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Last Week

Regression: highlight a functional relationship
between a predicted variable and predictors

to find an accurate function f such that

V(x,y) that can appear , f(x) =~y

use a data set & the least-squares criterion:
N
1

?leigﬁz:(yj — f(x;))

J=1



Last Week

Regression: highlight a functional relationship
between a predicted variable and predictors

e when regressing a real number vs a real number :

Scatter plot of Rent vs. Surface

Rent (x 10.000 JPY)

o Least-Squares Criterion L(b, a1, - ,a,) to fit lines, polynomials.
o results in solving a linear system.

02"order(b,ay, - ,ay)
Oay,

= linear in (b,a1,--- ,ap)
o When setting 0L/0a,, = 0 we get p+ 1 linear equations for p + 1 variables.
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Last Week

Regression: highlight a functional relationship
between a predicted variable and predictors

e when regressing a real number vs d real numbers (vector in R?),

o find best fit € R? such that (a’x + aq) ~ y.

o Add to d x N data matrix, a row of 1's to get the predictors X.
o The row Y of predicted values

o The Least-Squares criterion also applies:

Lia) = ||Y — T X|? = (ozTXXToz oy xTa+ HY||2> .
VoLl=0 = o' =(XX""'XY"

e This works if X X! € R*+! is invertible.

SML-2015



Last Week

Rent x 10.000

>> (XX )\ (XxY")

ans =
—0.049332605603095
0.163122792160298
—0.004411580036614
2.731204399433800
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+ x X X

age
surface

distance
27.300 JPY




Today

e A statistical / probabilistic perspective on LS-regression
e A few words on polynomials in higher dimensions

e A geometric perspective

e Variable co-linearity and Overfitting problem

e Some solutions: advanced regression techniques

o Subset selection
o Ridge Regression
o Lasso
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A (very few) words on the
statistical /probabilistic interpretation of LS
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The Statistical Perspective on Regression

e Assume that the values of y are stochastically linked to observations x as

y — (alx+ B) ~ N(0,0).

e [ his difference is a random variable called € and is called a residue.

SML-2015
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The Statistical Perspective on Regression

e This can be rewritten as,

e We assume that the difference between y and (a®x + b) behaves like a

y=(a"x+B)+e, e~N(0,0),

Gaussian (normally distributed) random variable.

SML-2015

Goal as a statistician: Estimate o and  given observations.
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Identically Independently Distributed (i.i.d) Observations

e Statistical hypothesis: assume that the parameters are o = a, 3 =10

SML-2015
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Identically Independently Distributed (i.i.d) Observations

e Statistical hypothesis: assume that the parameters are o = a, 3 =10

e In such a case, what would be the probability of each observation (x;,y;)?

SML-2015
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Identically Independently Distributed (i.i.d) Observations

e Statistical hypothesis: assuming that the parameters are o = a, § = 0,
what would be the probability of each observation?:

o For each couple (x;,y;), j=1,---,N,

1 ly; — (a’x; + b)]|?
P(xj’yﬂ& =af=b)= V2To b <_ | J 2(72‘7

SML-2015
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Identically Independently Distributed (i.i.d) Observations

e Statistical hypothesis: assuming that the parameters are o = a, § = 0,
what would be the probability of each observation?:

o For each couple (x;,y;), j=1,---,N,

1 ly; — (a’x; + b)|?
P(xj’yﬂ&:aﬂﬁzb):\/%ra b <_| j 2(72‘7

o Since each measurement (x;,y;) has been independently sampled,

ol ly; — (a’x; 4+ b)|?
P ({(xj,y;)}j=1,. n|la=a,B=0) = exp(_ : J )
Jr93)53=1 N gma >3
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Identically Independently Distributed (i.i.d) Observations

e Statistical hypothesis: assuming that the parameters are o = a, 3 = b,
what would be the probability of each observation?:

o For each couple (x;,y,), 7=1,---,N,

P(Xj,yj|oz:a,5:b) = exp <—||y=7 ( J )H )

2o 202

o Since each measurement (x;,y;) has been independently sampled,

— (aTx. + b2
. (_nyg (a”x; + )H)

N
P (Q(xj,y5) b=t v | =a, 5 =b) = H \/21_7TO'

202

o A.K.A likelihood of the dataset {(x;,¥;)j=1,....~} as a function of a and b,

N
1 ly; — (a’x; + b>||2>
Liix. un(a,b) = || exp | ——Z J
{( j?yj)}( ) et /27_‘_0_ p( 20-2
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Maximum Likelihood Estimation (MLE) of Parameters

Hence, for a, b, the likelihood function on the dataset {(x;,v;);=1.... N }...

N
1 ly; — (@"x; + b)IIQ)
L(a,b) = —— e —

SML-2015
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Maximum Likelihood Estimation (MLE) of Parameters

Hence, for a, b, the likelihood function on the dataset {(x;,v;);=1.... N }...

— (aTx. + b2
o (_nyg (a”x; + >||)

1
TOo 202

L(a,b) = H >

Why not use the likelihood to guess (a,b) given data?

SML-2015
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Maximum Likelihood Estimation (MLE) of Parameters

Hence, for a, b, the likelihood function on the dataset {(x;,v;);=1.... N }...

N
1 ly; — (@"x; + b)ll2)
L(a,b) = —— e —

...the MLE approach selects the values of (a,b) which mazimize L(a,b)

SML-2015
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Maximum Likelihood Estimation (MLE) of Parameters

Hence, for a, b, the likelihood function on the dataset {(x;,v;);=1.... N }...

