ORF 522

Linear Programming and Convex Analysis

Farkas lemma, dual simplex and sensitivity analysis

Marco Cuturi

Reminder

Covered duality theory in the general case.

- Lagrangian $L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f_0(\boldsymbol{x}) + \sum_{i=1}^m \boldsymbol{\lambda}_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \boldsymbol{\mu}_i h_i(\boldsymbol{x})$
- Lagrange dual function $g(\lambda, \mu) = \inf_{x \in D} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x) \right)$
- Lagrange dual function at any $\mu, \lambda \ge 0$ gives **lower bounds** for a min. problem.
- However, for most λ, μ , the bound is $-\infty$.
- If we look for the optimum, we have a concave maximization problem.
- Always weak $(d^* < p^*)$ duality. Strong $(d^* < p^*)$ for some problems.

Looked more particularly at duality for LP's.

- duals of LP's are LP's. LP's are self-dual.
- Always strong duality.
- Complementary Slackness $u_i = v_j = 0$.

Today

- Network flow example: Max-flow / Min-Cut.
- Strong Duality in LP's through Farkas Lemma
- Strong duality illustration: gravity
- Dual Simplex
- Sensitivity Analysis... many case-scenarios for perturbation.

Network flow: Max-flow / Min-cut

Network flow: Max-flow / Min-cut

- m nodes, N_1, \cdots, N_m .
- d directed edges (arrows) to connect pairs of nodes $(N_i, N_{i'})$ in a set \mathcal{V}
 - Each edge carries a flow $f_k \ge 0$.
 - Each edge has a bounded capacity (pipe width) $f_k \leq u_k$
- Relating edges and nodes: the network's incidence matrix $A \in \{-1, 0, 1\}^{m \times d}$:

$$A_{ik} = \begin{cases} 1 & \text{if edge } k \text{ starts at node } i \\ -1 & \text{if edge } k \text{ ends at node } i \\ 0 & \text{otherwise} \end{cases}$$

• For a node *i*,

$$\sum_{k \text{ s.t. edge ends at } i} f_k = \sum_{k \text{ s.t. edge starts at } i} f_k$$

• In matrix form: $A\mathbf{f} = \mathbf{0}$

First problem: Maximal Flow

- We consider a **constant flow** from node 1 to node m.
- What is the **maximal flow** that can go through the system?
- We close the loop with an *artificial edge* (N_1, N_m) , the d + 1th edge.
- if $u_{d+1} = \infty$, what would be the maximal flow f_{d+1} of that edge?
- Namely solve

$$\begin{array}{ll} \text{minimize} & \mathbf{c}^T \mathbf{f} = -f_{d+1}, \\ \text{subject to} & [A \ , e] \, \mathbf{f} = 0, \\ & 0 \leq f_1 \leq u_1, \\ & \vdots \\ & 0 \leq f_d \leq u_d, \\ & 0 \leq f_{d+1} \leq u_{d+1}, \end{array}$$

with $\mathbf{e} = (-1, 0, \dots, 0, 1)$ and $\mathbf{c} = (0, \dots, 0, -1)$ and u_{d+1} a very large capacity for f_{d+1} .

Second problem: Minimal Cut

- Suppose you are a **plumber** and you want to completely **stop the flow** from node N_1 to N_m .
- You have to remove edges (pipes). What is the minimal capacity you need to remove to completely stop the flow between N₁ to N_m?
- Goal: cut the set of nodes into two disjoint sets S and T.
- Remove a set $C \subset V$ of edges and minimize the total capacity of C.
- $y_{ij} \in \{0,1\}$ will keep track of cuts. 1 for a cut, 0 otherwise.
- For each node N_i there is a variable z_i which is 0 if N_i is in the set S or 1 in the set T. We arbitrarily set $z_1 = 0$ and $z_N = 1$.

