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Reminder

Covered duality theory in the general case.

• Lagrangian L(x, λ, µ) = f0(x) +
∑m

i=1 λifi(x) +
∑p

i=1 µihi(x)

• Lagrange dual function g(λ, µ) = inf
x∈D

(f0(x) +
∑m

i=1 λifi(x) +
∑p

i=1 µihi(x))

• Lagrange dual function at any µ, λ ≥ 0 gives lower bounds for a min. problem.

• However, for most λ, µ, the bound is −∞.

• If we look for the optimum, we have a concave maximization problem.

• Always weak (d⋆ < p⋆) duality. Strong (d⋆ < p⋆) for some problems.

Looked more particularly at duality for LP’s.

• duals of LP’s are LP’s. LP’s are self-dual.

• Always strong duality.

• Complementary Slackness ui = vj = 0.
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Today

• Network flow example: Max-flow / Min-Cut.

• Strong Duality in LP’s through Farkas Lemma

• Strong duality illustration: gravity

• Dual Simplex

• Sensitivity Analysis... many case-scenarios for perturbation.
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Network flow: Max-flow / Min-cut
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Network flow: Max-flow / Min-cut

• m nodes, N1, · · · , Nm.

• d directed edges (arrows) to connect pairs of nodes (Ni, Ni′) in a set V

◦ Each edge carries a flow fk ≥ 0.
◦ Each edge has a bounded capacity (pipe width) fk ≤ uk

• Relating edges and nodes: the network’s incidence matrix A ∈ {−1, 0, 1}m×d:

Aik =







1 if edge k starts at node i
−1 if edge k ends at node i

0 otherwise

• For a node i,

∑

k s.t. edge ends at i

fk =
∑

k s.t. edge starts at i

fk

• In matrix form: Af = 0

Princeton ORF-522 5



First problem: Maximal Flow

• We consider a constant flow from node 1 to node m.

• What is the maximal flow that can go through the system?

• We close the loop with an artificial edge (N1, Nm), the d + 1th edge.

• if ud+1 =∞, what would be the maximal flow fd+1 of that edge?

• Namely solve
minimize cT f = −fd+1,
subject to [A , e] f = 0,

0 ≤ f1 ≤ u1,
...

0 ≤ fd ≤ ud,
0 ≤ fd+1 ≤ ud+1,

with e = (−1, 0, . . . , 0, 1) and c = (0, . . . , 0,−1) and ud+1 a very large
capacity for fd+1.
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Second problem: Minimal Cut

• Suppose you are a plumber and you want to completely stop the flow from
node N1 to Nm.

• You have to remove edges (pipes). What is the minimal capacity you need to
remove to completely stop the flow between N1 to Nm?

• Goal: cut the set of nodes into two disjoint sets S and T .

• Remove a set C ⊂ V of edges and minimize the total capacity of C.

• yij ∈ {0, 1} will keep track of cuts. 1 for a cut, 0 otherwise.

• For each node Ni there is a variable zi which is 0 if Ni is in the set S or 1 in
the set T . We arbitrarily set z1 = 0 and zN = 1.

minimize
∑

(i,j)∈V

yijuij

subject to yi,j + zi − zj ≥ 0
z1 = 1, zt = 0, zi ≥ 0,
yij ≥ 0, (i, j) ∈ V
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Duality: example

• Let us form the Lagrangian of the Max-Flow problem:

L(f ,y, z) = cT f + zT [Ae] f + yT (f − u)

for f ≥ 0 here.

• The Lagrange dual function is defined as

g(y, z) = inf f≥0 L(f ,y, z)

= inf f≥0 fT

(

c + y +

[

AT

eT

]

z

)

− uTy

• As usual, this infimum yields either −∞ or −uTy:

g(y, z) =







−uTy if

(

c + y +

[

AT

eT

]

z

)

≥ 0

−∞ otherwise
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Duality: example

This means that the dual of the maximum flow problem is written:

minimize uTy

subject to c + y +

[

AT

e

]

z ≥ 0

Compare the following dual with changed notations, from d + 1 edges to (d + 1)
couple of points (i, j) ∈ V

minimize
∑

(i,j)∈V

yijuij

subject to yN,1 + zN − z1 ≥ 1
yij + zi − zj ≥ 0, (i, j) ∈ V ,
yij ≥ 0

to the minimum cut problem. The two problems are identical.
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Duality: example

• The objective is to minimize:

∑

(i,j)∈V

uijyij, (yi,j ≥ 0),

where ud+1 = uN,1 = M (very large), which means yN,1 = 0.

