ORF 522

Linear Programming and Convex Analysis

Ellipsoid Methods

Marco Cuturi

Reminder

- Strong Duality in LP's through Farkas Lemma
- Strong duality illustration: gravity
- Dual Simplex
- Sensitivity Analysis and scenarii for perturbation

Today

- Some reminders and formulas for ellipsoids
- Ellipsoid method for the feasibility problem
 - $\circ~$ the bounded/full-dimensional case
 - $\circ\,$ the general case
- Ellipsoid method for optimization

Background

Background

- Simplex: US invention, Dantzig, 1947
- Klee-Minty counterexample, 1972
- People looking for polynomial pivot rules for decades.
- '79: Obscure "discovery" from the soviets.
- Portrayed in the paper the mathematical sputnik of 1979, see bb.
- The "sputnik" was the proof that LP's belonged to P.
- Proof by Khachiyan in '79, using earlier (unnoticed) work in convex optimization in the '70s.

Key geometric results

Reminder: positive definite matrices

• An important definition you all know:

Definition 1. A symmetric $n \times n$ matrix D is called **positive definite** (resp. semidefinite positive) if $\mathbf{x}^T D \mathbf{x} > 0$ (resp \geq) for all nonzero vectors $\mathbf{x} \in \mathbf{R}^n$.

- In practice, run eig on the matrix and test positivity of eigenvalues.
- D positive definite $\Leftrightarrow D^{-1}$ positive definite.
- D positive definite, $\exists D^{\frac{1}{2}} \in \mathbf{R}^{n \times n}$ p.d. such that $D^{\frac{1}{2}}D^{\frac{1}{2}} = D$.

Reminder: ellipsoids and affine transformations

a p.d. matrix D and a point z define an important kind of set
 Definition 2. Given a p.d n × n matrix D and z ∈ Rⁿ, the set

$$E = E(\mathbf{z}, D) = \{\mathbf{x} \in \mathbf{R}^n | (\mathbf{x} - \mathbf{z})^T D^{-1} (\mathbf{x} - \mathbf{x}) \le 1\},\$$

is called an **ellipsoid** with center \mathbf{z} and axes D.

• whenever $D = r^2 I_n$, note that $E(\mathbf{z}, r^2 I_n) = \overline{B_{\mathbf{z},r}}$.

Definition 3. If A is an $n \times n$ nonsingular matrix and $\mathbf{b} \in \mathbf{R}^n$, then the mapping $S : \mathbf{R}^n \mapsto \mathbf{R}^n$ defined by

$$S(\mathbf{x}) = D\mathbf{x} + \mathbf{b},$$

is called an affine transformation

Reminder: volumes

- An affine transformation is invertible: $S^{-1}(\mathbf{y}) = D^{-1}(\mathbf{y} \mathbf{b})$.
- If L is any subset of \mathbf{R}^n , the image of S is

$$\{\mathbf{y} \in \mathbf{R}^n \mid \mathbf{y} = S(\mathbf{x}) \text{ for some } \mathbf{x} \in L\}.$$

• The volume of a set $L \subset \mathbf{R}^n$ is defined as $\mathbf{vol}(L) = \int_{\mathbf{x} \in L} d\mathbf{x}$.

Reminder: volumes

• A lemma that relates the volume of L and S(L):

Lemma 1. If $S(\mathbf{x}) = D\mathbf{x} + \mathbf{b}$, then

 $\operatorname{vol}(S(L)) = |\det D| \operatorname{vol}(L).$

Proof.
$$\circ$$
 vol $(S(L)) = \int_{y \in S(L)} d\mathbf{y} = \int_{y \in S(L)} |\det J(\mathbf{x})| d\mathbf{x}$,
 \circ where $J(\mathbf{x})$ is the Jacobian of the variable change $\mathbf{y} = D\mathbf{x} + \mathbf{b}$,
 \circ that is $J(\mathbf{x}) = \partial S_i / \partial x_j = D$.

