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Reminder

e The ellipsoid method.
e A method that tries to exhibit a point in a polyhedron or state its emptiness.
e 2 cases:

o some assumptions: the bounded /full-dimensional case
o the general case

e Ellipsoid method for optimization is either

o a direct application to the primal/dual feasible problem
o a sliding ellipsoid method

e Poor performance in practice
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Today

e A brief description of 3 interior point methods.

o Affine scaling algorithm (goes back to '67, Dikin)
o Potential reduction algorithm (Karmarkar, '84)

o Central Path following algorithm, just an intro (traces back to Frisch, '56)
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A~ Zo-year-Gia matisialcian ai A T.&T.
Bell Laboratories has made a startling
theoretical breakthrough in the solving of
systems of equations that often grow too
vast and complex for the most nowerful

Te:dtfcaveljy, whigh is to be formally

culating rapidly through the mathematical
world. It has also set off a deluge of
inquiries from brokerage houses, oil com-
panies and airlines, industries with millions
of dollars at stake in problems known as
linear programming,

These problems zre fiendishly com-
plicated systems, often with thousands of
variables. They arise in a variety of com-
mercial and government applications, rang-
ing from allocating time on a communica-
tions satellite to routing millions of
telephone calls over long distances, or
whenever a limited, expensive resource
must be spread most efficiently among
competing users. And investrent com-
panies use them in creating portfolios with
the best mix of stocks and bonds.

The Bell Labs mathematician, Dr.
Narendra Karmarkar, has devised a
radically new procedure that may speed the
routine handling of such problems by
businesses and Government agencies and
also make it possible to tackle problems
that are now far out of reach,

“This is a path-breaking result,” said Dr,

m 4

G ir
air

=

am e

I3
O

11}
@
i
=

THE NEW YORK TIMES, November 19, 1984

“Science has its moments of great pro-
gress, and this may well be one of them.”

Because problems in linear program-
ming can have billions or more possible

onand ~n

re, an alg_orithm, to
t one — typically the one
that minimizes cost or maximizes
efficiency.

A procedure devised in 1947, the simplex

method, is now used for such problems,
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Then...

- aibid ﬁ,

tation to find a new way throuah tha maze

A young Beil scientist makes a major math breaktiirough

= very day 1,200 American Airlines jets
B crisscross the U.S., Mexico. Canada and
the Caribbean, stopping in 110 cities and bear-
ing over 80,000 passengers. More than 4,000

il il flinhe al mnintanamna
pilots, copilots, Hlight personnel, maintenance

workers and baggage carriers are shuffied
among the flights; a total of 3.6 million gal.
of high-octane fuel is burned. Nuts, bolts,
altimeters, landing gears and the like must be
checked at each destination. And while per-
forming these scheduling gymnastics, the
company must keep a close eye on costs, pro-
jected revenue and profits.

Like American Airlines, thousands of com-
panies must routinely untangie the myriad
variables that complicate the efficient distribu-
tion of their resoutces. Solving such monstrous

b oaboat hoo
uidt nas

nd even the

data. Now Narendra Karmarkar. a 28-vear-oid

Indian-born mathematician at Bell
Laboratories in Murray Hill. N 1 after only
a years' work has cracked the puzzle of linear
programming by devising a new algorithm, a
step-by-step mathematical formula. He has
translated the procedure into a program that
should allow computers to track a greater com-
bination of tasks than ever before and in a frac-
tion of the time.
- Unlike most advances in theoretical
mathematics, Karmarkar’s work will have an
immediate and major impact on the real world.
“Breakthrough is one of the most abused
words in science,” says Ronald Graham, direc-
tor of mathematical sciences at Bell Labs.
*“But this is one situation where it is truly ap-
propriate.”

Before the Karmarkar method. linear equa-
tions couid be soived oniy in a cumbersome

1485100, imuicaﬂy Known as the Simplex
method, devised by Maihematician George




Affine Scaling
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Main ideas

e \We consider a primal (standard) dual (canonical, free variables) pair,

minimize clx maximize X
subject to Ax =Db cubiect to AT <Z
x > () J H=

e consider the feasible set P = {x € R" | Ax =b, x > 0}

e its interior P = {x € R" | Ax = b, x>0} is called the set of interior points.

e The algorithm

o starts from a point xq in P and defines Ey = E(xg, D)CP.
o loops starting with t =0
~ finds the optimum x;,1 of ¢!x in E; (analytical solution)

> defines a new ellipsoid E;11 = E(x;11, Dyy1) still inscribed in P.
>t«—t+1
o controls convergence checking dual gap.
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Preliminary results: Inscribed ellipsoid

e an interesting prior lemma

Lemma 1. Let 8 € (0,1) be a scalar and y € R™ satisfy y > 0. if

n . ap.)2
i=1 Yi
then x > 0 for every x € S.