• The first equation then becomes:

zN − z1 ≥ 1

so we can fix zN = 1 and z1 = 0.
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Duality: example

• The equations for all the edges starting from z1 = 0:

y1j − zj ≥ 0

• Then, two scenarios are possible (no proof here):

◦ y1j = 1 with zj = 1 and all the following zk will be ones in the next
equations (at the minimum cost):

yjk + zj − zk ≥ 0, (j, k) ∈ V

◦ y1j = 0 with zj = 0 and we get the same equation for the next node:

yjk − zk ≥ 0, (j, k) ∈ V
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Duality: example

Interpretation?

• If a node has zi = 0, all the nodes preceding it in the network must have
zj = 0.

• If a node has zi = 1, all the following nodes in the network must have
zj = 1. . .

• This means that zj effectively splits the network in two partitions

• The equations:
yij − zi + zj ≥ 0

mean for any two nodes with zi = 0 and zj = 1, we must have yij = 1.

• The objective minimizes the total capacity of these edges, which is also the
capacity of the cut.
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Strong duality and geometric

interpretations

Princeton ORF-522 13



Proof for strong duality

• Remember the proof strategy:

◦ We considered a standard form minimization first.
◦ We used the simplex algorithm to reach a solution I.
◦ The reduced cost coefficient at the optimum satisfies cT − cT

I B−1
I A ≥ 0.

◦ We saw that writing µT = cT
I B−1

I yielded a feasible dual solution.
◦ That dual solution was furthermore optimal and shared the same objective

with xI.

• In the next slides,

◦ We prove strong duality for LP’s through Farkas’ Lemma. No simplex
argument.

◦ We introduce a physical analogy often used to illustrated (strong) duality.
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Farkas Lemma

• Basically states the feasibility of two different problems, two related problems.

Theorem 1. Let A ∈ Rm×n and let b ∈ Rm. Then exactly one of the two

alternatives holds

1. there exists x≥ 0 such that Ax = b.

2. there exists µ such that µTA ≥ 0 and µTb < 0.

b1

µ

Hµ,0

a2
a1

b2

a3
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Farkas Lemma: Proof

• if (1), then suppose µTA ≥ 0. Through the solution x of (1) we obtain

µTAx = µTb ≥ 0,

which shows that (2) cannot be true.

• Let S be the image of A on Rn
+, that is S = {Ax,x ≥ 0}.

◦ S is convex, closed and contains 0.
◦ If b /∈ S, that is if (1) is not true, necessarily ∃µ such that Hµ,µTb strictly

isolates S and S ⊂ H+
µ,µTb

◦ Since 0 ∈ S, µTb < 0.
◦ On the other hand, every µTai ≥ 0. If not,

⊲ for a sufficiently big positive M , µT (Mai) < µTb
⊲ Contradiction since Mai ∈ S
◦ Hence µTA ≥ 0 and since µTb < 0, (2) is ensured.
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Farkas Lemma: An immediate corollary

Corollary 1. Let a1, a2, · · · ,an and b be given vectors and suppose that any

vector µ that satisfies µTai ≥ 0, i = 1, .., n, must also satisfy µTb ≥ 0. Then b
can be expressed as a nonnegative linear combination of the vectors a1, · · · , an.

• the first part of the sentence is the negation of (2) in the original Farkas
lemma. Then necessarily (1) is true.
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Proving Strong Duality with Farkas Lemma

• We have proved the following theorem:

Theorem 2. if an LP has an optima, so does its dual, and their respective

optimal objectives are equal.

• Alternative proof: consider the primal-dual problems:

minimize cTx
subject to Ax ≥ b

⇒
maximize bTµ
subject to ATµ = c

µ ≥ 0

• Let x⋆ be the primal optimal solution. Let us show ∃µ⋆ dual solution with
same cost.

◦ J =
{

i|AT
i x⋆ = bi

}

and let d be such that AT
i d ≥ 0 for i ∈ J .

◦ Consider x̂ = x⋆ + εd. We have AT
i x̂ ≥ AT

i x⋆ = bi. feasible for J
◦ For i /∈ J , AT

i x⋆ > bi and hence x̂ is feasible for ε sufficiently small. feasible
◦ By optimality of x⋆ as a minimum, cTx⋆ ≤ cT x̃ and cTd must be

nonnegative.
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Proving Strong Duality with Farkas Lemma

◦ Through x⋆’s optimality we have proved AT
i d ≥ 0 for i ∈ J ⇒ cTd ≥ 0.