The Ellipsoid Method for the Feasibility Problem

Sequence of ellipsoids to test feasibility

• The ellipsoid method can be used to determine whether

$$P = \{\mathbf{x} \in \mathbf{R}^n \,|\, A\mathbf{x} \ge \mathbf{b}\}$$

is empty or not, and in the latter case provide a point in it.

- Intuitive explanation:
 - $\circ~$ The method builds
 - \triangleright a sequence E_t of ellipsoids,
 - \triangleright centered on points \mathbf{x}_t ,
 - \triangleright such that $P \subset E_t$.
 - $\circ~$ At each iteration, either
 - $\triangleright \mathbf{x}_t \in P \Rightarrow$ we have proved P is nonempty.
 - $\triangleright \mathbf{x}_t \notin P \Rightarrow a \text{ least one constraint is violated, } A_i^T \mathbf{x}_t < b_i.$
 - Hence $P \subset E_t \cap H^-_{A_i, A_i^T \mathbf{x}_t} = Q.$
 - · We can find a smaller ellipsoid E_{t+1} with center \mathbf{x}_{t+1} that covers Q.

· Loop

- $\circ~$ Either we stop by finding a point in P,
- Either $\mathbf{vol}(E_t) \to 0$ and stop when $\mathbf{vol}(E_t)$ is too small to conclude $P = \emptyset$.

The main tool

Theorem 1. Let $E = E(\mathbf{z}, D)$ be an ellipsoid of \mathbf{R}^n and let $\mathbf{a} \in \mathbf{R}^n$, $\mathbf{a} \neq \mathbf{0}$. Consider the halfspace $H_+ = \overline{H_{\mathbf{a},\mathbf{a}^T\mathbf{z}}^+} = \{\mathbf{x} \mid \mathbf{a}^T\mathbf{x} \ge \mathbf{a}^T\mathbf{z}\}$ and let

$$\mathbf{z}' = \mathbf{z} + \frac{1}{n+1} \frac{D\mathbf{a}}{\sqrt{\mathbf{a}^T D\mathbf{a}}},$$
$$D' = \frac{n^2}{n^2 - 1} \left(D - \frac{2}{n+1} \frac{D\mathbf{a}\mathbf{a}^T D}{\mathbf{a}^T D\mathbf{a}} \right)$$

The matrix D positive definite and $E' = E(\mathbf{z}', D')$ is an ellipsoid which satisfies

(i) $E \cap H \subset H'$

(*ii*) $\operatorname{vol}(E') < e^{-\frac{1}{2(n+1)}} \operatorname{vol}(E)$

• we are in a different mathematical world: analytical proof.

Princeton ORF-522

Proof

• Here is a graphical intuition of what is going on:

- We will prove this result is valid for a simple case: $\mathbf{z} = \mathbf{0}, D = I_n, \mathbf{a} = \mathbf{e}_1$.
- We will follow with a generalization to arbitrary $\mathbf{z}, D, \mathbf{a}$.

Suppose z = 0, D = I_n, E₀ = E(0, I_n) and a = e₁ which defines H⁺₀.
In such a case,

$$E'_0 = \left(\frac{\mathbf{e}_1}{n+1}, \frac{n^2}{n^2 - 1}\left(I_n - \frac{2}{n+1}\mathbf{e}_1\mathbf{e}_1^T\right)\right).$$

Note that the matrix is diagonal. All terms but the first equal $\frac{n^2}{n^2-1}$, the first being $(\frac{n}{n+1})^2$.

$$E'_{0} = \left\{ \mathbf{x} \mid \left(\frac{n+1}{n}\right)^{2} \left(x_{1} - \frac{1}{n+1}\right)^{2} + \frac{n^{2} - 1}{n^{2}} \sum_{i=2}^{n} x_{i}^{2} \le 1 \right\},\$$

$$= \left\{ \mathbf{x} \mid \frac{n^{2} - 1}{n^{2}} \sum_{i=1}^{n} x_{i}^{2} + \frac{2(n+1)}{n^{2}} x_{1}^{2} + \left(\frac{n+1}{n}\right)^{2} \left(-\frac{2x_{1}}{n+1} + \frac{1}{(n+1)^{2}}\right) \le 1 \right\}$$

$$= \left\{ \mathbf{x} \mid \frac{n^{2} - 1}{n^{2}} \sum_{i=1}^{n} x_{i}^{2} + \frac{1}{n^{2}} + \frac{2(n+1)}{n^{2}} x_{1}(x_{1} - 1) \le 1 \right\}.$$

