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Reminder

e Strong Duality in LP's through Farkas Lemma
e Strong duality illustration: gravity
e Dual Simplex

e Sensitivity Analysis and scenarii for perturbation
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Today

e Some reminders and formulas for ellipsoids
e Ellipsoid method for the feasibility problem

o the bounded/full-dimensional case
o the general case

e Ellipsoid method for optimization
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Background
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Background

e Simplex: US invention, Dantzig, 1947

o Klee-Minty counterexample, 1972

e People looking for polynomial pivot rules for decades.

e '79: Obscure “discovery” from the soviets.

e Portrayed in the paper the mathematical sputnik of 1979, see bb.
e The “sputnik” was the proof that LP’s belonged to P.

e Proof by Khachiyan in ’79, using earlier (unnoticed) work in convex
optimization in the '70s.
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Key geometric results
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Reminder: positive definite matrices

e An important definition you all know:

Definition 1. A symmetric n X n matriz D is called positive definite
(resp. semidefinite positive) if x Dx>0 (resp >) for all nonzero vectors
x € R".

e In practice, run eig on the matrix and test positivity of eigenvalues.

e D positive definite < D! positive definite.

e D positive definite, 3D% € R™ ™ p.d. such that DZD3? = D.
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Reminder: ellipsoids and affine transformations

e a p.d. matrix D and a point z define an important kind of set

Definition 2. Given a p.d n x n matriz D and z € R", the set
E=E(zD)={xecR"(x—z)'D ' (x—x) <1},
15 called an ellipsoid with center z and axes D.

e whenever D = r?[,, note that F(z,r%I,) = B, .

Definition 3. If A is an n X n nonsingular matriz and b € R™, then the
mapping S : R" — R" defined by

S(x) = Dx + b,

18 called an affine transformation
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Reminder: volumes

e An affine transformation is invertible: S~!(y) = D~ }(y — b).

e If L is any subset of R", the image of S is

{y e R" |y = S(x) for somex € L}.

e The volume of a set L C R" is defined as vol(L) = [ _, dx.
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Reminder: volumes

e A lemma that relates the volume of L and S(L):

Lemma 1. If S(x) = Dx + b, then

vol(S(L)) = | det D| vol(L).

Proof. o vol(S(L)) = nyS(L) dy = nyS(L) | det J(x)]dx,

o where J(x) is the Jacobian of the variable change y = Dx + b,

o that is J(X) — 851/8:1:] =D.
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The Ellipsoid Method for the Feasibility
Problem
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Sequence of ellipsoids to test feasibility

e The ellipsoid method can be used to determine whether
P={xeR"|Ax > b}

is empty or not, and in the latter case provide a point in it.

e [ntuitive explanation:

o The method builds
> a sequence F; of ellipsoids,
> centered on points X;,
> such that P C E..
o At each iteration, either
> X; € P = we have proved P is nonempty.
> X; ¢ P = a least one constraint is violated, A;-rxt < b;.
- Hence P C E; N H;i,ATxt = Q.
- We can find a smaller Ellipsoid E;1 1 with center x;1 that covers ().
- Loop
o Either we stop by finding a point in P,
o Either vol(E;) — 0 and stop when vol(FE;) is too small to conclude P = 0).
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The main tool

Theorem 1. Let E = E(z, D) be an ellipsoid of R" and let a € R", a # 0.

Consider the halfspace Hy = H:aTz = {x | alx > alz} and let

1 Da
n+1v/aT Da’
n? (D— 2 DaaTD>
n? —1 n+1 a’Da )

/
Z = 7 +

D' =

The matrix D positive definite and E' = E(z', D’) is an ellipsoid which
satisties

(i) ENH C H’
1
(i) vol(E') < e 2(»+1) vol(F)

e we are in a different mathematical world: analytical proof.
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Proof

e Here is a graphical intuition of what is going on:

Eig = E(Zt-i—l) Dt+1)

Et — E(Zt, Dt)

Ha,b

e We will prove this result is valid for a simple case: z=0,D = [,,,a = e;.

e We will follow with a generalization to arbitrary z, D, a.
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Proof of (i)

e Suppose z = 0,D = I,,, By = F(0,1,) and a = e; which defines H .

o In such a case,

2
E/: In_ .
0 (n—|—1’n2—1( n—l—lelel))

. . 2 .