◦ Using Farkas’ Lemma’s corollary, there must be µi ≥ 0, i ∈ J such that

c =
∑

i∈J

µiAi.

◦ For i /∈ J set µi = 0.
◦ Thus µ ≥ 0 and µ is dual feasible. Finally

µTb =
∑

i∈J

µibi =
∑

i∈J

µiA
T
i x⋆ = cTx⋆.

• Through weak duality’s second corollary (primal and dual pair have same

objective then both are optimal) we obtain strong duality.

Princeton ORF-522 19



Gravity Example

• We have proved that Farkas’ lemma, a consequence of the isolation theorem,
can prove strong duality.

• We follow with a widely used geometric and physical illustration of strong
duality.

• Suppose we are in R2. We define a set of m inequalities AT
i x ≥ bi.

• A ball is thrown in the feasible set. Gravity makes it roll down to the lowest
corner of the polyhedron.

• When in contact with the ball, each wall i exerts a force µiAi on the ball that
is parallel to Ai.
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Gravity Example

• the position x of the ball is the solution of

minimize cTx
subject to AT

i x ≥ bi, i = 1..m
,

where c points upwards, that is the opposite of the gravity vector.

A1

A2

A3

c = −g
x
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Gravity Example

• The different walls exert forces µ1A1, µ2A2, · · · , µmAm on the ball. µi ≥ 0

• When x does not rest on wall i, µi=0 necessarily. Hence µi(bi −AT
i x) = 0.

• At the optimum, the forces cancel gravity:
∑

i=1 µiAi = c.

• At the optimum, µTb =
∑m

i=1 µibi =
∑m

i=1 µiA
T
i x⋆ = cTx⇒ Strong duality

A1

A2

x

µ3A3

µ1A1

c = −g

A3
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Dual Simplex Method
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Intuition

• Strong duality proof using the simplex:

◦ We start with a standard form minimization.
◦ The reduced cost coefficient at the optimum satisfies cT − cT

I B−1
I A ≥ 0.

◦ We saw that writing µT = cT
I B−1

I yielded a feasible dual solution.
◦ That dual solution was optimal and shared the same objective with xI.

• There is some obvious symmetry between the reduced cost coefficient and
the solution for a given base.
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Intuition

• Primal and dual simplex in a few words:

◦ Given a BFS for the primal, the primal simplex looks for a a dual feasible
solution µT = cT

I B−1
I while maintaining primal feasibility for x.

◦ Given a dual BFS, the dual simplex looks for a a primal feasible solution x
while maintaining dual feasibility for µ.

• Why consider it? great for understanding. useful for sensitivity analysis.
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Tableau

• A not so distant reminder on tableaux

. . . . . . . . . ...
... B−1

I A ... B−1
I b

. . . . . . . . . ...

· · · (c − cT

I B−1
I A)T · · · −cT

I B−1
I b

• In the dual simplex iterations,

◦ we do not assume that B−1
I b is nonnegative at each iteration.

◦ we assume that (c− cT
I B−1

I A)T ≥ 0, or equivalently that µTA ≤ cT .

• This means µ = B−1
I cI is dual-feasible...

• Note the analogy between cT
I B−1

I or B−1
I cI and B−1

I b.

• If by any chance both (c− cT
I B−1

I A)T ≥ 0 and B−1
I b ≥ 0 then we have found

the solution.

• If not... basis change!
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Pivot

• Let’s write r = c− cT
I B−1

I A.

• Select a primal variable il s.t. (B−1
I b)l < 0 and consider the tableau lth row.

• That row is made of (yl,i)1≤i≤n coordinates.

◦ for each i such that yl,i < 0, consider the ratio ri
|yl,i|

,

◦ let j be the column number for which this ratio is smallest.
◦ j must correspond to a nonbasic variable (otherwise yl,j is zero or 1 for yl,il).
◦ Then completely standard pivot on yl,j: I← I \ {il} ∪ {j}.
◦ Can prove that the new reduced cost coefficients stay positive, and we keep

dual-feasibility.
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Dual Simplex Pivot Example

• The following tableau is dual feasible

−2 4 1 1 0 2
4 −2 −3 0 1 −1
2 6 10 0 0 0

• The basis I = {4, 5}. The current solutions’ second variable (B−1
I b)2 is

negative.