◦ Let $\mathbf{x} \in E_0 \cap H_0^+$. Then $0 \le x_1 \le 1$ and therefore $x_1(x_1 - 1) \le 0$. ◦ Since $\mathbf{x} \in E_0$, $\sum_{i=1}^n x_i^2 \le 1$. Therefore,

$$\frac{n^2 - 1}{n^2} \sum_{i=1}^n x_i^2 + \frac{1}{n^2} + \frac{2(n+1)}{n^2} x_1(x_1 - 1) \le \frac{n^2 - 1}{n^2} + \frac{1}{n^2} = 1$$

meaning $\mathbf{x} \in E'_0$, hence $E_0 \cap H_0^+ \subset E'_0$.

• Consider now the general case. We build an affine transformation ${\cal T}$ such that

$$T(E) = E_0, \ T(E') = E'_0 \text{ and } T(H_+) = H_0^+.$$

- The result will follow because affine transformations are such that
 - $\circ \ A \subset B \Rightarrow T(A) \subset T(B),$
 - $\circ \ T(A\cap B)=T(A)\cap T(B),$
 - *i.e.* conserve inclusion and intersection.

• Consider the transformation $S(x) = D^{-\frac{1}{2}}(\mathbf{x} - \mathbf{z})$. • $S(E) = E_0$...

$$S(E) = \{ \mathbf{y} | \mathbf{y} = D^{-\frac{1}{2}} (\mathbf{x} - \mathbf{z}), \mathbf{x} \in E \}$$

= $\{ \mathbf{y} | \mathbf{y} = D^{-\frac{1}{2}} (\mathbf{x} - \mathbf{z}) \text{ with } (\mathbf{x} - \mathbf{z})^T D^{-1} (\mathbf{x} - \mathbf{z}) \leq 1 \}$
= $\{ \mathbf{y} | \mathbf{y} = \mathbf{x}', \| \mathbf{x}' \|^2 \leq 1 \}$
= $\{ \mathbf{y} | \| \mathbf{y} \|^2 \leq 1 \} = E_0$

good start. However $S(E') \neq E'_0$ and $S(H_+) \neq H_0^+$.

- For any vector \mathbf{u} , writing $\mathbf{b} = ||u||\mathbf{e}_1$, matrix $R = \frac{2(\mathbf{u}+\mathbf{b})(\mathbf{u}+\mathbf{b})^T}{||\mathbf{u}+\mathbf{b}||^2} I_n$ is such that $R^2 = I_n, R^T = R$, $R = \mathbf{b}$.
- Let R be the matrix corresponding to $\mathbf{u} = D^{\frac{1}{2}}\mathbf{a}$, that is $RD^{\frac{1}{2}}\mathbf{a} = \|D^{\frac{1}{2}}\mathbf{a}\|\mathbf{e}_{1}$.
- Let $T(\mathbf{x}) = R \circ S(\mathbf{x})$ and prove that it the good affine transformation for E, H_+ and E'.

 \triangleright For E,

$$\mathbf{x} \in E \Leftrightarrow (\mathbf{x} - \mathbf{z})^T D^{-1} (\mathbf{x} - \mathbf{z}) \leq 1,$$

$$\Leftrightarrow (\mathbf{x} - \mathbf{z})^T D^{-\frac{1}{2}} RRD^{-\frac{1}{2}} (\mathbf{x} - \mathbf{z}) \leq 1,$$

$$\Leftrightarrow RD^{-\frac{1}{2}} (\mathbf{x} - \mathbf{z}) \in E_0,$$

$$\Leftrightarrow T(\mathbf{x}) \in E_0,$$

hence $T(E) = E_0$

 \triangleright Similarly for H_+ ,

$$\mathbf{x} \in H_{+} \Leftrightarrow \mathbf{a}^{T}(\mathbf{x} - \mathbf{z}) \ge 0,$$

