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Reminder

• Strong Duality in LP’s through Farkas Lemma

• Strong duality illustration: gravity

• Dual Simplex

• Sensitivity Analysis and scenarii for perturbation
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Today

• Some reminders and formulas for ellipsoids

• Ellipsoid method for the feasibility problem

◦ the bounded/full-dimensional case
◦ the general case

• Ellipsoid method for optimization
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Background
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Background

• Simplex: US invention, Dantzig, 1947

• Klee-Minty counterexample, 1972

• People looking for polynomial pivot rules for decades.

• ′79: Obscure “discovery” from the soviets.

• Portrayed in the paper the mathematical sputnik of 1979, see bb.

• The “sputnik” was the proof that LP’s belonged to P.

• Proof by Khachiyan in ′79, using earlier (unnoticed) work in convex
optimization in the ′70s.

Princeton ORF-522 5



Key geometric results
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Reminder: positive definite matrices

• An important definition you all know:

Definition 1. A symmetric n× n matrix D is called positive definite

(resp. semidefinite positive) if xTDx>0 (resp ≥) for all nonzero vectors
x ∈ Rn.

• In practice, run eig on the matrix and test positivity of eigenvalues.

• D positive definite ⇔ D−1 positive definite.

• D positive definite, ∃D1
2 ∈ Rn×n p.d. such that D

1
2D

1
2 = D.

Princeton ORF-522 7



Reminder: ellipsoids and affine transformations

• a p.d. matrix D and a point z define an important kind of set

Definition 2. Given a p.d n× n matrix D and z ∈ Rn, the set

E = E(z,D) = {x ∈ Rn|(x− z)TD−1(x− x) ≤ 1},

is called an ellipsoid with center z and axes D.

• whenever D = r2In, note that E(z, r2In) = Bz,r.

Definition 3. If A is an n× n nonsingular matrix and b ∈ Rn, then the
mapping S : Rn 7→ Rn defined by

S(x) = Dx + b,

is called an affine transformation

Princeton ORF-522 8



Reminder: volumes

• An affine transformation is invertible: S−1(y) = D−1(y − b).

• If L is any subset of Rn, the image of S is

{y ∈ Rn | y = S(x) for somex ∈ L}.

• The volume of a set L ⊂ Rn is defined as vol(L) =
∫

x∈L
dx.
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Reminder: volumes

• A lemma that relates the volume of L and S(L):

Lemma 1. If S(x) = Dx + b, then

vol(S(L)) = | detD|vol(L).

Proof. ◦ vol(S(L)) =
∫

y∈S(L)
dy =

∫

y∈S(L)
|detJ(x)|dx,

◦ where J(x) is the Jacobian of the variable change y = Dx + b,
◦ that is J(x) = ∂Si/∂xj = D.
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The Ellipsoid Method for the Feasibility

Problem
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Sequence of ellipsoids to test feasibility

• The ellipsoid method can be used to determine whether

P = {x ∈ Rn |Ax ≥ b}

is empty or not, and in the latter case provide a point in it.

• Intuitive explanation:

◦ The method builds
⊲ a sequence Et of ellipsoids,
⊲ centered on points xt,
⊲ such that P ⊂ Et.
◦ At each iteration, either

⊲ xt ∈ P ⇒ we have proved P is nonempty.
⊲ xt /∈ P ⇒ a least one constraint is violated, AT

i xt < bi.
· Hence P ⊂ Et ∩H−

Ai,A
T
i xt

= Q.

· We can find a smaller ellipsoid Et+1 with center xt+1 that covers Q.
· Loop

◦ Either we stop by finding a point in P ,
◦ Either vol(Et)→ 0 and stop when vol(Et) is too small to conclude P = ∅.
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The main tool

Theorem 1. Let E = E(z, D) be an ellipsoid of Rn and let a ∈ Rn, a 6= 0.