$$\begin{array}{ll} \mbox{minimize} & \displaystyle \sum_{(i,j)\in\mathcal{V}} y_{ij} u_{ij} \\ \mbox{subject to} & \displaystyle y_{i,j}+z_i-z_j\geq 0 \\ & \displaystyle z_1=1, z_t=0, z_i\geq 0, \\ & \displaystyle y_{ij}\geq 0, (i,j)\in\mathcal{V} \end{array}$$

• Let us form the **Lagrangian** of the Max-Flow problem:

$$L(\mathbf{f}, \mathbf{y}, \mathbf{z}) = \mathbf{c}^T \mathbf{f} + \mathbf{z}^T [Ae] \mathbf{f} + \mathbf{y}^T (\mathbf{f} - \mathbf{u})$$

for $\mathbf{f} \geq 0$ here.

• The Lagrange dual function is defined as

$$g(\mathbf{y}, \mathbf{z}) = \inf_{\mathbf{f} \ge 0} L(\mathbf{f}, \mathbf{y}, \mathbf{z})$$

= $\inf_{\mathbf{f} \ge 0} \mathbf{f}^T \left(\mathbf{c} + \mathbf{y} + \begin{bmatrix} A^T \\ \mathbf{e}^T \end{bmatrix} \mathbf{z} \right) - \mathbf{u}^T \mathbf{y}$

• As usual, this infimum yields either $-\infty$ or $-\mathbf{u}^T\mathbf{y}$:

$$g(\mathbf{y}, \mathbf{z}) = \begin{cases} -\mathbf{u}^T \mathbf{y} & \text{if } \left(\mathbf{c} + \mathbf{y} + \begin{bmatrix} A^T \\ \mathbf{e}^T \end{bmatrix} \mathbf{z} \right) \ge 0\\ -\infty & \text{otherwise} \end{cases}$$

This means that the **dual** of the maximum flow problem is written:

minimize
$$\mathbf{u}^T \mathbf{y}$$

subject to $\mathbf{c} + \mathbf{y} + \begin{bmatrix} A^T \\ \mathbf{e} \end{bmatrix} \mathbf{z} \ge 0$

Compare the following dual with changed notations, from d+1 edges to (d+1) couple of points $(i,j)\in\mathcal{V}$

$$\begin{array}{ll} \mbox{minimize} & \displaystyle \sum_{(i,j)\in\mathcal{V}} y_{ij} u_{ij} \\ \mbox{subject to} & \displaystyle y_{N,1} + z_N - z_1 \geq 1 \\ & \displaystyle y_{ij} + z_i - z_j \geq 0, \quad (i,j)\in\mathcal{V}, \\ & \displaystyle y_{ij} \geq 0 \end{array}$$

to the **minimum cut problem**. The two problems are **identical**.

• The objective is to minimize:

$$\sum_{(i,j)\in\mathcal{V}} u_{ij}y_{ij}, \quad (y_{i,j}\geq 0),$$

where $u_{d+1} = u_{N,1} = M$ (very large), which means $y_{N,1} = 0$.

• The first equation then becomes:

$$z_N - z_1 \ge 1$$

so we can fix $z_N = 1$ and $z_1 = 0$.

• The equations for all the edges starting from $z_1 = 0$:

$$y_{1j} - z_j \ge 0$$

- Then, two scenarios are possible (no proof here):
 - $y_{1j} = 1$ with $z_j = 1$ and all the following z_k will be ones in the next equations (at the minimum cost):

$$y_{jk} + z_j - z_k \ge 0, \quad (j,k) \in \mathcal{V}$$

• $y_{1j} = 0$ with $z_j = 0$ and we get the same equation for the next node:

$$y_{jk} - z_k \ge 0, \quad (j,k) \in \mathcal{V}$$

Interpretation?

- If a node has $z_i = 0$, all the nodes preceding it in the network must have $z_j = 0$.
- If a node has $z_i = 1$, all the following nodes in the network must have $z_j = 1$...
- This means that z_j effectively splits the network in two partitions
- The equations:

$$y_{ij} - z_i + z_j \ge 0$$

mean for any two nodes with $z_i = 0$ and $z_j = 1$, we must have $y_{ij} = 1$.

