thus G(xk, sk)−G(x0, s0) ≤ −kδ.

• In particular G(xK, sK) ≤ (q − n) log ε + n log n.

• Using the inequality above, G(xK, sK) ≥ n log n + (q − n) log sT
KxK

• Combining the two, sT
KxK ≤ ε
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Potential Reduction Algorithm

• Advantage: stay far from boundary at each iteration while improving gap.

• What we need: algorithm that reduces steadily the potential while maintaining
feasibility.

• Hence the name of Potential Reduction Algorithms.
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A Proposal for a Potential Reduction Algorithm

• We start with a primal solution x > 0 and a dual feasible solution with s > 0.

• We look for a direction d such that G(x + d, s) < G(x, s).

• Similarly to affine scaling, we can proceed by having d satisfy Ad = 0,
‖X−1d‖ ≤ β < 1 so that x + d is still feasible.

• Important difference: we minimize a nonlinear function, not cTx.

• Using a local Taylor approximation,

minimize ∇xG(x, s)Td
subject to Ad = 0

‖X−1d‖ ≤ β

• Difference with affine scaling, objective “ĉ” is ∇xG(x, s).

• Namely ĉ is such that ĉi = ∂G(x,s)
∂xi

= qsi

sT x
− 1

xi
.

Princeton ORF-522 29



A Proposal for a Potential Reduction Algorithm

• Using Lemma 2, the optimal direction d⋆ is

d⋆ = −βX
u

‖u‖ with u = X
(
ĉ−AT (AX2XT )−1AX2ĉ

)

• replacing the values of ĉ (with ĉi = qsi

sTx
− 1

xi
) we have

X ĉ =
q

sTx
Xs− 1

which yields,

u =
(
I −XAT (AX2AT )−1AX

) ( q

sTx
Xs− 1

)

.

• Lemma 2 also gives the decrease in objective: β‖u‖+ O(β2)

• Depending on the size of ‖u‖ can we have a minimal decrease?
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Potential Reduction Algorithm

• Parameters (A,b, c), β, γ, q and ε.

• Initialization x0 > 0, s0 > 0 and µ0, k = 0.

• Optimality test if sT
k xk < ε stop. otherwise go to next step.

• Update correction compute considering Xk corresponding to xk,

Ak = (AXk)
T

(
AX2

kAT )−1
)
AXk

uk = (I −Ak)

(
q

sT
k xk

Xksk − 1

)

dk = −βXk

u

‖u‖
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Potential Reduction Algorithm

Check the decrease

• if ‖uk‖ ≥ γ, primal update

xk+1 = xk + dk,

sk+1 = sk,

µk+1 = µk.

• if ‖uk‖ < γ, dual update

xk+1 = xk,

sk+1 =
sT
k xk

q
X−1

k (uk + 1),

µk+1 = µk +
(
AX2

kAT
)−1

AXk

(

Xksk −
sT
k xk

q
1

)

.
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Why does it work?

• One can prove that if ‖uk‖ ≥ γ, primal update

G(xk+1,xk+1)−G(xk, sk) ≤ −βγ +
β2

2(1− β)

• One can prove that if ‖uk‖ < γ, dual update

G(xk+1,xk+1)−G(xk, sk) ≤ −(q − n) + n log
q

n
+

γ2

2(1− γ)

• bottom line: if q = n +
√

n, β ≈ 0.285 and γ ≈ 0.479 then the potential
reduction algorithm reduces G(x, s) by at least δ = 0.079 at each iteration.

• iterations: K = O
(√

n log 1ε + n2 log(nU)
)
.

• overall complexity: O(n3.5 log 1
ε

+ n5 log(nU)).
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A short outlook of primal path following

algorithm
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The barrier function

• As usual, consider the primal-dual pair
minimize cTx
subject to Ax = b

x ≥ 0
,

maximize bTµ
subject to ATµ + s = c

s ≥ 0

• Get around the issues given nonnegativity constraints.

• Encode this through a barrier function:

Bτ(x) = cTx− τ
n∑

j=1

log xj

• Consider the family of barrier problems indexed by τ > 0,

minimize Bτ(x)
subject to Ax = b
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Brief Analysis

• For all µ > 0, the barrier problem has a unique optimal solution x(µ)

• In particular, for τ =∞, the barrier problem becomes

minimize −∑n
i=1 log xi

subject to Ax = b

• A barrier problem originating from the dual problem is

maximize bTµ + τ
∑n

i=1 log sj

subject to µTA + s = c

• Similar to the potential reduction method, we consider a Taylor expansion of
Bµ and update x by a given direction d while still staying in the feasible set.

• Studied in more depths in ORF 523.
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Next time

• Network flows,

◦ network simplex
◦ transportation problems
◦ maximum flow
◦ assignment problem
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