Consider the halfspace H+ = H+
a,aT z

= {x | aTx ≥ aTz} and let

z′ = z +
1

n + 1

Da√
aTDa

,

D′ =
n2

n2 − 1

(

D − 2

n + 1

DaaTD

aTDa

)

.

The matrix D positive definite and E′ = E(z′,D′) is an ellipsoid which
satisties

(i) E ∩H ⊂ H ′

(ii) vol(E′) < e
− 1

2(n+1) vol(E)

• we are in a different mathematical world: analytical proof.
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Proof
• Here is a graphical intuition of what is going on:

a

zt+1

Et+1 = E(zt+1, Dt+1)

P

Ha,b

H
a,aT zt

H+

Et = E(zt, Dt)

zt

• We will prove this result is valid for a simple case: z = 0, D = In, a = e1.

• We will follow with a generalization to arbitrary z, D,a.
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Proof of (i)

• Suppose z = 0, D = In, E0 = E(0, In) and a = e1 which defines H+
0 .

◦ In such a case,

E′
0 =

(

e1

n + 1
,

n2

n2 − 1

(

In −
2

n + 1
e1e

T
1

))

.

Note that the matrix is diagonal. All terms but the first equal n2

n2−1
, the first

being ( n
n+1)

2.

E′
0 =

{

x

∣

∣

∣

(

n + 1

n

)2(

x1 −
1

n + 1

)2

+
n2 − 1

n2

n
∑

i=2

x2
i ≤ 1

}

,

=

{

x

∣

∣

∣

n2 − 1

n2

n
∑

i=1

x2
i +

2(n + 1)

n2
x2

1 +

(

n + 1

n

)2
(

− 2x1

n + 1
+

1

(n + 1)
2

)

≤ 1

}

,

=

{

x

∣

∣

∣

n2 − 1

n2

n
∑

i=1

x2
i +

1

n2
+

2(n + 1)

n2
x1(x1 − 1) ≤ 1

}

.
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Proof of (i)

◦ Let x ∈ E0 ∩H+
0 . Then 0 ≤ x1 ≤ 1 and therefore x1(x1 − 1) ≤ 0.

◦ Since x ∈ E0,
∑n

i=1 x2
i ≤ 1. Therefore,

n2 − 1

n2

n
∑

i=1

x2
i +

1

n2
+

2(n + 1)

n2
x1(x1 − 1) ≤ n2 − 1

n2
+

1

n2
= 1

meaning x ∈ E′
0, hence E0 ∩H+

0 ⊂ E′
0.

• Consider now the general case. We build an affine transformation T such
that

T (E) = E0, T (E′) = E′
0 and T (H+) = H+

0 .

• The result will follow because affine transformations are such that

◦ A ⊂ B ⇒ T (A) ⊂ T (B),
◦ T (A ∩B) = T (A) ∩ T (B),
◦ i.e. conserve inclusion and intersection.
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Proof of (i)

◦ Consider the transformation S(x) = D−
1
2(x− z).

◦ S(E) = E0...

S(E) = {y| y = D−
1
2(x− z),x ∈ E}

= {y| y = D−
1
2(x− z) with (x− z)TD−1(x− z) ≤ 1}

= {y| y = x′, ‖x′‖2 ≤ 1}
= {y| ‖y‖2 ≤ 1} = E0

good start. However S(E′) 6= E′
0 and S(H+) 6= H+

0 .

◦ For any vector u, writing b = ‖u‖e1, matrix R = 2(u+b)(u+b)T

‖u+b‖2 − In is such that

⊲ R2 = In, RT = R,
⊲ Ru = b.