Proof. Let x € S.

o then for all 4, (z; — vy;)* < f%y? < y?,
o hence |z; — y;| < v, in particular —x; + y; < y; thus 2; > 0

Princeton ORF-522



Preliminary results: Linear objective on ellipsoids

e For a vector y € R" such that y > 0, and Ay = b, let
Y = diag(y1, 92, -+ ,yn) denote a n X n invertible diagonal matrix.

e Sinlemma(lis equivalentto S = {x | |[Y !(x —y)||? < 3%} = E(y, 3°Y?).
e We consider the problem of minimizing c!x over {Ax = b} N {E(y,5Y)},

minimize c¢lx

subject to Ax = b,
Y (x—-y) <8
which can be reformulated, using d = x — y,
minimize c¢’d

subject to Ad =0, (1)
[Y=d| < 5

e This can be solved explicitly.
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Preliminary results: Linear programming on ellipsoids

Lemma 2. Assume that the rows of A are linearly independent and that c is
not a linear combination of the rows of A. Let y be a positive vector. Then an
optimal solution to problem

minimize cld
subject to Ad =0,

IY=1d| < 3,
18 given by
Y2(c — AT
d = 5 (c Tu) |
1Y (c = ATy
where

1= (AY?ATY "1 AY?c,

and we observe that

c'x=cly - g|[Y(c—A"p)| <c'y.
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Proof

e existence of d*:

o AY2AT is invertible. If not,
Ix | xTAY?Ax=0=YAx =0= Ax =0 = rows of A |.d.

o since c is not a linear combination of rows of A,Vu,c — Al # 0.

o feasibility of d*:

— * Y C—AT — *
° Y = —Brr=ariy = IV ] = 5.

o From the definition of u, AY?(c — Au) = 0.

e Optimality of d*:

o Using the Cauchy-Schwartz inequality, for any feasible d,

c’'d=(c! —plt'A)d = (¢! — " A)YYy—d
> [V (c— AT - [V 1| > - 8|V (c — ATp)||

Princeton ORF-522
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Proof

o on the other hand, for d*:

T Y2(c— ATp)
¢ dt=(c" —pAd" = (e’ = Ay AT i
Y T TA TY —AT
:—ﬁ( (ch —n"A)) Y(c M):—ﬁlly(C—AT”)”

1Y (c = AT )

hence d* is optimal.

e Improved objective: c’x =cly +cfd* = cly — 3|V (c — ATp)|| < cly.
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Taking a close look at i

e We have just seen that p, defined as
= (AY?AT)"1AY ¢,

plays an important role in the solution. Why write it 117 confusing?

e Suppose y is actually a nondegenerate feasible solution with I corresponding
basis.

e Reorder for convenience the indices, I = {1,--- ,m} and the n — m remaining
coefficients are nonbasic.

e Y =diag(y1, ,Ym,0,---,0) and AY = [BY; 0] and

n—m

= (AY?AT) "t AY?c = By 'Y, By 'Yicer = By e

e when y is a primal BFS, p is a dual BS. It is thus natural to see 1 as a dual
estimate corresponding to the current primal solution.
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Taking a close look at u

e Moreover, c — A'' 11 also appears everywhere..
e the (transposed) reduced cost coefficient.

e Suppose r = ¢ — Al'j1 is nonnegative. Then 1 is dual feasible and
r'y=(c- A"y =c"y —p"Ay =c"y — u"b,

a quantity called the duality gap.

o If r''y = 0 then by weak duality y and x are the primal and dual optima.

Princeton ORF-522

13



Dual gap and closeness to optima

Lemma 3. Let y and i be a primal and dual feasible solution respectively such
that cy — p'b < e. Let y* and p* be optimal primal and dual solutions
respectively. Then,

c'y < 'y < 'y +e
by —e < clp < blip~
or, using the notations below,
p* < cy < p*+e¢
d*—¢e < ctp < a*
e Proof: We use this small drawing
d* — e ’<___________5 ___________ _>‘ p* +¢€
; | | :
| bTu cTy :
e i =
g g
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Dual gap: a stopping criteria

e o sum up:

o run iteration that update the center and the inscribed ellipsoid
o whenever r > 0 we have a dual feasible solution.
o when r’'y < ¢ then we are near-optimal.

e convergence is thus parameterized by an optimality tolerance ¢.

e a conceptual change w.r.t simplex which gives exact solutions

e on the other hand we have a hint of how to round off values, since the solution

must be sparse (have a lot of zeros).