• Negative entries for the second row can be found in 2nd and 3rd variables

• Corresponding ratios 6/| − 2| and 10/| − 3|. Therefore I′ = {4, 5} \ {5} ∪ {2}
and we pivot accordingly

6 0 −5 1 2 0
−2 1 3/2 0 −1/2 1/2
14 0 1 0 3 −3

• primal and dual feasible... optimal and optimum is 3
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Dual Simplex Summary

• The dual simplex proceeds in the same way that the (primal simplex)

• Any base I, defines a primal B−1
I b and dual solution (cT

I B−1
I )A ≤ cT .

• Assume I provides a dual feasible solution.

• Update the base through two criterions:

◦ The column B−1
I b has negative elements? that gives exiting index il.

◦ Is there a pivot feasible for the reduced costs? entering column j.

• Pivot and update the whole tableau.
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Dual Simplex Summary

• When can/should we use the dual simplex?

◦ We have a base I that is dual-feasible to start our problem.
◦ We have a solution x⋆ with base I for a problem and we only change the

constraints b.
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Sensitivity Analysis
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Sensitivity analysis

• Let’s study sensitivity with a generic problem and its dual:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

maximize g(λ, µ)
subject to λ ≥ 0

• Consider a small perturbation (u,v) to the constraints:

minimize f0(x)
subject to fi(x) ≤ ui, i = 1, . . . ,m

hi(x) = vi, i = 1, . . . , p

maximize g(λ, µ)− λTu− µTv
subject to λ ≥ 0

• Here x, λ, µ are variables and (u,v) parameters.

• We write p⋆(u,v) for the optimum of the problem given perturbations u,v.

• This value may not be defined is the problem is unfeasible...
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Global sensitivity analysis

• Suppose we have strong duality in the original problem, i.e.∃λ⋆ ≥ 0, µ⋆ s.t.
P ⋆(0,0) = g(λ⋆, µ⋆).

• For (u,v) such that p⋆(u,v) is defined, by weak duality,

p⋆(u, v) ≥ g(λ⋆, ν⋆)− uTλ⋆ − vTµ⋆

≥ p⋆(0, 0)− uTλ⋆ − vTµ⋆

• This gives a global lower bound, and indications on p⋆ for some changes:

◦ If λ⋆
i ≫ 0, ui < 0 (tighten constraint), then big increase for p⋆.

◦ If λ⋆
i is small, ui > 0 (loosen constraint), then little impact on p⋆.

◦ If µ⋆
i ≫ 0 and vi < 0 or µ⋆

i ≪ 0 and vi > 0 then big increase for p⋆.
◦ If µ⋆

i ≈ 0+ and vi > 0 or µ⋆
i ≈ 0− and vi < 0 then little impact on p⋆.
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Local sensitivity analysis

• Suppose p⋆ is differentiable around u = 0,v = 0.

• Hence, for small values (u, v) we have:

λ⋆
i = −

∂p⋆(0, 0)

∂ui

, µ⋆
i = −

∂p⋆(0, 0)

∂vi

• The dual solution gives the local sensitivities of the optimal objective with
respect to constraint perturbations.

• This time the interpretation is symmetric.

• The objective moves by −λ⋆
i ui whatever the signs of λ⋆

i and ui.
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Sensitivity Analysis, The LP case
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Sensitivity analysis, the LP case

• Suppose we have a standard form LP

minimize cTx
subject to Ax = b

x ≥ 0

• As usual, assume I is the optimal base and x⋆ the optimum.

• Suppose b is replaced by b + d where d ≈ 0.

◦ As long as x⋆ is non-degenerate and d small, B−1
I (b + d) ≥ 0. feasible

◦ Since I is optimal, c− cT
I B−1

I A ≥ 0. still optimal

• Hence the same basis is still optimal for an infinitesimally perturbed problem.
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Sensitivity analysis, the LP case

• The new optimum is

cT
I B−1

I (b + d) = µT (b + d)

• perturbation d: z⋆ becomes z⋆ + µTd.

• each component µi can be interpreted as the marginal cost of each unit
increase of bi.

• Such marginal costs are also called shadow prices.
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Sensitivity: examples

• The simplex can handle more advanced perturbation scenarios.

• Suppose we have converged to an optimum I and have access to x⋆ and µ⋆.

• We review the following scenarios:

1. A new variable is added
2. A new inequality constraint is added
3. A new equality constraint is added
4. The constraint vector b is changed
5. The cost vector c is changed
6. A nonbasic column of A changes
7. A basic columns of A changes

and discuss how we can still use I to get the new optimum quickly.
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1. New variable

• Suppose the program becomes

minimize cTx + cn+1xn+1

subject to Ax + an+1xn+1 = b
x ≥ 0, xn+1 ≥ 0

• Note that (x⋆, 0) is already a BFS of the new problem.