Note that the matrix is diagonal. All terms but the first equal —3—, the first
. n_\2
being (—n+1) .

2 2 2 n
;) n+1 1 n®—1 5
[ n?—1& , 2n+1) , [(n+1\?[ 2 1
:<X‘ 5 sz 51+ — 1+ 5| <1
\ n? n n n + (n+1)
(-1, 1 2(n+1)
:<X| 3 ;xz—l—nz%— 5 ri(z;—1) <1
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Proof of (i)

o Letx € EpnN Har. Then 0 < x7 <1 and therefore z1(z; — 1) < 0.
o Since x € Ey, Y., x? < 1. Therefore,

n? -1~ , 1 2(n+1) n?-1 1
— ;wi—l—ﬁ—l— (e — 1) < =1

meaning x € E}, hence Fy N H C EJ.

e Consider now the general case. We build an affine transformation 7" such
that

T(E)=Ey, T(E)=E,andT(H,)=H.

e [ he result will follow because affine transformations are such that

o ACB=T(A) Cc T(B),
o T(ANB)=T(A)NT(B),
o 7.e. conserve inclusion and intersection.
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Proof of (i)

1
o Consider the transformation S(x) = D™ 2(x — z).

S(E) = {yly=D2(x~2).xcE}
= {y y=D 2(x —z) with (x —2z)ID 1 (x—2) <1}
{yly =x"|x|* <1}
= {yllyl* <1} = E

good start. However S(E’) # E} and S(H,) # H{ .
T
o For any vector u, writing b = ||ul|e1, matrix R = Z(UWEL(;E]D) — I, is such that
> R? =1, Rl =R,
>~ Ru=Db.
1 1 1

o Let R be the matrix corresponding to u = D2a, that is RDz2a = || D2al|e;.
o Let T'(x) = Ro S(x) and prove that it the good affine transformation for F,
H, and E'.
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>~ For F,

hence T'(F) = Ej
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Proof of (i)
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> Similarly for H,

hence T(Hy) = Hp.
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Proof of (i)

xc H < al(x—z)>0,
& aTDIRRD 2(x — z) > 0,
& || D7alle T(x) > 0,
s el T(x) >0,
& T(x) e Hy,
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Proof of (i)

. B _ 1. T 4—1
o For E’: Sherman-Morrison formula: (A 4+ uv?) 1= A-1 -4 w4
1+vt A= tu

o apply it to reformulate conveniently D',

D/_1:n2—1(D N 2 aaT>

n — 1aT Da

_ n2 _ 1D—1/2 (]_|_ 9 Dl/zaaTD1/2> D172

n2 —1 al Da
_ n — 1 1/2R 2 RD1/2aaTD1/2R RD_1/2
al Da ’

_ 1/2R

— 1
_ D /2R (I + e1e1> RD™Y/2,

—1
— D‘1/2R( — (I— - 1e1e{>) RD™/2
n- — n

2 RD1/2aaTD1/2R H-1/2
T R —1alD'’RRD"a ’
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Proof of (i)

o Now, for all x rewrite T'(x — z") using z:

1 RD 2D
RD1Y2(x —2') = RD™Y2(x — z) — i 2
n+1 +/aTDa
1 D1/2
= RD Y%(x —z) — R 2
n+1+/aTDa
= RD Y2(x — z) — —

o Hence if x € I/ < T(x) € E|, and this closes the proof of (i).
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Proof of (ii)

e From Lemma 1, we obtain that

vol(E')  vol(T(E')) vol(£y)

vol(E)  vol(T(E)) vol(Ey)

