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Reminder

Covered duality theory in the general case.

e Lagrangian L(x, A\, ) = fo(x) + > 0 Nifi(x) + >0 pihi(x)
e Lagrange dual function g(A, p) = égg) (folz) + 300 Nifilx) + D0 pihi(2))

e Lagrange dual function at any u, A > 0 gives lower bounds for a min. problem.
e However, for most )\, 1, the bound is —oo
e |f we look for the optimum, we have a concave maximization problem.

e Always weak (d* < p*) duality. Strong (d* < p*) for some problems.
Looked more particularly at duality for LP’s.

e duals of LP’s are LP’s. LP’s are self-dual.
e Always strong duality.

e Complementary Slackness u; = v; = 0.
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Today

e Network flow example: Max-flow / Min-Cut.
e Strong Duality in LP's through Farkas Lemma
e Strong duality illustration: gravity

e Dual Simplex

e Sensitivity Analysis... many case-scenarios for perturbation.

Princeton ORF-522



Network flow: Max-flow / Min-cut
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Network flow: Max-flow / Min-cut

e m nodes, Ny, - -, N,,.

e d directed edges (arrows) to connect pairs of nodes (IN;, N;/) in a set V

o Each edge carries a flow f;, > 0.
o Each edge has a bounded capacity (pipe width) fi < uy

e Relating edges and nodes: the network'’s incidence matrix A € {—1,0, 1}m><d:

1 if edge k starts at node ¢
A = —1 if edge k ends at node ¢
0 otherwise

e For a node 7,

> Je = > e

ks.t. edge ends ati k s.t. edge starts at:

e In matrix form: Af =0
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First problem: Maximal Flow

e \We consider a constant flow from node 1 to node m.

e What is the maximal flow that can go through the system?

e \We close the loop with an artificial edge (N1, N,,), the d 4+ 1th edge.
e if ugi 1 = 00, what would be the maximal flow f;.1 of that edge?

e Namely solve

minimize  cIf = —f;,1,

subject to [A ,e]f =0,
0 < fi <,
0 < fa < ug,

0 < fa+1 < ugta,
with e = (—1,0,...,0,1) and ¢ = (0,...,0,—1) and ug11 a very large
capacity for fq.1.
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Second problem: Minimal Cut

e Suppose you are a plumber and you want to completely stop the flow from
node Ny to N,,.

e You have to remove edges (pipes). What is the minimal capacity you need to
remove to completely stop the flow between Ny to N,,?

e Goal: cut the set of nodes into two disjoint sets .S and T.
e Remove a set C C V of edges and minimize the total capacity of C.
o y;; €{0,1} will keep track of cuts. 1 for a cut, 0 otherwise.

e For each node N; there is a variable z; which is O if N; is in the set S or 1 in
the set T'. We arbitrarily set z;1 =0 and zy = 1.

minimize Z Yij Ui
(i,5)€V

subject to  y; j +2; —2; =20
21 — 1,2’75 :O,ZZ' > O,
Yij > O, (Z,]) c)
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Duality: example

e Let us form the Lagrangian of the Max-Flow problem:
L(f,y,z) = c'f +z' [Ae]f +y'(f —u)

for £ > 0 here.

e The Lagrange dual function is defined as
9(y,2z) =infeso L(f,y,2)

T
= infp>o 7 (c—l—y—l— [ ;le ]z) —uly

e As usual, this infimum vyields either —0co or —u’y:

AT
—uly if (c—l—y—l—[eT ]z) >0

— 00 otherwise

9(y,z) =
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Duality: example

This means that the dual of the maximum flow problem is written:

minimize uly

subjectto c+y + [ o ]zz()

Compare the following dual with changed notations, from d + 1 edges to (d + 1)
couple of points (i,j) € V

minimize Z YijUsj
(i,7)€V

subject to yn1+2zy — 21 > 1
yij—l—zi—szO, (i,j)EV,
Yij = 0

to the minimum cut problem. The two problems are identical.
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Duality: example

e The objective is to minimize:

Z Ui5Yij, (yw > ()),

(i,7)€V

where ug11 = un,1 = M (very large), which means yx 1 = 0.

e The first equation then becomes:
N — 21> 1

so we can fix zy =1 and z; = 0.
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Duality: example

e The equations for all the edges starting from z; = O:

Y1 — 25 =0

e Then, two scenarios are possible (no proof here):

o y1; = 1 with z; =1 and all the following zj, will be ones in the next
equations (at the minimum cost):

yjk—l—Zj—ZkZO, (],k)EV

o y1; = 0 with z; = 0 and we get the same equation for the next node:

yjk_zkzoa (j,k)EV
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Duality: example
Interpretation?

e |f a node has z; = 0, all the nodes preceding it in the network must have
z: = 0.
J

e If a node has z; = 1, all the following nodes in the network must have
zi=1...
j

e This means that z; effectively splits the network in two partitions

e The equations:
Yij — 2i + 2 2 0

mean for any two nodes with z; = 0 and z; = 1, we must have y;; = 1.

e The objective minimizes the total capacity of these edges, which is also the
capacity of the cut.
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Proof for strong duality

e Remember the proof strategy:

o We considered a standard form minimization first.
We used the simplex algorithm to reach a solution I.

O
o The reduced cost coefficient at the optimum satisfies ¢” — ¢f By 'A > 0.
O
O

We saw that writing p/ = ¢f By ! yielded a feasible dual solutlon.
That dual solution was furthermore optimal and shared the same objective
with xj.

e In the next slides,

o We prove strong duality for LP’s through Farkas’ Lemma. No simplex
argument.

o We introduce a physical analogy often used to illustrated (strong) duality.
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Farkas Lemma

e Basically states the feasibility of two different problems, two related problems.

Theorem 1. Let A € R™*" and let b € R™. Then exactly one of the two
alternatives holds

1. there exists x> 0 such that Ax = b.
2. there exists 1 such that ' A >0 and p''b < 0.
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Farkas Lemma: Proof

e if (1), then suppose ' A > 0. Through the solution x of (1) we obtain

pl'Ax = p''b >0,

which shows that (2) cannot be true.
e Let S be the image of A on R, thatis S = {Ax,x > 0}.

o S is convex, closed and contains O.
o If b ¢ S, that is if (1) is not true, necessarily Ju such that H

iIsolates S and S C H+u o

o Since0c S, ul'b < 0.

o On the other hand, every ,LLTa,L- > 0. If not,
~ for a sufficiently big positive M, p!'(Ma;) < u''b
~ Contradiction since Ma; € S

o Hence ut'A > 0 and since u’'b < 0, (2) is ensured.
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Farkas Lemma: An immediate corollary

Corollary 1. Let aj,as,--- ,a,, and b be given vectors and suppose that any
vector u that satisfies uta; >0, i = 1,..,n, must also satisfy p'b > 0. Then b
can be expressed as a nonnegative linear combination of the vectors ay,--- ,a,.

e the first part of the sentence is the negation of (2) in the original Farkas
lemma. Then necessarily (1) is true.
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Proving Strong Duality with Farkas Lemma

e \We have proved the following theorem:

Theorem 2. if an LP has an optima, so does its dual, and their respective
optimal objectives are equal.

e Alternative proof: consider the primal-dual problems:

L e maximize b’
minimize CX . biectto AT — c
subjectto Ax > b ) H

w>0

e Let x* be the primal optimal solution. Let us show du* dual solution with
same cost.

o J = {i|Alx* =b;} and let d be such that A7d >0 for i € J.

o Consider x = x* + ed. We have A7x > Al'x* = b;. feasible for .J

o Fori¢ J, AZTX* > b; and hence x is feasible for ¢ sufficiently small. feasible

o By optimality of x* as a minimum, ¢!x* < ¢’x and ¢’d must be
nonnegative.
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Proving Strong Duality with Farkas Lemma

o Through x*'s optimality we have proved A7d >0 fori e J = c¢'d > 0.