Princeton ORF-522
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Summary of the Affine Scaling Algorithm

e [o sum up:

o Input (A, b, c), initial point x, tolerance ¢, 8 € (0,1).
o Initialization xg = x, t = 0.
o Loop
>~ Given a feasible x;, consider the corresponding diagonal matrix X; and

(AXZ2AT)"1AX2c
c— Al

i
I't

>~ optimality check if r, > 0 and rfxt < ¢ then stop with s-optimal x;.
~ unboundedness check if —X?r; > 0 stop, optimal cost is —o0.
> update the new solution to

2

Xt+1 — Xt — ﬂHXtrtH

> next iteration set with ¢t «<— ¢t + 1
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Short Matlab Demo

---- 0.00070784 ----

2.5

17



Variations: short and long steps

e Define the alternative norms for vectors

lafloe = max; [[ug],
v(u) max{u;|u; > 0}.

then v(u) < [Jufloe < [luf].

e T he previous version we proposed is usually called a short step method.

e long step variants update x; in the same direction — X?r; but with longer steps.

e Instead of a step 5||X as in Equation (2),

Xt r:

X = or
t+1 6||Xtrt||oo

_ Xt rt
X+l = X 67(Xtrt)'

e Steps are larger and one can show that the updates are still feasible.

Princeton ORF-522
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Short Matlab Demo

--- 8.7808e-05 ----
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Short Matlab Demo

---- Long-step gap: 0.0066298 Short-step gap: 0.0077554 ----
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Complete Implementation: looking for an initial point

e The algorithm requires an initial feasible point xg.
e As with the simplex, we may not have it.
e As with the simplex, we

o augment the problem,
o use a trivial first feasible point,
o make sure artificial variables disappear on convergence.

e Suppose M > 0 and consider the problem
minimize c¢ix+ Mz,

subject to Ax+ (b— Al)z,11 =b, |,

e [2.,] =[1] is a positive feasible solution,

e Convergence yields x,, 11 = 0 if the problem is feasible.

Princeton ORF-522
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Convergence

e Convergence can be proved for both primal and dual under certain assumptions.
e |n particular, if

o rows of A are l.i. |,

o ¢ is not a linear combination of the rows of A,
o there exists an optimal solution,

o there exists a positive feasible solution,

then everything works with 5 < 2/3.
e if in addition

o All BFS of the primal problem are nondegenerate,
o The reduced cost of nonbasic coefficients corresponding to a BFS are
nonzero,

everything works with 0 < 3 < 1.
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Speed and efficiency

e Still a research topic.

e Although the following example gives a hint of why things may not always be
great:

---- 0.00058201 ----
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Potential Reduction Algorithm
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Using two (almost) standard forms for primal and dual
problems

e Closest to Karmarkar's algorithm of 1984.

e \We consider the primal-dual pair in standardized forms

minimize cl'x maximize b’
subjectto Ax=b , subjectto ATpu+s=c
x >0 s >0

e Note that primal variable x € R™. dual variable © € R™ but s € R™
e \We assume that

o A has linearly independent rows
o There exist x > 0 and(u,s),s > 0 which are feasible for the primal and dual
problem respectively.

e \We define the potential function

G(x,s) = qlog s'x — Zlog:vj — Zlogsj
j=1 j=1

with g > n.
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Reducing the potential function
e Note that the dual gap
clx—blpu=("4+ptA)x —xTATp=s'x

corresponds to s’ x which the potential function aims to minimize.

e Furthermore, the two sums penalize the proximity to the boundary of the
feasible sets of the primal and dual respectively.

Theorem 1. Let x¢ > 0 and (o, sg) with sg > 0 be feasible primal and
dual solutions and € > 0 the optimality tolerance. Any algorithm
that maintains primal and dual feasibility and reduces G(x,s) by at least
0 > 0 at each iteration finds a solution to the primal and dual
problems with duality gap st-xyx < & with

o [G(xo, so) — (¢ — n)loge — nlog n_‘

0

iterations
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The potential function

Proof. e We show G(x,s) > nlogn + (¢ — n)logs’x.

o G(x,s) =nlogslx — DT — > 5 logs;+ (¢ —n) logs!x.