$$\Leftrightarrow \mathbf{a}^{T} D^{\frac{1}{2}} R R D^{-\frac{1}{2}}(\mathbf{x} - \mathbf{z}) \ge 0,$$

$$\Leftrightarrow \| D^{\frac{1}{2}} \mathbf{a} \| \mathbf{e}_{1}^{T} T(\mathbf{x}) \ge 0,$$

$$\Leftrightarrow \mathbf{e}_{1}^{T} T(\mathbf{x}) \ge 0,$$

$$\Leftrightarrow T(\mathbf{x}) \in H_{0}^{+},$$

hence $T(H_+) = H_0$.

o For E': Sherman-Morrison formula: (A + uv^T)⁻¹ = A⁻¹ − A⁻¹uv^TA⁻¹/(1+v^TA⁻¹u)
 o apply it to reformulate conveniently D'⁻¹,

$$\begin{split} D'^{-1} &= \frac{n^2 - 1}{n^2} \left(D^{-1} + \frac{2}{n - 1} \frac{aa^T}{a^T Da} \right), \\ &= \frac{n^2 - 1}{n^2} D^{-1/2} \left(I + \frac{2}{n - 1} \frac{D^{1/2} aa^T D^{1/2}}{a^T Da} \right) D^{-1/2}, \\ &= \frac{n^2 - 1}{n^2} D^{-1/2} R \left(I + \frac{2}{n - 1} \frac{R D^{1/2} aa^T D^{1/2} R}{a^T Da} \right) R D^{-1/2}, \\ &= \frac{n^2 - 1}{n^2} D^{-1/2} R \left(I + \frac{2}{n - 1} \frac{R D^{1/2} aa^T D^{1/2} R}{a^T D^{1/2} R R D^{1/2} a} \right) R D^{-1/2}, \\ &= \frac{n^2 - 1}{n^2} D^{-1/2} R \left(I + \frac{2}{n - 1} e_1 e_1^T \right) R D^{-1/2}, \\ &= D^{-1/2} R \left(\frac{n^2}{n^2 - 1} \left(I - \frac{2}{n + 1} e_1 e_1^T \right) \right)^{-1} R D^{-1/2}. \end{split}$$

 \circ Now, for all x rewrite $T(\mathbf{x} - \mathbf{z'})$ using z:

$$RD^{-1/2}(\mathbf{x} - \mathbf{z}') = RD^{-1/2}(\mathbf{x} - \mathbf{z}) - \frac{1}{n+1} \frac{RD^{-1/2}D\mathbf{a}}{\sqrt{\mathbf{a}^T D\mathbf{a}}}$$
$$= RD^{-1/2}(\mathbf{x} - \mathbf{z}) - \frac{1}{n+1} \frac{RD^{1/2}\mathbf{a}}{\sqrt{\mathbf{a}^T D\mathbf{a}}}$$
$$= RD^{-1/2}(\mathbf{x} - \mathbf{z}) - \frac{\mathbf{e}_1}{n+1},$$

• Hence if $\mathbf{x} \in E' \Leftrightarrow T(\mathbf{x}) \in E'_0$ and this closes the proof of (i).

• From Lemma 1, we obtain that

$$\frac{\operatorname{vol}(E')}{\operatorname{vol}(E)} = \frac{\operatorname{vol}(T(E'))}{\operatorname{vol}(T(E))} = \frac{\operatorname{vol}(E'_0)}{\operatorname{vol}(E_0)}.$$

$$E_0' = \left(\frac{\mathbf{e}_1}{n+1}, \frac{n^2}{n^2 - 1} \left(I_n - \frac{2}{n+1}\mathbf{e}_1\mathbf{e}_1^T\right)\right).$$

• consider the affine transformation F,

$$F(\mathbf{x}) = \left(\frac{n^2}{n^2 - 1} \left(I_n - \frac{2}{n+1}\mathbf{e}_1\mathbf{e}_1^T\right)\right)^{-\frac{1}{2}} \left(\mathbf{x} - \frac{\mathbf{e}_1}{n+1}\right).$$

• Note that $F(E'_0) = E_0$, or E'_0 is the image of the standard ball under transformation F^{-1} .