o Using Farkas’ Lemma’s corollary, there must be p; > 0,7 € J such that

reJ

o Fori & J set u; =0.
o Thus u > 0 and p is dual feasible. Finally

wl'b = Z 1;b; = Z 1Al x* = cl'x*.

reJ reJ

e Through weak duality’s second corollary (primal and dual pair have same
objective then both are optimal) we obtain strong duality.
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Gravity Example

e \We have proved that Farkas’ lemma, a consequence of the isolation theorem,
can prove strong duality.

e We follow with a widely used geometric and physical illustration of strong
duality.

e Suppose we are in R?. We define a set of m inequalities AFx > b;.

e A ball is thrown in the feasible set. Gravity makes it roll down to the lowest
corner of the polyhedron.

e When in contact with the ball, each wall i exerts a force u;A; on the ball that
is parallel to A;.
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Gravity Example

e the position x of the ball is the solution of

minimize clx

subject to Alx>b;, i=1..m "’

where ¢ points upwards, that is the opposite of the gravity vector.
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Gravity Example

e The different walls exert forces 1 A1, uoAs, - -+, i Ay, on the ball. p; >0
e When x does not rest on wall 7, ;=0 necessarily. Hence p;(b; — A;-Fx) = 0.
e At the optimum, the forces cancel gravity: > ._, ;A; = c.

e At the optimum, pu''b =>"" b = > ", w Al x* = ¢!'x = Strong duality
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Intuition

e Strong duality proof using the simplex:

o We start with a standard form minimization.
o The reduced cost coefficient at the optimum satisfies ¢ — ¢f By *A > 0.

o We saw that writing ! = ¢f By ! yielded a feasible dual solutlon.
o That dual solution was optlmal and shared the same objective with xj.

e There is some obvious symmetry between the reduced cost coefficient and
the solution for a given base.
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Intuition

e Primal and dual simplex in a few words:

o Given a BFS for the primal, the primal simplex looks for a a dual feasible
solution 17 = ¢l ' B;! while maintaining primal feasibility for x.

o Given a dual BFS, the dual simplex looks for a a primal feasible solution x
while maintaining dual feasibility for p.

e Why consider it? great for understanding. useful for sensitivity analysis.
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Tableau

e A not so distant reminder on tableaux

B tA ; B 'b

(c—cI'B AT ... | —cFB; b

e In the dual simplex iterations,

o we do not assume that Bl_lb IS nonnegative at each iteration.
o we assume that (c — cf B; 'A)T > 0, or equivalently that u7'A < c7.

e This means i = Bl_ch is dual-feasible...

e Note the analogy between ¢! B, ' or By 'cy and By 'b.

e If by any chance both (¢ — ¢ B; '4)T > 0 and By 'b > 0 then we have found
the solution.

e If not... basis change!
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Pivot

o Let'swriter =c —c{ By 'A.
e Select a primal variable i; s.t. (B; 'b); < 0 and consider the tableau Ith row.

e That row is made of (y;;)1<i<n coordinates.

T
Y1l
let 7 be the column number for which this ratio is smallest.

7 must correspond to a nonbasic variable (otherwise y; ; is zero or 1 for y; ;).
Then completely standard pivot on y; j: I — I\ {#}U{j}.