• The objective minimizes the total capacity of these edges, which is also the capacity of the cut.

Strong duality and geometric interpretations

Proof for strong duality

- Remember the proof strategy:
 - We considered a **standard form** *minimization* first.
 - $\circ\,$ We used the simplex algorithm to reach a solution I.
 - The reduced cost coefficient at the optimum satisfies $c^T c_I^T B_I^{-1} A \ge 0$.
 - We saw that writing $\mu^T = c_{\mathbf{I}}^T B_{\mathbf{I}}^{-1}$ yielded a **feasible dual solution**.
 - $\circ~$ That dual solution was furthermore **optimal** and shared the same objective with $\mathbf{x_{I}}.$
- In the next slides,
 - We prove strong duality for LP's through Farkas' Lemma. No simplex argument.
 - We introduce a **physical analogy** often used to illustrated (strong) duality.

Farkas Lemma

• Basically states the feasibility of two **different** problems, two **related** problems.

Theorem 1. Let $A \in \mathbb{R}^{m \times n}$ and let $\mathbf{b} \in \mathbb{R}^m$. Then exactly one of the two alternatives holds

- 1. there exists $\mathbf{x} \geq \mathbf{0}$ such that $A\mathbf{x} = \mathbf{b}$.
- 2. there exists $\boldsymbol{\mu}$ such that $\boldsymbol{\mu}^T A \geq 0$ and $\boldsymbol{\mu}^T \mathbf{b} < 0$.

Farkas Lemma: Proof

• if (1), then suppose $\mu^T A \ge 0$. Through the solution \mathbf{x} of (1) we obtain

$$\mu^T A \mathbf{x} = \mu^T \mathbf{b} \ge 0,$$

which shows that (2) cannot be true.

- Let S be the image of A on \mathbf{R}^n_+ , that is $S = \{A\mathbf{x}, \mathbf{x} \ge 0\}$.
 - \circ S is convex, closed and contains **0**.
 - If $\mathbf{b} \notin S$, that is if (1) is not true, necessarily $\exists \mu$ such that $H_{\mu,\mu^T\mathbf{b}}$ strictly isolates S and $S \subset H^+_{\mu,\mu^T\mathbf{b}}$
 - Since $\mathbf{0} \in S$, $\mu^T \mathbf{b} < 0$.
 - On the other hand, every $\mu^T \mathbf{a}_i \geq 0$. If not,
 - \triangleright for a sufficiently big positive M, $\mu^T(M\mathbf{a}_i) < \mu^T\mathbf{b}$
 - \triangleright Contradiction since $M\mathbf{a}_i \in S$
 - Hence $\mu^T A \ge 0$ and since $\mu^T \mathbf{b} < 0$, (2) is ensured.

Farkas Lemma: An immediate corollary

Corollary 1. Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ and \mathbf{b} be given vectors and suppose that any vector μ that satisfies $\mu^T \mathbf{a}_i \ge 0$, i = 1, ..., n, must also satisfy $\mu^T \mathbf{b} \ge 0$. Then \mathbf{b} can be expressed as a nonnegative linear combination of the vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$.

• the first part of the sentence is the negation of (2) in the original Farkas lemma. Then necessarily (1) is true.

Proving Strong Duality with Farkas Lemma

• We have proved the following theorem:

Theorem 2. *if an LP has an optima, so does its dual, and their* **respective** *optimal objectives are equal.*

• Alternative proof: consider the primal-dual problems:

minimizo	$\mathbf{o}^T \mathbf{v}$		maximize	$\mathbf{b}^T \mu$
subject to	$\mathbf{U} \mathbf{X}$	\Rightarrow	subject to	$A^T \mu = \mathbf{c}$
Subject to	$AX \ge 0$			$\mu \ge 0$

 Let x^{*} be the primal optimal solution. Let us show ∃µ^{*} dual solution with same cost.