o let's do some minimization on nlog )’ s;x; — Y . logz;s;

o alternatively study nlog ", u; — >0 logu; with Y- u; = s'x, which is
minimized for u; = s”x/n (think entropy)

o Replace and get the lower bound.

e Fix 0 and suppose G(xpi1,8k11) — G(Xk,8k) < =0

e Thus G(xi,sr) — G(xqg,80) < —k9.

e In particular G(xg,skx) < (¢ —n)loge + nlogn.

e Using the inequality above, G(xk,sk) > nlogn + (¢ — n) logskxx

e Combining the two, stxyx < e
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Potential Reduction Algorithm

e Advantage: stay far from boundary at each iteration while improving gap.

e \What we need: algorithm that reduces steadily the potential while maintaining
feasibility.

e Hence the name of Potential Reduction Algorithms.
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A Proposal for a Potential Reduction Algorithm

e We start with a primal solution x > 0 and a dual feasible solution with s > 0.
e We look for a direction d such that G(x + d,s) < G(x,s).

e Similarly to affine scaling, we can proceed by having d satisfy Ad = 0,
| X~1d|| < B < 1 so that x +d is still feasible.

e Important difference: we minimize a nonlinear function, not c’x.

e Using a local Taylor approximation,

minimize  V,G(x,s)’d
subjectto Ad =0
X~ <0

e Difference with affine scaling, objective “¢" is VxG(x,s).

e Namely c is such that ¢; = acg(;,s) = :

1

x;’

"
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A Proposal for a Potential Reduction Algorithm

e Using Lemma 2, the optimal direction d* is

d* = —ﬁXﬁ with u = X (& — AT(AX2XT) "1 AX %)
u

e replacing the values of ¢ (with ¢; = Jr- — +) we have

(2

. q
Xc=—7—Xs—1
sT'x

which yields,

u= (I - XAT(AX2AT) T AX) (F-Xs—1).

e Lemma 2 also gives the decrease in objective: §|lul| + O(3?%)

e Depending on the size of ||u|| can we have a minimal decrease?

Princeton ORF-522
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Potential Reduction Algorithm

e Parameters (4,b,c), 3,7,q and ¢.
e Initialization xg > 0,s¢g > 0 and pg, k = 0.
e Optimality test if ngk < € stop. otherwise go to next step.

e Update correction compute considering X; corresponding to xy,

up = (I—A;J( Tq XkSk—l)

S Xk
u
dj = —5Xk:m
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Potential Reduction Algorithm

Check the decrease

o if |[ux|| > ~, primal update

Xp+1 = Xk + dp,

Sk+1 = Sk,
Mk+1 = Hk-
e if ||ug|| < v, dual update
Xk+1 = Xk,
Sk4+1 = SngXk_l(uk +1),
SZX;C

—1
g1 = Mk + (AX%AT) AX, (stk — J

Princeton ORF-522
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Why does it work?

e One can prove that if ||[ug|| > =, primal update

62
2(1-p)

G(Xk-l-lv Xk—l—l) — G(ka Skﬁ) < _67 +

e One can prove that if ||ug|| < 7, dual update

2

Gxi1,%41) = G0k, 58) < —(g = n) +mlog 1+ 5l

e bottom line: if ¢ =n+ /n,B ~ 0.285 and v = 0.479 then the potential
reduction algorithm reduces G(x,s) by at least 6 = 0.079 at each iteration.

e iterations: K = O (y/nlogle + n?log(nl)).

e overall complexity: O(n*®°log?i + n°log(nU)).

Princeton ORF-522
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A short outlook of primal path following
algorithm

Princeton ORF-522
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The barrier function

e As usual, consider the primal-dual pair

minimize cl'x maximize b’
subjectto Ax=b , subjectto ATpu+s=c
x >0 s >0

e Get around the issues given nonnegativity constraints.

e Encode this through a barrier function:

Bi(x)=c'x—1 Z log x;
j=1

e Consider the family of barrier problems indexed by 7 > 0,

minimize B, (x)
subjectto Ax=Db
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Brief Analysis

e For all > 0, the barrier problem has a unique optimal solution x(u)

e In particular, for 7 = oo, the barrier problem becomes

minimize —>_ "  logx;
subject to Ax =D

e A barrier problem originating from the dual problem is

maximize bfu+7>" logs,;
subject to pfA+s=c

e Similar to the potential reduction method, we consider a Taylor expansion of
B,, and update x by a given direction d while still staying in the feasible set.

e Studied in more depths in ORF 523.
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e Network flows,

o network simplex

o transportation problems
o maximum flow

o assignment problem
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Next time
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