2
E. = I, — )
0 (n+1’n2—1(n n+1elel>>

e consider the affine transformation F/,

n2 2 B €1
F(x) = I, — I — .
() (n2—1 ( n—|—1ele1)) (X n—|—1)

e Note that F'(E]) = Ey, or E| is the image of the standard ball under
transformation F'~ 1.

e Recall that

No[—
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e Through Lemma 1, we thus have,

n2 2 _%
vol(Ey) = vol(E)) |det ( (In s 1e1e{)) ,

e therefore,

n? 2
vol(E)) = Vol(EO)\/det (n2 — (In o 1e1e1T>>,

and hence, using the inequality 1 + z < e” valid for all z # 0 in the second line,

n n—1
vol(E})) [ n® \? \/1 2 n n? 2
vol(Ey) \n?2—-1 n+1l n+1\n2-1 ’

n—- n—1
U W PR TS vICes) (61/<n2—1>> :
n—+1 n?—1

1
= e 2(n+1) .
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A first simplification

e The first version of the ellipsoid method we study assumes that polyhedra are

“regular”, no pathological cases.

e full-dimensional is one such criterions:

Definition 4. A polyhedron P is full-dimensional if it has positive volume.

e In practice this means that the dimension of P is n,
e That is the smallest vector subspace of R™ that contains P is R".

e In the first version we study, we assume that P is either

(a) empty,

(b) bounded and full-dimensional, namely
o P C E(xq,r*I) whose volume is V,
o and vol(P) > v for v > 0.

e we assume we are given xg, 7 and v (lower bound), and V' (upper bound).
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The ellipsoid algorithm

e Input: P={A b,c},xq,7,v,V
e Output: a feasible point x* in P or the statement that P is empty.
e Algorithm:

1. initialization Let t* = [2(n + 1)log(V/v)], Dg = r*I, Ey = E(xq, Dg),t =0
2. main loop
(a) if t =t* stop, P is empty.
(b) if x; € P stop, P is nonempty.
(c) if x; ¢ P, find a violated constraint A7x < b; and set a = A;.
(d) Let
1 Dy

a
n+1,/aTD,a

n2 D, _ 2 DtaaTDt
n2—1\"" n+1 alD,a |-

X1 = X¢ +

Diyq =

(e) t —t+1.
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The ellipsoid algorithm

Theorem 2. Let P be a bounded polyhedron that is either empty or
full-dimensional and for which the prior information xg,r,v,V is available.

Then the ellipsotd method decides correctly whether P is empty or gives a
point x in P.

e Proof If x;, € P for t < t* then the algorithm correctly decides that P is

nonempty.
e Let us assume xq, - , X1 & P. We show that P is empty.
o PCFE, k=1,---,t" because F}, is constructed at each step to contain P.
o We also have that % < e_m, thus
vol( Eyx) _ 6_2(5_%
vol(FE) ’

since t* = [2(n + 1) log(V/v)], vol(E) < Ve 108(%) = o,
o The ellipsoid method has not terminated = vol(P) < v = P is empty.
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without boundedness and full-dimensionality assumptions

e Through alternative assumptions on A and b, we can get rid of the
boundedness and full-dimensionality assumptions which were crucial.

e The discussion is rather technical but interesting to follow.
e Complete proofs are omitted, only sketch given.

e Details are well explained in Bertsimas-Tsitsiklis's book.

e The issue we face is handling unbounded and not fully-dimensional
polyhedra.

e P for which xq, 7,V and v are not known.

e Three successive lemmas to solve these issues and replace the assumptions by
a bound on A and b’'s elements.
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without boundedness and full-dimensionality assumptions

Lemma 2. Let A be an m x n integer matriz, b a vector in R™ and U an
upper bound on the absolute values of all entries of A and b. Then,

(a) every extreme point of the polyhedron P = {x € R" | Ax > b} satisfies
() <y < (U, G =1,

(b) every extreme point of the standard form polyhedron
P ={x € R" | Ax = b} satisfies

—(mU)" <z; < (mU)™, j=1,---,n

e Proof idea use Cramer rule and determinants of minors.