- $J = \{i | A_i^T \mathbf{x}^* = b_i\}$ and let **d** be such that $A_i^T \mathbf{d} \ge 0$ for $i \in J$.
- Consider $\hat{\mathbf{x}} = \mathbf{x}^{\star} + \varepsilon \mathbf{d}$. We have $A_i^T \hat{\mathbf{x}} \ge A_i^T \mathbf{x}^{\star} = b_i$. feasible for J
- For $i \notin J$, $A_i^T \mathbf{x}^* > b_i$ and hence $\hat{\mathbf{x}}$ is feasible for ε sufficiently small. feasible
- By **optimality** of \mathbf{x}^* as a minimum, $\mathbf{c}^T \mathbf{x}^* \leq \mathbf{c}^T \tilde{\mathbf{x}}$ and $\mathbf{c}^T \mathbf{d}$ must be nonnegative.

Proving Strong Duality with Farkas Lemma

• Through \mathbf{x}^* 's optimality we have proved $A_i^T \mathbf{d} \ge 0$ for $i \in J \Rightarrow \mathbf{c}^T \mathbf{d} \ge 0$. • Using Farkas' Lemma's corollary, there must be $\mu_i \ge 0, i \in J$ such that

$$\mathbf{c} = \sum_{i \in J} \mu_i A_i$$

o For *i* ∉ J set $\mu_i = 0$.
o Thus $\mu \ge 0$ and μ is dual feasible. Finally

$$\mu^T \mathbf{b} = \sum_{i \in J} \mu_i b_i = \sum_{i \in J} \mu_i A_i^T \mathbf{x}^* = \mathbf{c}^T \mathbf{x}^*.$$

• Through weak duality's second corollary (*primal and dual pair have same objective then both are optimal*) we obtain **strong** duality.

Gravity Example

- We have proved that **Farkas' lemma**, a consequence of the isolation theorem, can prove **strong duality**.
- We follow with a widely used geometric and physical **illustration of strong duality**.
- Suppose we are in \mathbf{R}^2 . We define a set of m inequalities $A_i^T \mathbf{x} \ge b_i$.
- A **ball** is thrown in the feasible set. **Gravity** makes it roll down to the lowest corner of the polyhedron.
- When in contact with the ball, each wall i exerts a force $\mu_i A_i$ on the ball that is parallel to A_i .

Gravity Example

• the position \mathbf{x} of the ball is the solution of

 $\begin{array}{ll} \mbox{minimize} & \mathbf{c}^T \mathbf{x} \\ \mbox{subject to} & A_i^T \mathbf{x} \geq b_i, \ i = 1..m \end{array},$

where c points upwards, that is the opposite of the gravity vector.

Gravity Example

- The different walls exert forces $\mu_1 A_1, \mu_2 A_2, \cdots, \mu_m A_m$ on the ball. $\mu_i \geq 0$
- When x does not rest on wall *i*, $\mu_i=0$ necessarily. Hence $\mu_i(b_i A_i^T \mathbf{x}) = 0$.
- At the optimum, the forces cancel gravity: $\sum_{i=1} \mu_i A_i = \mathbf{c}$.
- At the optimum, $\mu^T \mathbf{b} = \sum_{i=1}^m \mu_i b_i = \sum_{i=1}^m \mu_i A_i^T \mathbf{x}^* = \mathbf{c}^T \mathbf{x} \Rightarrow$ Strong duality

Dual Simplex Method

Intuition

- Strong duality proof using the simplex:
 - We start with a **standard form minimization**.
 - The reduced cost coefficient at the optimum satisfies $c^T c_I^T B_I^{-1} A \ge 0$.
 - We saw that writing $\mu^T = c_{\mathbf{I}}^T B_{\mathbf{I}}^{-1}$ yielded a **feasible dual solution**.
 - $\circ~$ That dual solution was **optimal** and shared the same objective with $\mathbf{x_{I}}.$

• There is some **obvious symmetry** between the **reduced cost coefficient** and the **solution** for a given base.

Intuition

- Primal and dual simplex in a few words:
 - Given a BFS for the primal, the **primal** simplex looks for a **a dual feasible** solution $\mu^T = c_{\rm I}^T B_{\rm I}^{-1}$ while maintaining **primal feasibility** for x.