◦ Let R be the matrix corresponding to u = D
1
2a, that is RD

1

2a = ‖D
1

2a‖e1.
◦ Let T (x) = R ◦ S(x) and prove that it the good affine transformation for E,

H+ and E′.
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Proof of (i)

⊲ For E,
x ∈ E ⇔ (x− z)TD−1(x− z) ≤ 1,

⇔ (x− z)TD−1
2RRD−1

2(x− z) ≤ 1,

⇔ RD−1
2(x− z) ∈ E0,

⇔ T (x) ∈ E0,

hence T (E) = E0
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Proof of (i)

⊲ Similarly for H+,

x ∈ H+ ⇔ aT (x− z) ≥ 0,

⇔ aT
D

1
2RRD−1

2(x− z) ≥ 0,

⇔ ‖D
1
2a‖eT

1 T (x) ≥ 0,

⇔ eT
1 T (x) ≥ 0,

⇔ T (x) ∈ H+
0 ,

hence T (H+) = H0.
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Proof of (i)

◦ For E′: Sherman-Morrison formula: (A + uvT )−1 = A−1 − A−1uvT A−1

1+vT A−1u

◦ apply it to reformulate conveniently D′−1,

D′−1 =
n2 − 1

n2

(

D−1+
2

n − 1

aaT

aTDa

)

,

=
n2 − 1

n2
D

−1/2

(

I +
2

n− 1

D1/2aaTD1/2

aTDa

)

D
−1/2,

=
n2 − 1

n2
D−1/2

R

(

I +
2

n− 1

RD1/2aaTD1/2R

aTDa

)

RD−1/2,

=
n2 − 1

n2
D−1/2R

(

I +
2

n− 1

RD1/2aaTD1/2R

aTD1/2RRD1/2a

)

RD−1/2,

=
n2 − 1

n2
D−1/2R

(

I +
2

n− 1
e1e

T
1

)

RD−1/2,

= D−1/2R

(

n2

n2 − 1

(

I−
2

n + 1
e1e

T
1

))−1

RD−1/2.
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Proof of (i)

◦ Now, for all x rewrite T (x− z′) using z:

RD−1/2(x− z′) = RD−1/2(x− z)− 1

n + 1

RD−1/2Da√
aTDa

= RD−1/2(x− z)− 1

n + 1

RD1/2a√
aTDa

= RD−1/2(x− z)− e1

n + 1
,

◦ Hence if x ∈ E′ ⇔ T (x) ∈ E′
0 and this closes the proof of (i).
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Proof of (ii)

• From Lemma 1, we obtain that

vol(E′)

vol(E)
=

vol(T (E′))

vol(T (E))
=

vol(E′
0)

vol(E0)
.

• Recall that

E′
0 =

(

e1

n + 1
,

n2

n2 − 1

(

In −
2

n + 1
e1e

T
1

))

.

• consider the affine transformation F ,

F (x) =

(

n2

n2 − 1

(

In −
2

n + 1
e1e

T
1

))−1
2
(

x− e1

n + 1

)

.

• Note that F (E′
0) = E0, or E′

0 is the image of the standard ball under
transformation F−1.
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• Through Lemma 1, we thus have,

vol(E0) = vol(E′
0)

∣

∣

∣

∣

∣

∣

det





(

n2

n2 − 1

(

In −
2

n + 1
e1e

T
1

))−1
2





∣

∣

∣

∣

∣

∣

,

• therefore,

vol(E′
0) = vol(E0)

√

det

(

n2

n2 − 1

(

In −
2

n + 1
e1e

T
1

))

,

and hence, using the inequality 1 + x < ex valid for all x 6= 0 in the second line,

vol(E′
0)

vol(E0)
=

(

n2

n2 − 1

)
n
2
√

1− 2

n + 1
=

n

n + 1

(

n2

n2 − 1

)

n−1
2

,

=

(

1− n

n + 1

)(

1 +
1

n2 − 1

)
n−1

2

< e−1/(n+1)
(

e1/(n2−1)
)

n−1
2

= e
− 1

2(n+1) .
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A first simplification

• The first version of the ellipsoid method we study assumes that polyhedra are
“regular”, no pathological cases.

• full-dimensional is one such criterions:

Definition 4. A polyhedron P is full-dimensional if it has positive volume.