Princeton ORF-522

• Through Lemma 1, we thus have,

$$\mathbf{vol}(E_0) = \mathbf{vol}(E'_0) \left| \det\left(\left(\frac{n^2}{n^2 - 1} \left(I_n - \frac{2}{n+1} \mathbf{e}_1 \mathbf{e}_1^T \right) \right)^{-\frac{1}{2}} \right) \right|,$$

• therefore,

$$\mathbf{vol}(E'_0) = \mathbf{vol}(E_0) \sqrt{\det\left(\frac{n^2}{n^2 - 1}\left(I_n - \frac{2}{n+1}\mathbf{e}_1\mathbf{e}_1^T\right)\right)},$$

and hence, using the inequality $1+x < e^x$ valid for all $x \neq 0$ in the second line,

$$\begin{aligned} \frac{\operatorname{vol}(E'_0)}{\operatorname{vol}(E_0)} &= \left(\frac{n^2}{n^2 - 1}\right)^{\frac{n}{2}} \sqrt{1 - \frac{2}{n+1}} = \frac{n}{n+1} \left(\frac{n^2}{n^2 - 1}\right)^{\frac{n-1}{2}}, \\ &= \left(1 - \frac{n}{n+1}\right) \left(1 + \frac{1}{n^2 - 1}\right)^{\frac{n-1}{2}} < e^{-1/(n+1)} \left(e^{1/(n^2 - 1)}\right)^{\frac{n-1}{2}} \\ &= e^{-\frac{1}{2(n+1)}}. \end{aligned}$$

A first simplification

- The **first version** of the ellipsoid method we study assumes that polyhedra are "regular", no pathological cases.
- **full-dimensional** is one such criterions:

Definition 4. A polyhedron P is **full-dimensional** if it has positive volume.

- In practice this means that the **dimension** of P is n,
- That is the smallest vector subspace of \mathbf{R}^n that contains P is \mathbf{R}^n .
- In the first version we study, we assume that P is either
- (a) empty,
 (b) bounded and full-dimensional, namely
 P ⊂ E(x₀, r²I) whose volume is V,
 and vol(P) > v for v > 0.
- we assume we are given \mathbf{x}_0, r and v (lower bound), and V (upper bound).

The ellipsoid algorithm

- Input: $P = \{A, \mathbf{b}, \mathbf{c}\}, \mathbf{x}_0, r, v, V$
- **Output**: a feasible point \mathbf{x}^* in P or the statement that P is empty.
- Algorithm:
 - 1. initialization Let $t^* = \lceil 2(n+1) \log(V/v) \rceil$, $D_0 = r^2 I$, $E_0 = E(\mathbf{x}_0, D_0)$, t = 02. main loop
 - (a) if $t = t^*$ stop, P is empty.
 - (b) if $\mathbf{x}_t \in P$ stop, P is nonempty.
 - (c) if $\mathbf{x}_t \notin P$, find a violated constraint $A_i^T \mathbf{x} < b_i$ and set $\mathbf{a} = A_i$.

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \frac{1}{n+1} \frac{D_t \mathbf{a}}{\sqrt{\mathbf{a}^T D_t \mathbf{a}}},$$
$$D_{t+1} = \frac{n^2}{n^2 - 1} \left(D_t - \frac{2}{n+1} \frac{D_t \mathbf{a} \mathbf{a}^T D_t}{\mathbf{a}^T D_t \mathbf{a}} \right)$$
(e) $t \leftarrow t+1.$

The ellipsoid algorithm

Theorem 2. Let P be a bounded polyhedron that is **either empty** or **full-dimensional** and for which the prior information \mathbf{x}_0, r, v, V is available. Then the ellipsoid method decides correctly whether P is empty or gives a point \mathbf{x} in P.