• Given a dual BFS, the dual simplex looks for a **a primal feasible solution** \mathbf{x} while maintaining dual feasibility for μ .

• Why consider it? great for understanding. useful for sensitivity analysis.

Tableau

• A not so distant reminder on tableaux

- In the dual simplex iterations,
 - we do not assume that $B_{\mathbf{I}}^{-1}\mathbf{b}$ is nonnegative at each iteration. • we assume that $(\mathbf{c} - \mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} A)^T \ge 0$, or equivalently that $\mu^T A \le \mathbf{c}^T$.

• This means
$$\mu = B_{\mathbf{I}}^{-1} \mathbf{c}_{\mathbf{I}}$$
 is dual-feasible...

- Note the analogy between $\mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1}$ or $B_{\mathbf{I}}^{-1} \mathbf{c}_{\mathbf{I}}$ and $B_{\mathbf{I}}^{-1} \mathbf{b}$.
- If by any chance both $(\mathbf{c} \mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} A)^T \ge 0$ and $B_{\mathbf{I}}^{-1} \mathbf{b} \ge 0$ then we have found the solution.
- If not... basis change!

Pivot

- Let's write $\mathbf{r} = \mathbf{c} \mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} A$.
- Select a primal variable i_l s.t. $(B_{\mathbf{I}}^{-1}\mathbf{b})_l < 0$ and consider the tableau *l*th row.
- That row is made of $(y_{l,i})_{1 \le i \le n}$ coordinates.
 - for each i such that $y_{l,i} < 0$, consider the ratio $\frac{r_i}{|y_{l,i}|}$,
 - \circ let j be the column number for which this ratio is smallest.
 - j must correspond to a nonbasic variable (otherwise $y_{l,j}$ is zero or 1 for y_{l,i_l}).
 - Then completely standard pivot on $y_{l,j}$: $\mathbf{I} \leftarrow \mathbf{I} \setminus \{i_l\} \cup \{j\}$.
 - Can prove that the new reduced cost coefficients stay positive, and we keep dual-feasibility.

Dual Simplex Pivot Example

• The following tableau is dual feasible

-2	4	1	1	0	2
4	-2	-3	0	1	-1
2	6	10	0	0	0

- The basis $I = \{4, 5\}$. The current solutions' second variable $(B_I^{-1}b)_2$ is negative.
- Negative entries for the second row can be found in 2nd and 3rd variables
- Corresponding ratios 6/|-2| and 10/|-3|. Therefore $I' = \{4,5\} \setminus \{5\} \cup \{2\}$ and we pivot accordingly

6	0	-5	1	2	0
-2	1	3/2	0	-1/2	1/2
14	0	1	0	3	-3

• primal and dual feasible... optimal and optimum is 3

Dual Simplex Summary

- The dual simplex proceeds in the same way that the (primal simplex)
- Any base I, defines a primal $B_{\mathbf{I}}^{-1}\mathbf{b}$ and dual solution $(\mathbf{c}_{\mathbf{I}}^{T}B_{\mathbf{I}}^{-1})A \leq \mathbf{c}^{T}$.
- Assume I provides a **dual feasible** solution.
- Update the base through two criterions:
 - The column $B_{\mathbf{I}}^{-1}\mathbf{b}$ has negative elements? that gives exiting index i_l . • Is there a pivot feasible for the reduced costs? entering column j.
- Pivot and update the whole tableau.

Dual Simplex Summary

- When can/should we use the dual simplex?
 - $\circ~$ We have a base ${\bf I}$ that is dual-feasible to start our problem.
 - $\circ\,$ We have a solution ${\bf x}^{\star}$ with base ${\bf I}$ for a problem and we only change the constraints ${\bf b}.$

Sensitivity Analysis

Sensitivity analysis

• Let's study sensitivity with a generic problem and its dual:

$$\begin{array}{ll} \text{minimize} & f_0(x) & \text{maximize} & g(\lambda, \mu) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m & \text{subject to} & \lambda \geq 0 \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