Can prove that the new reduced cost coefficients stay positive, and we keep
dual-feasibility.

o for each ¢ such that y; ; < 0, consider the ratio

© O O O
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Dual Simplex Pivot Example

e The following tableau is dual feasible

-2 4 I 1 0 2
4 -2 -3 0 1|—-1
2 6 10 0 0| O

e The basis I = {4,5}. The current solutions’ second variable (B; 'b), is
negative.

e Negative entries for the second row can be found in 2nd and 3rd variables

e Corresponding ratios 6/| — 2| and 10/| — 3|. Therefore I' = {4,5} \ {5} U {2}
and we pivot accordingly

6 0 —5 1 2 0
-2 1 3/2 0 —1/2|1/2
14 0 1 0 3 | -3

e primal and dual feasible... optimal and optimum is 3
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Dual Simplex Summary

e The dual simplex proceeds in the same way that the (primal simplex)

e Any base I, defines a primal By 'b and dual solution (c¢{ By ')A < c”.
e Assume I provides a dual feasible solution.

e Update the base through two criterions:

o The column Bl_lb has negative elements? that gives exiting index 1;.
o |s there a pivot feasible for the reduced costs? entering column ;.

e Pivot and update the whole tableau.
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Dual Simplex Summary

e When can/should we use the dual simplex?

o We have a base I that is dual-feasible to start our problem.
o We have a solution x* with base I for a problem and we only change the
constraints b.
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Sensitivity analysis

e Let's study sensitivity with a generic problem and its dual:

minimize  fo(x)

maximize  g(\, )
subject to  f;(z) <

0, +=1,...,m subjectto A >0
0.

e Consider a small perturbation (u,v) to the constraints:

minimize  fo(x) maximize g(\, pu) — Au—plv
subject to  fi(x) <wu;, i=1,...,m subjectto A >0
hi(z) =v;, i

e Here x, A\, u are variables and (u, v) parameters.

e We write p*(u, v) for the optimum of the problem given perturbations u, v.

e This value may not be defined is the problem is unfeasible...
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Global sensitivity analysis

e Suppose we have strong duality in the original problem, z.e.G\* > 0, u* s.t.

P*(0,0) = g(\*, i*).

e For (u,v) such that p*(u, v) is defined, by weak duality,
p*(ua U) > g(>‘*7 V*) —u' N\ — UT:LL*

Z p*(o’ 0) o UT)\* o UT,LL*

e This gives a global lower bound, and indications on p* for some changes:

If AX > 0, u; < 0 (tighten constraint), then big increase for p*.

If A¥ is small, u; > 0 (loosen constraint), then little impact on p*.

If 7 >0 and v; <0 or 7 <K 0 and v; > 0 then big increase for p*.
If uf =~ 0% and v; > 0 or uF ~ 0~ and v; < 0 then little impact on p*.

o O O O
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Local sensitivity analysis

e Suppose p* is differentiable around u = 0,v = 0.

e Hence, for small values (u,v) we have:

. 0p*(0,0) . 0p*(0,0)
)\i B 8uz ’ Hi = a’l}i

e The dual solution gives the local sensitivities of the optimal objective with
respect to constraint perturbations.

e This time the interpretation is symmetric.

e The objective moves by —A*u; whatever the signs of \* and u;.
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Sensitivity Analysis, The LP case
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Sensitivity analysis, the LP case

e Suppose we have a standard form LP

minimize clx
subjectto Ax=Db
x >0

e As usual, assume I is the optimal base and x* the optimum.

e Suppose b is replaced by b + d where d ~ 0.

o As long as x* is non-degenerate and d small, B; '(b 4+ d) > 0. feasible
o Since I is optimal, ¢ — cipBl_lA > 0. still optimal

e Hence the same basis is still optimal for an infinitesimally perturbed problem.
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Sensitivity analysis, the LP case

e The new optimum is

ci By '(b+d)=pu'(b+d)

e perturbation d: z* becomes z* + p'd.

e each component 1; can be interpreted as the marginal cost of each unit
increase of b;.

e Such marginal costs are also called shadow prices.
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Sensitivity: examples

e The simplex can handle more advanced perturbation scenarios.
e Suppose we have converged to an optimum I and have access to x* and pu*.
e We review the following scenarios:

1. A new variable is added

2. A new inequality constraint is added
3. A new equality constraint is added
4. The constraint vector b is changed
5. The cost vector c is changed