• In practice this means that the dimension of P is n,

• That is the smallest vector subspace of Rn that contains P is Rn.

• In the first version we study, we assume that P is either

(a) empty,
(b) bounded and full-dimensional, namely
◦ P ⊂ E(x0, r

2I) whose volume is V ,
◦ and vol(P ) > v for v > 0.

• we assume we are given x0, r and v (lower bound), and V (upper bound).
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The ellipsoid algorithm

• Input: P = {A,b, c},x0, r, v, V

• Output: a feasible point x∗ in P or the statement that P is empty.

• Algorithm:

1. initialization Let t⋆ = ⌈2(n + 1) log(V/v)⌉, D0 = r2I,E0 = E(x0, D0), t = 0
2. main loop

(a) if t = t⋆ stop, P is empty.
(b) if xt ∈ P stop, P is nonempty.
(c) if xt /∈ P , find a violated constraint AT

i x < bi and set a = Ai.
(d) Let

xt+1 = xt +
1

n + 1

Dta
√

aTDta
,

Dt+1 =
n2

n2 − 1

(

Dt −
2

n + 1

Dtaa
TDt

aTDta

)

.

(e) t← t + 1.
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The ellipsoid algorithm

Theorem 2. Let P be a bounded polyhedron that is either empty or
full-dimensional and for which the prior information x0, r, v, V is available.
Then the ellipsoid method decides correctly whether P is empty or gives a
point x in P .

• Proof If xt ∈ P for t < t⋆ then the algorithm correctly decides that P is
nonempty.

• Let us assume x0, · · · ,xt⋆−1 /∈ P . We show that P is empty.

◦ P ⊂ Ek, k = 1, · · · , t⋆ because Ek is constructed at each step to contain P .

◦ We also have that
vol(Et+1)
vol(Et)

< e
− 1

2(n+1) , thus

vol(Et⋆)

vol(E0)
< e

− t⋆

2(n+1) ,

since t⋆ = ⌈2(n + 1) log(V/v)⌉, vol(Et⋆) < V e− log(V
v ) = v.

◦ The ellipsoid method has not terminated ⇒ vol(P ) ≤ v ⇒ P is empty.
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without boundedness and full-dimensionality assumptions

• Through alternative assumptions on A and b, we can get rid of the
boundedness and full-dimensionality assumptions which were crucial.

• The discussion is rather technical but interesting to follow.

• Complete proofs are omitted, only sketch given.

• Details are well explained in Bertsimas-Tsitsiklis’s book.

• The issue we face is handling unbounded and not fully-dimensional
polyhedra.

• P for which x0, r, V and v are not known.

• Three successive lemmas to solve these issues and replace the assumptions by
a bound on A and b’s elements.
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without boundedness and full-dimensionality assumptions

Lemma 2. Let A be an m× n integer matrix, b a vector in Rm and U an

upper bound on the absolute values of all entries of A and b. Then,

(a) every extreme point of the polyhedron P = {x ∈ Rn | Ax ≥ b} satisfies

−(nU)n ≤ xj ≤ (nU)n, j = 1, · · · , n

(b) every extreme point of the standard form polyhedron
P = {x ∈ Rn | Ax = b} satisfies

−(mU)m ≤ xj ≤ (mU)m, j = 1, · · · , n

• Proof idea use Cramer rule and determinants of minors.

• Remark the extreme points of P are in PB = {x ∈ P | |xj| ≤ (nU){n,m}};
PB ⊂ EB(0, n(nU)2nI) and vol(EB) ≤ (2n(nU)n)n = (2n)n(nU)n2

.
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without boundedness and full-dimensionality assumptions
Lemma 3. Let P = {x ∈ Rn | Ax ≥ b} and assume all entries of A and b

have integer entries bounded by U in absolute value. Let

ǫ =
1

2(n + 1)
((n + 1)U)−(n+1)

and
Pǫ = {x ∈ Rn | Ax ≥ b− ǫ1}.