• For the basis I to remain optimal, we need that

cn+1 − cT
I B−1

I an+1 ≥ 0.

• If this is the case, I is still optimal.

• If not, we start from (x⋆, 0) and use the simplex algorithm.

• Running time typically much lower than rerunning everything from scratch.
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2. New inequality

• Suppose the program has a new constraint AT
m+1x ≥ bm+1.

• If x⋆ already satisfies this inequality, then x⋆ is still optimal.

• if not, introduce a surplus variable xn+1 and AT
m+1x− xn+1 = bm+1.

• We obtain the following standard form, writing β =
[

b
bm+1

]

and x ∈ Rn+1,

minimize cTx

subject to
[

A 0
AT

m+1 −1

]

x = β

x ≥ 0
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2. New inequality

• We use a basis I′ = I ∪ {n + 1}. Write a = Am+1,I Note that

BI′ =
[

BI 0

aT −1

]

, detBI′ = − detBI 6= 0, B−1
I′ =

[

B−1
I

0

aT B−1
I

−1

]

.

• The corresponding primal point is [ x⋆ aT x⋆−bm+1 ]. It is infeasible by
assumption.

• On the other hand the new reduced cost is given by

[ cT 0 ]− [ cT
I 0 ]

[

B−1
I

0

aT B−1
I

−1

]

[

A 0
AT

m+1 −1

]

= [ cT−cT
I B−1

I
A 0 ]

which is thus nonnegative by optimality of I.

• Hence I′ is dual feasible... dual simplex with the tableau given by B−1
I′ .
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3. New equality

• New constraint AT
m+1x= bm+1 and suppose AT

m+1x
⋆ > bm+1

• The dual of the new problem becomes

maximize µTb

subject to [ µT µm+1 ]
[

A
AT

m+1

]

≤ cT .

where µm+1 is a new dual variable associated with the latest constraint.

• If µ⋆ is the optimal dual solution for I⋆, (µ⋆, 0) is feasible, but we have no base
I that corresponds to (µ⋆, 0)...

• Back to the the primal. We modify it by an auxiliary problem with M ≫ 0

minimize cTx + Mxn+1

subject to Ax = b
AT

m+1x− xn+1 = bm+1

x, xm+1 ≥ 0

• We can then use the approach in (2) by considering BI′ =
[

BI 0

aT −1

]

.
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4. Change in constraint vector b

• Suppose bj of b is changed to bj + δ, that is b is changed to b + δej.

• For what range of δ will I remain feasible ? remember that optimality is not
affected..

• Let B−1
I = [βi,j]. The condition B−1

I (b + δej) ≥ 0 is equivalent to

max
{i|βij>0}

−
(B−1

I b)i

βij

≤ δ ≤ min
{i|βij<0}

−
(B−1

I b)i

βij

• For this range, the optimal cost is given by cT
I B−1

I (b + δej) = µ⋆Tb + δµ⋆
j .

• Outside the range, run the dual simplex starting with µ⋆.
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5. Change in cost vector c

• Suppose cj of c is changed to cj + δ, that is c is changed to c + δej.

• Primal feasibility of I is not affected. However, we need to check
cT
I B−1

I A ≤ cT .

• If j corresponds to a nonbasic variable, cI does not change, but we need that

−(cj − cT
I B−1

I aj) ≤ δ.

if this is not ensured, we have to apply a few primal simplex iterations.

• If j corresponds to a basic variable, i.e. il = j, then the condition becomes

(cI + δel)
TB−1

I ai ≤ ci.

• Equivalently, δyl,i ≤ ci − cT
I B−1

I ai ensures the solution remains optimal.
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6. Change in nonbasic column of A

• The ith coordinate of a nonbasic column vector aj is changed to aij + δ.

• If the variable is nonbasic, primal feasibility is not affected.

• Dual feasibility: cj − µT (aj + δei) ≥ 0.

• If this inequality is violated, j can be inserted in the basis, requiring a primal
simplex step.
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7. Change in nonbasic column of A

• The ith coordinate of a basic column vector aj is changed to aij + δ, both
feasibility and optimality conditions are affected.

• exercise...
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Next time

• Ellipsoid Method and Polynomial Complexity of the Simplex.
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