6. A nonbasic column of A changes

7. A basic columns of A changes

and discuss how we can still use I to get the new optimum quickly.
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1. New variable

e Suppose the program becomes

minimize clx + cpi1Tnit
subject to Ax+api1x,11=Db
X Z Oa Ln+1 Z 0

e Note that (x*,0) is already a BFS of the new problem.

e For the basis I to remain optimal, we need that

T n—1

e |f this is the case, I is still optimal.
e If not, we start from (x*,0) and use the simplex algorithm.

e Running time typically much lower than rerunning everything from scratch.
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2. New inequality

e Suppose the program has a new constraint A%HX > byt 1-
e If x* already satisfies this inequality, then x* is still optimal.
e if not, introduce a surplus variable z,,,; and A%;_HX — Tpna1 = b1

e We obtain the following standard form, writing 3 = | b | and x € R",

bm+1
minimize clx
. A 0
T p—
subject to [Am+1 _1} X =0
x >0
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2. New inequality

e We use a basis I' =TU {n+ 1}. Write a = A,,,;+1 1 Note that

-1
BI/:[fTI_Ol}, detBI/:—detBI#O, B_lz [ " O].

I aTBI_1 —1

e The corresponding primal point is [x* a’x*—b,,,1]. It is infeasible by
assumption.

e On the other hand the new reduced cost is given by

which is thus nonnegative by optimality of I.

e Hence I' is dual feasible... dual simplex with the tableau given by BI_,l.
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3. New equality

e New constraint A . ;x=b,,41 and suppose Al 1x* > by, 41
e The dual of the new problem becomes

maximize pu'b

. A
subject to [ 41T i1 | |:A$n+1} < ct,

where pi,,+1 1s @ new dual variable associated with the latest constraint.

e If ;> is the optimal dual solution for I*, (u*,0) is feasible, but we have no base
I that corresponds to (u*,0)...

e Back to the the primal. We modify it by an auxiliary problem with M > 0
minimize cix+ Mz, 1
subjectto Ax=Db

T
A 1X — Tpy1 = by
Xy Tm+1 2 0

e \We can then use the approach in (2) by considering By = [f% _01}.

Princeton ORF-522 42



4. Change in constraint vector b

e Suppose b; of b is changed to b; + 0, that is b is changed to b 4+ de;.

e For what range of ¢ will I remain feasible ? remember that optimality is not
affected..

o Let B; ' = [B;;]. The condition By '(b + de;) > 0 is equivalent to

max — ‘§5§ min —
(i18;;>0 B {ilBi;<0} B

e For this range, the optimal cost is given by c¢f By ‘(b + de;) = u*'b + OpL.

e QOutside the range, run the dual simplex starting with p*.
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5. Change in cost vector c

e Suppose c; of c is changed to ¢; 4 9, that is c is changed to ¢ + de;.

e Primal feasibility of I is not affected. However, we need to check
cf By 'A<cT.

e If j corresponds to a nonbasic variable, c; does not change, but we need that
—(¢j —¢f By 'a;) <.

if this is not ensured, we have to apply a few primal simplex iterations.

e If j corresponds to a basic variable, i.e. 7; = j, then the condition becomes

(c1+ de))! By ta; < ;.

e Equivalently, oy;; < ¢; — cITBl_laq; ensures the solution remains optimal.
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6. Change in nonbasic column of A

e The ¢th coordinate of a nonbasic column vector a; is changed to a;; + 9.
e |f the variable is nonbasic, primal feasibility is not affected.
e Dual feasibility: ¢; — pu''(a; + de;) > 0.

e If this inequality is violated, 5 can be inserted in the basis, requiring a primal
simplex step.
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7. Change in nonbasic column of A

e The ith coordinate of a basic column vector a; is changed to a;; 4 0, both
feasibility and optimality conditions are affected.

® exercise...
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Next time

e Ellipsoid Method and Polynomial Complexity of the Simplex.
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