Then we have that

(a) if P is empty, Pǫ is empty.

(b) if P is nonempty, then Pǫ is full-dimensional.

• Proof idea

(a) use duality: if P is empty, any primal problem involving P is infeasible, and
a dual formulation of a problem involving P must be feasible with
unbounded objective. Modifying that dual, recover the dual of a problem
involving Pǫ and show it is also unbounded, implying Pǫ is empty.

(b) show we can inscribe a small ball centered on a feasible point of P in Pǫ.
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without of boundedness and full-dimensionality assumptions

Lemma 4. Let P = {x ∈ Rn | Ax ≥ b} be a full-dimensional bounded
polyhedron and assume all entries of A and b have integer entries bounded by
U in absolute value. Then

vol(P ) > n−n(nU)−n2(n+1)

• Proof idea lower bound the volume of P by the volume of the convex
combination of n + 1 arbitrary extreme points of P ,

• consider such points.

• the volume of their convex combination is a determinant of a matrix using the
coordinates of these points.

• such a determinant value can be lower bounded by the rhs.
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Ready for an application to arbitrary polyhedra

• Consider now that P = {x ∈ Rn | Ax ≥ b} where all entries of A and b are
integers bounded by U in absolute value and assume the rows of A span Rn.

• if P is bounded, either empty or full-dimensional,

◦ Choose v = n−n(nU)−n2(n+1) and V = (2n)n(nU)n2
.

◦ Get an upper bound ⌈2(n + 1) log(V/v)⌉ of the order of O(n4 log(nU)).

• if P is arbitrary,

◦ check whether PB is empty which is equivalent.
◦ studying PB,ǫ which is bounded and fully-dimensional is also equivalent.
◦ use the technique above,
◦ the upper bound becomes O(n6 log(nU))

• Conclusion: The linear programming feasibility problem with integer data
can be solved in polynomial time.

Princeton ORF-522 31



The ellipsoid method for linear

programming
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The primal-dual ellipsoid method for linear programming

• Consider the dual pair of problems

minimize cTx

subject to Ax ≥ b
,

maximize bTµ
subject to ATµ = c

µ ≥ 0

• By strong duality, both the primal and dual optimization problems have
optimal solutions iff the following set of linear inequalities is feasible:

bTµ = cTx, Ax ≥ b,

ATµ = c, µ ≥ 0.

• Just test the existence of a feasible point (x, µ) using the ellipsoid method.

• This is enough to obtain an optimum to the problem by weak duality.

• Conclusion: The linear programming problem with integer data can be
solved in polynomial time.
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Alternative implementation: Sliding objective ellipsoid

• Start with a problem encoded by P and c. Assume the problem minimizes cTx.

• Through the ellipsoid method, find a point x in P , write x0 = x and P0 = P , t.

• loop as long as Pt is not empty,

◦ Add a constraint to Pt: Pt+1 = P ∩ {x |cTx < cTxt}.
◦ Rerun the ellipsoid method on that set and find xt ∈ Pt

• The solution is then xt.

−c

P

H
x0,cT x0

H
x1,cT x1

x0
x1

Princeton ORF-522 34



Practical considerations

• in theory,

◦ The ellipsoid method guarantees a polynomial upperbound on
convergence to the solution of the order O(n6 log(nU)).
◦ For the simplex, such an upperbound is exponential.

• in practice?

◦ simplex’s convergence time is usually linear in the number of constraints.
◦ the ellipsoid method converges steadily, but very slowly. even with

improvements that select better cuts.

• The merit of the ellipsoid method is that it confirmed what people were
thinking, but were hoping to prove through the simplex appraoch (at least in
the US).

• Spurred further research in interior point methods.

• Also useful in general convex programming, next course.
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Next time

• An overview of interior point methods,

◦ Affine scaling algorithm,
◦ Potential reduction algorithm,
◦ Path following algorithm.
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