- Proof If x_t ∈ P for t < t^{*} then the algorithm correctly decides that P is nonempty.
- Let us assume $\mathbf{x}_0, \cdots, \mathbf{x}_{t^{\star}-1} \notin P$. We show that P is empty.
 - $P \subset E_k, k = 1, \cdots, t^*$ because E_k is constructed at each step to contain P. • We also have that $\frac{\operatorname{vol}(E_{t+1})}{\operatorname{vol}(E_t)} < e^{-\frac{1}{2(n+1)}}$, thus

$$\frac{\operatorname{\mathbf{vol}}(E_{t^{\star}})}{\operatorname{\mathbf{vol}}(E_0)} < e^{-\frac{t^{\star}}{2(n+1)}},$$

since $t^* = \lceil 2(n+1)\log(V/v) \rceil$, $\operatorname{vol}(E_{t^*}) < Ve^{-\log(\frac{V}{v})} = v$. \circ The ellipsoid method has not terminated $\Rightarrow \operatorname{vol}(P) \leq v \Rightarrow P$ is empty.

without boundedness and full-dimensionality assumptions

- Through alternative assumptions on A and b, we can get rid of the boundedness and full-dimensionality assumptions which were crucial.
- The discussion is rather **technical** but interesting to follow.
- Complete proofs are omitted, only sketch given.
- Details are well explained in Bertsimas-Tsitsiklis's book.

- The issue we face is handling **unbounded** and **not fully-dimensional** polyhedra.
- P for which \mathbf{x}_0, r, V and v are not known.
- Three successive lemmas to solve these issues and replace the assumptions by a bound on A and b's elements.

without boundedness and full-dimensionality assumptions

Lemma 2. Let A be an $m \times n$ integer matrix, **b** a vector in \mathbb{R}^m and U an upper bound on the absolute values of all entries of A and b. Then,

(a) every **extreme point** of the polyhedron $P = {\mathbf{x} \in \mathbf{R}^n \mid A\mathbf{x} \ge \mathbf{b}}$ satisfies

$$-(nU)^n \le x_j \le (nU)^n, \ j = 1, \cdots, n$$

(b) every **extreme point** of the standard form polyhedron $P = \{ \mathbf{x} \in \mathbf{R}^n \mid A\mathbf{x} = \mathbf{b} \} \text{ satisfies}$

$$-(mU)^m \le x_j \le (mU)^m, \ j = 1, \cdots, n$$

- **Proof idea** use Cramer rule and determinants of minors.
- **Remark** the extreme points of P are in $P_B = {\mathbf{x} \in P \mid |x_j| \le (nU)^{\{n,m\}}};$ $P_B \subset E_B(\mathbf{0}, n(nU)^{2n}I)$ and $\mathbf{vol}(E_B) \le (2n(nU)^n)^n = (2n)^n (nU)^{n^2}.$

without boundedness and full-dimensionality assumptions Lemma 3. Let $P = {\mathbf{x} \in \mathbf{R}^n | A\mathbf{x} \ge \mathbf{b}}$ and assume all entries of A and b have integer entries bounded by U in absolute value. Let

$$\epsilon = \frac{1}{2(n+1)}((n+1)U)^{-(n+1)}$$

and

$$P_{\epsilon} = \{ \mathbf{x} \in \mathbf{R}^n \mid A\mathbf{x} \ge \mathbf{b} - \epsilon \mathbf{1} \}.$$

Then we have that

(a) if P is empty, P_{ϵ} is empty.

(b) if P is nonempty, then P_{ϵ} is full-dimensional.