• Consider a small **perturbation** (\mathbf{u}, \mathbf{v}) to the constraints:

$$\begin{array}{ll} \text{minimize} & f_0(x) & \text{maximize} & g(\lambda, \mu) - \lambda^T \mathbf{u} - \mu^T \mathbf{v} \\ \text{subject to} & f_i(x) \leq \mathbf{u_i}, \quad i = 1, \dots, m & \text{subject to} \quad \lambda \geq 0 \\ & h_i(x) = \mathbf{v_i}, \quad i = 1, \dots, p \end{array}$$

- Here $x, \ \lambda, \ \mu$ are variables and (\mathbf{u}, \mathbf{v}) parameters.
- We write $p^{\star}(\mathbf{u}, \mathbf{v})$ for the optimum of the problem given perturbations \mathbf{u}, \mathbf{v} .
- This value may not be defined is the problem is unfeasible...

Global sensitivity analysis

- Suppose we have strong duality in the original problem, $i.e.\exists \lambda^* \geq 0, \mu^*$ s.t. $P^*(\mathbf{0}, \mathbf{0}) = g(\lambda^*, \mu^*).$
- For (\mathbf{u},\mathbf{v}) such that $p^{\star}(\mathbf{u},\mathbf{v})$ is defined, by weak duality,

$$p^{\star}(u,v) \geq g(\lambda^{\star},\nu^{\star}) - u^{T}\lambda^{\star} - v^{T}\mu^{\star}$$
$$\geq p^{\star}(0,0) - u^{T}\lambda^{\star} - v^{T}\mu^{\star}$$

- This gives a global lower bound, and indications on p^{\star} for some changes:
 - If λ_i^{*} ≫ 0, u_i < 0 (tighten constraint), then big increase for p^{*}.
 If λ_i^{*} is small, u_i > 0 (loosen constraint), then little impact on p^{*}.
 If μ_i^{*} ≫ 0 and v_i < 0 or μ_i^{*} ≪ 0 and v_i > 0 then big increase for p^{*}.
 If μ_i^{*} ≈ 0⁺ and v_i > 0 or μ_i^{*} ≈ 0⁻ and v_i < 0 then little impact on p^{*}.

Local sensitivity analysis

- Suppose p^* is differentiable around $\mathbf{u} = \mathbf{0}, \mathbf{v} = \mathbf{0}$.
- Hence, for small values (u, v) we have:

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \quad \mu_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_i}$$

- The dual solution gives the local **sensitivities** of the optimal objective with respect to constraint perturbations.
- This time the interpretation is **symmetric**.
- The objective moves by $-\lambda_i^* u_i$ whatever the signs of λ_i^* and u_i .

Sensitivity Analysis, The LP case

Sensitivity analysis, the LP case

• Suppose we have a standard form LP

$$\begin{array}{ll} \text{minimize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq 0 \end{array}$$

- As usual, assume ${\bf I}$ is the optimal base and ${\bf x}^{\star}$ the optimum.
- Suppose b is replaced by b + d where $d \approx 0$.
 - As long as \mathbf{x}^* is non-degenerate and \mathbf{d} small, $B_{\mathbf{I}}^{-1}(\mathbf{b} + \mathbf{d}) \ge 0$. *feasible* • Since \mathbf{I} is optimal, $\mathbf{c} - \mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} A \ge 0$. *still optimal*
- Hence the same basis is still optimal for an infinitesimally perturbed problem.

Sensitivity analysis, the LP case

• The new optimum is

$$\mathbf{c}_{\mathbf{I}}^{T}B_{\mathbf{I}}^{-1}(\mathbf{b}+\mathbf{d}) = \boldsymbol{\mu}^{T}(\mathbf{b}+\mathbf{d})$$

- perturbation d: z^* becomes $z^* + \mu^T \mathbf{d}$.
- each component μ_i can be interpreted as the marginal cost of each unit increase of b_i.
- Such marginal costs are also called *shadow prices*.