e Remark the extreme points of P are in Pg = {x € P | |z;| < (nU){™™1};
Py C E(0,n(nU)2"I) and vol(Eg) < (2n(nU)™)" = (2n)™(nU)™ .
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without boundedness and full-dimensionality assumptions
Lemma 3. Let P = {x € R" | Ax > b} and assume all entries of A and b

have integer entries bounded by U wn absolute value. Let

1 —(n—+1
6:2(n+1)((n+1)U) (n+1)

and
P.={xe€R"| Ax > b —€l}.
Then we have that

(a) if P is empty, P. is empty.
(b) if P is nonempty, then P. is full-dimensional.

e Proof idea

(a) use duality: if P is empty, any primal problem involving P is infeasible, and
a dual formulation of a problem involving P must be feasible with
unbounded objective. Modifying that dual, recover the dual of a problem
involving P, and show it is also unbounded, implying P, is empty.

(b) show we can inscribe a small ball centered on a feasible point of P in P..
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without of boundedness and full-dimensionality assumptions

Lemma 4. Let P = {x € R" | Ax > b} be a full-dimensional bounded
polyhedron and assume all entries of A and b have integer entries bounded by
U in absolute value. Then

vol(P) > n_”(nU)_”2(”+1)

e Proof idea lower bound the volume of P by the volume of the convex
combination of n + 1 arbitrary extreme points of P,

e consider such points.

e the volume of their convex combination is a determinant of a matrix using the
coordinates of these points.

e such a determinant value can be lower bounded by the rhs.
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Ready for an application to arbitrary polyhedra

e Consider now that P = {x € R" | Ax > b} where all entries of A and b are
integers bounded by U in absolute value and assume the rows of A span R".

e if P is bounded, either empty or full-dimensional,

o Choose v = n_"(nU)_”Q("“) and V = (Zn)”(nU)”Q.
o Get an upper bound [2(n + 1)log(V/v)] of the order of O(n*log(nl)).

e if P is arbitrary,

check whether Ppg is empty which is equivalent.

studying Pp_ which is bounded and fully-dimensional is also equivalent.
use the technique above,

the upper bound becomes O(n°log(nl))

© O O O

e Conclusion: The linear programming feasibility problem with integer data
can be solved in polynomial time.

Princeton ORF-522 31



The ellipsoid method for linear
programming
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The primal-dual ellipsoid method for linear programming

Consider the dual pair of problems
T maximize bl

minimize clx _ .
subjectto Ax >Db ' subjectto A" p=c
p =0

By strong duality, both the primal and dual optimization problems have
optimal solutions iff the following set of linear inequalities is feasible:

blu=clx, Ax>b,

Alp=c, pu>o0.

Just test the existence of a feasible point (x, i) using the ellipsoid method.

This is enough to obtain an optimum to the problem by weak duality.

Conclusion: The linear programming problem with integer data can be
solved in polynomial time.

Princeton ORF-522

33



Alternative implementation: Sliding objective ellipsoid

e Start with a problem encoded by P and c. Assume the problem minimizes ¢’ x.
e Through the ellipsoid method, find a point x in P, write xg = x and Py = P, t.
e loop as long as P, is not empty,

o Add a constraint to P;: Py = PN {x|clx < cl'x}.
o Rerun the ellipsoid method on that set and find x; € P;

e The solution is then x;.
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Practical considerations

in theory,

o The ellipsoid method guarantees a polynomial upperbound on
convergence to the solution of the order O(n°log(nl)).
o For the simplex, such an upperbound is exponential.

in practice?

o simplex’'s convergence time is usually linear in the number of constraints.
o the ellipsoid method converges steadily, but very slowly. even with
improvements that select better cuts.

The merit of the ellipsoid method is that it confirmed what people were
thinking, but were hoping to prove through the simplex appraoch (at least in

the US).
Spurred further research in interior point methods.

Also useful in general convex programming, next course.
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Next time

e An overview of interior point methods,

o Affine scaling algorithm,
o Potential reduction algorithm,
o Path following algorithm.
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