Proof idea

(a) use duality: if P is empty, any primal problem involving P is infeasible, and a dual formulation of a problem involving P must be feasible with unbounded objective. Modifying that dual, recover the dual of a problem involving P_ε and show it is also unbounded, implying P_ε is empty.
(b) show we can inscribe a small ball centered on a feasible point of P in P_ε.

without of boundedness and full-dimensionality assumptions

Lemma 4. Let $P = {\mathbf{x} \in \mathbf{R}^n | A\mathbf{x} \ge \mathbf{b}}$ be a full-dimensional bounded polyhedron and assume all entries of A and **b** have integer entries bounded by U in absolute value. Then

$$\mathbf{vol}(P) > n^{-n} (nU)^{-n^2(n+1)}$$

- **Proof idea** lower bound the volume of P by the volume of the convex combination of n + 1 arbitrary extreme points of P,
- consider such points.
- the volume of their convex combination is a determinant of a matrix using the coordinates of these points.
- such a determinant value can be lower bounded by the rhs.

Ready for an application to arbitrary polyhedra

• Consider now that $P = {\mathbf{x} \in \mathbf{R}^n \mid A\mathbf{x} \ge \mathbf{b}}$ where all entries of A and b are integers bounded by U in absolute value and assume the rows of A span \mathbf{R}^n .

• if *P* is bounded, either empty or full-dimensional,

- Choose $v = n^{-n} (nU)^{-n^2(n+1)}$ and $V = (2n)^n (nU)^{n^2}$.
- Get an upper bound $\lceil 2(n+1)\log(V/v) \rceil$ of the order of $O(n^4\log(nU))$.
- if P is arbitrary,
 - \circ check whether P_B is empty which is equivalent.
 - \circ studying $P_{B,\epsilon}$ which is bounded **and** fully-dimensional is also equivalent.
 - use the technique above,
 - the upper bound becomes $O(n^6 \log(nU))$
- Conclusion: The linear programming feasibility problem with integer data can be solved in polynomial time.

The ellipsoid method for linear programming

The primal-dual ellipsoid method for linear programming

- Consider the dual pair of problems minimize $\mathbf{c}^T \mathbf{x}$, maximize $\mathbf{b}^T \mu$ subject to $A\mathbf{x} \ge \mathbf{b}$, subject to $A^T \mu = \mathbf{c}$ $\mu \ge 0$
- By **strong duality**, both the primal and dual optimization problems have optimal solutions iff the following set of linear inequalities is feasible:

$$\mathbf{b}^{T} \boldsymbol{\mu} = \mathbf{c}^{T} \mathbf{x}, \quad A \mathbf{x} \ge \mathbf{b},$$
$$A^{T} \boldsymbol{\mu} = \mathbf{c}, \quad \boldsymbol{\mu} \ge 0.$$

- Just test the existence of a feasible point (\mathbf{x}, μ) using the ellipsoid method.
- This is enough to obtain an optimum to the problem by weak duality.
- **Conclusion**: The **linear programming problem** with integer data can be solved in **polynomial time**.

Alternative implementation: Sliding objective ellipsoid

- Start with a problem encoded by P and c. Assume the problem minimizes $c^T x$.
- Through the ellipsoid method, find a point \mathbf{x} in P, write $\mathbf{x}_0 = \mathbf{x}$ and $P_0 = P$, t.
- loop as long as P_t is not empty,
 - Add a constraint to P_t : $P_{t+1} = P \cap \{\mathbf{x} | \mathbf{c}^T \mathbf{x} < \mathbf{c}^T \mathbf{x}_t\}.$
 - \circ Rerun the ellipsoid method on that set and find $\mathbf{x}_t \in P_t$
- The solution is then \mathbf{x}_t .

Practical considerations

- in theory,
 - The ellipsoid method guarantees a polynomial upperbound on convergence to the solution of the order $O(n^6 \log(nU))$.
 - For the **simplex**, such an upperbound is **exponential**.
- in practice?
 - simplex's convergence time is usually **linear** in the number of constraints.
 - the ellipsoid method converges steadily, but very slowly. even with improvements that select better cuts.
- The **merit** of the ellipsoid method is that it confirmed what people were thinking, but were hoping to prove through the simplex appraoch (at least in the US).
- Spurred further research in interior point methods.
- Also useful in general convex programming, next course.

Next time

- An overview of interior point methods,
 - Affine scaling algorithm,
 - Potential reduction algorithm,
 - Path following algorithm.