Sensitivity: examples

- The **simplex** can handle more **advanced perturbation scenarios**.
- Suppose we have converged to an optimum I and have access to \mathbf{x}^{\star} and μ^{\star} .
- We review the following scenarios:
 - 1. A new variable is added
 - 2. A new inequality constraint is added
 - 3. A new equality constraint is added
 - 4. The constraint vector **b** is changed
 - 5. The cost vector ${\bf c}$ is changed
 - 6. A nonbasic column of A changes
 - 7. A basic columns of A changes

and discuss how we can still use I to get the new optimum quickly.

1. New variable

• Suppose the program becomes

minimize
$$\mathbf{c}^T \mathbf{x} + c_{n+1} x_{n+1}$$

subject to $A\mathbf{x} + \mathbf{a}_{n+1} x_{n+1} = \mathbf{b}$
 $\mathbf{x} \ge 0, x_{n+1} \ge 0$

- Note that $(\mathbf{x}^{\star}, 0)$ is already a BFS of the new problem.
- $\bullet\,$ For the basis I to remain optimal, we need that

$$c_{n+1} - \mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} \mathbf{a}_{n+1} \ge 0.$$

- If this is the case, I is still optimal.
- If not, we start from $(\mathbf{x}^{\star}, 0)$ and use the simplex algorithm.
- Running time typically much lower than rerunning everything from scratch.

2. New inequality

- Suppose the program has a new constraint $A_{m+1}^T \mathbf{x} \ge b_{m+1}$.
- If \mathbf{x}^{\star} already satisfies this inequality, then \mathbf{x}^{\star} is still optimal.
- if **not**, introduce a surplus variable x_{n+1} and $A_{m+1}^T \mathbf{x} x_{n+1} = b_{m+1}$.
- We obtain the following standard form, writing $\beta = \begin{bmatrix} \mathbf{b} \\ b_{m+1} \end{bmatrix}$ and $\mathbf{x} \in \mathbf{R}^{n+1}$,

minimize
$$\mathbf{c}^T \mathbf{x}$$
subject to $\begin{bmatrix} A & \mathbf{0} \\ A_{m+1}^T & -1 \end{bmatrix} \mathbf{x} = \beta$ $\mathbf{x} \ge 0$

2. New inequality

• We use a basis $I' = I \cup \{n+1\}$. Write $a = A_{m+1,I}$ Note that

$$B_{\mathbf{I}'} = \begin{bmatrix} B_{\mathbf{I}} & \mathbf{0} \\ \mathbf{a}^T & -1 \end{bmatrix}, \quad \det B_{\mathbf{I}'} = -\det B_{\mathbf{I}} \neq 0, \quad B_{\mathbf{I}'}^{-1} = \begin{bmatrix} B_{\mathbf{I}}^{-1} & \mathbf{0} \\ \mathbf{a}^T B_{\mathbf{I}}^{-1} & -1 \end{bmatrix}.$$

- The corresponding primal point is $\begin{bmatrix} \mathbf{x}^{\star} & \mathbf{a}^T \mathbf{x}^{\star} b_{m+1} \end{bmatrix}$. It is infeasible by assumption.
- On the other hand the new reduced cost is given by

$$\begin{bmatrix} \mathbf{c}^T & \mathbf{0} \end{bmatrix} - \begin{bmatrix} \mathbf{c}_{\mathbf{I}}^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} B_{\mathbf{I}}^{-1} & \mathbf{0} \\ \mathbf{a}^T B_{\mathbf{I}}^{-1} & -1 \end{bmatrix} \begin{bmatrix} A & \mathbf{0} \\ A_{m+1}^T & -1 \end{bmatrix} = \begin{bmatrix} \mathbf{c}^T - \mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} A & \mathbf{0} \end{bmatrix}$$

which is thus nonnegative by optimality of ${\bf I}.$

• Hence I' is dual feasible... dual simplex with the tableau given by $B_{\mathbf{I}'}^{-1}$.

3. New equality

- New constraint $A_{m+1}^T \mathbf{x} = b_{m+1}$ and suppose $A_{m+1}^T \mathbf{x}^* > b_{m+1}$
- The dual of the new problem becomes

maximize
$$\mu^T \mathbf{b}$$

subject to $\begin{bmatrix} \mu^T & \mu_{m+1} \end{bmatrix} \begin{bmatrix} A \\ A_{m+1}^T \end{bmatrix} \leq \mathbf{c}^T.$

where μ_{m+1} is a new dual variable associated with the latest constraint.

- If μ^* is the optimal dual solution for \mathbf{I}^* , $(\mu^*, 0)$ is feasible, but we have no base I that corresponds to $(\mu^*, 0)$...
- Back to the the primal. We modify it by an *auxiliary problem* with $M \gg 0$

minimize
$$\mathbf{c}^T \mathbf{x} + M x_{n+1}$$

subject to $A\mathbf{x} = \mathbf{b}$
 $A_{m+1}^T \mathbf{x} - x_{n+1} = b_{m+1}$
 $\mathbf{x}, x_{m+1} \ge 0$

• We can then use the approach in (2) by considering $B_{\mathbf{I}'} = \begin{bmatrix} B_{\mathbf{I}} & \mathbf{0} \\ \mathbf{a}^T & -1 \end{bmatrix}$.

4. Change in constraint vector ${\bf b}$

- Suppose b_j of **b** is changed to $b_j + \delta$, that is **b** is changed to $\mathbf{b} + \delta \mathbf{e}_j$.
- For what range of δ will ${\bf I}$ remain feasible ? remember that optimality is not affected..
- Let $B_{\mathbf{I}}^{-1} = [\beta_{i,j}]$. The condition $B_{\mathbf{I}}^{-1}(\mathbf{b} + \delta \mathbf{e}_j) \ge 0$ is equivalent to

$$\max_{\{i|\beta_{ij}>0\}} -\frac{(B_{\mathbf{I}}^{-1}\mathbf{b})_i}{\beta_{ij}} \le \delta \le \min_{\{i|\beta_{ij}<0\}} -\frac{(B_{\mathbf{I}}^{-1}\mathbf{b})_i}{\beta_{ij}}$$

- For this range, the optimal cost is given by $\mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1}(\mathbf{b} + \delta \mathbf{e}_j) = \mu^{\star T} \mathbf{b} + \delta \mu_j^{\star}$.
- Outside the range, run the dual simplex starting with μ^{\star} .

5. Change in cost vector ${\bf c}$

- Suppose c_j of c is changed to $c_j + \delta$, that is c is changed to $c + \delta e_j$.
- Primal feasibility of I is not affected. However, we need to check $\mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} A \leq \mathbf{c}^T$.
- If j corresponds to a **nonbasic** variable, c_I does not change, but we need that

$$-(c_j - \mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} \mathbf{a}_j) \le \delta.$$

if this is not ensured, we have to apply a few primal simplex iterations.

• If j corresponds to a **basic** variable, i.e. $i_l = j$, then the condition becomes

$$(\mathbf{c}_{\mathbf{I}} + \delta \mathbf{e}_l)^T B_{\mathbf{I}}^{-1} \mathbf{a}_i \le c_i.$$

• Equivalently, $\delta y_{l,i} \leq c_i - \mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} \mathbf{a}_i$ ensures the solution remains optimal.

6. Change in nonbasic column of \boldsymbol{A}

- The *i*th coordinate of a **nonbasic** column vector \mathbf{a}_j is changed to $a_{ij} + \delta$.
- If the variable is nonbasic, primal feasibility is not affected.
- Dual feasibility: $c_j \mu^T (\mathbf{a}_j + \delta \mathbf{e}_i) \ge 0.$
- If this inequality is violated, *j* can be inserted in the basis, requiring a primal simplex step.

7. Change in nonbasic column of \boldsymbol{A}

- The *i*th coordinate of a **basic** column vector \mathbf{a}_j is changed to $a_{ij} + \delta$, both feasibility and optimality conditions are affected.
- exercise...

Next time

• Ellipsoid Method and Polynomial Complexity of the Simplex.