— (aTx. + b2
o (_nyg (a”x; + >||)

202

A |
:Ema

...the MLE approach selects the values of (a,b) which mazimize L(a,b)

e Since max(, ) £(a,b) < max(, ) log L(a,b)

N
1
log L(a, 2—2”% (a’x; + D)%

e Hence maxXa p) E(a, b) = min(a,b) Zle”yﬂ — (aTXj + b)||2

SML-2015 20



Statistical Approach to Linear Regression

e Properties of the MLE estimator: convergence of ||a — al|?

e Confidence intervals for coefficients,

e [ests procedures to assess if model “fits” the data,

Residues Histogram Relative Frequency

e Bayesian approaches: instead of looking for one optimal fit (a, b) juggle with a
whole density on (a,b) to make decisions

® clc.

SML-2015
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http://en.wikipedia.org/wiki/Simple_linear_regression#Confidence_intervals
http://en.wikipedia.org/wiki/Category:Regression_diagnostics
http://en.wikipedia.org/wiki/Bayesian_linear_regression

A few words on polynomials in higher
dimensions

SML-2015

22



A few words on polynomials in higher dimensions

e For d variables, that is for points x € R4

o the space of polynomials on these variables up to degree p is generated by

d

u d E :
{X‘UGN7u:(u17'”7ud)a uzép}

i=1

- u ; - Uq U2 Ud

where the monomial x" is defined as z; 'z, - - - x

o Recurrence for dimension of that space: dim,;; = dim,, —|—(Zi]1?)

e Ford =20 and p =5, 1 + 20 + 210 4 1540 + 8855 4 42504 > 50.000

Problem with polynomial interpolation in high-dimensions is
the explosion of relevant variables (one for each monomial)
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Geometric Perspective
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Back to Basics

e Recall the problem:

11
X=|.
X1 X2
Y:[%

e We look for o such that a1 X ~ Y.

SML-2015

=
5 c RA+HIXN
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Back to Basics

e If we transpose this expression we get X oo~ Y7,

- 7 Y1
I z11 - ®ga :
L x12 -+ ®xgp - - '
. . QQ Y2
1 =z T T
1Lk ' Tdk
. . . . | (d | Y.
I z1.n -+ ZTan
- 3 YN |

e Using the notation Y = Y1 X = X1 and X, for the (k + 1)™ column of X,
d
Z X ~Y
k=0

e Note how the X}, corresponds to all values taken by the k" variable.

e Problem: approximate/reconstruct Reconstructing Y € R¥ using
Xo, X1, -, X4 €RN?

SML-2015



e Our ability to approximate Y depends implicitly on the space spanned by

Linear System

Reconstructing Y € RY using Xy, X, -+, X4 vectors of RY.

X07X17°" 7Xd

SML-2015

Consider the observed vector in RY of predicted values
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e Our ability to approximate Y depends implicitly on the space spanned by

Linear System

Reconstructing Y € RY using Xy, X, -+, X4 vectors of RY.

X07X17°" 7Xd

SML-2015

Plot the first regressor Xp...
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e Our ability to approximate Y depends implicitly on the space spanned by

Linear System

Reconstructing Y € RY using Xy, X, -+, X4 vectors of RY.

X07X17°" 7Xd

SML-2015

Assume the next regressor Xy is colinear to Xj...
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e Our ability to approximate Y depends implicitly on the space spanned by

Linear System

Reconstructing Y € RY using Xy, X, -+, X4 vectors of RY.

X07X17°" 7Xd

SML-2015

and so is Xs...
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e Our ability to approximate Y depends implicitly on the space spanned by

Linear System

Reconstructing Y € RY using Xy, X, -+, X4 vectors of RY.

X07X17°" 7Xd

SML-2015

-
y
.
.
-
L)
",
~

“a.
L)
.
-
L)
.
“,
.
",
-
LS
.
-
L)
-
~

Very little choices to approximate Y ...
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e Our ability to approximate Y depends implicitly on the space spanned by

Linear System

Reconstructing Y € RY using Xy, X, -+, X4 vectors of RY.

X07X17°" 7Xd

SML-2015

Suppose X, is actually not colinear to Xj.
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e Our ability to approximate Y depends implicitly on the space spanned by

Linear System

Reconstructing Y € RY using Xy, X, -+, X4 vectors of RY.

X07X17°" 7Xd

SML-2015

This opens new ways to reconstruct Y.
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e Our ability to approximate Y depends implicitly on the space spanned by

Linear System

Reconstructing Y € RY using Xy, X, -+, X4 vectors of RY.

X07X17°" 7Xd

SML-2015

When Xy, X1, X5 are linearly independent,
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e Our ability to approximate Y depends implicitly on the space spanned by

Linear System

Reconstructing Y € RY using Xy, X, -+, X4 vectors of RY.

X07X17°" 7Xd

SML-2015

Y is in their span since the space is of dimension 3
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e Our ability to approximate Y depends implicitly on the space spanned by

Linear System

Reconstructing Y € RY using Xy, X, -+, X4 vectors of RY.

X07X17°" 7Xd

SML-2015

The dimension of that space is Rank(X), the rank of X

Rank(X) < min(d+ 1, N).
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Linear System

Three cases depending on Rank X and d, N

1. Rank X < N. d + 1 column vectors do not span RY

e For arbitrary Y, there is no solution to o’ X=Y

2. RankX = N and d + 1 > N, too many variables span the whole of R"

e infinite number of solutions to o’ X=Y.

3. Rank X = N and d +1 = N, # variables = # observations

e Exact and unique solution: @ = X~ 1Y we have o’ X=Y

In most applications, d + 1 £ N so we are either in case 1 or 2

SML-2015
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Case 1: RankX < NV

e no solution to a? X=Y (equivalently Xa =7Y) in general case.

e What about the orthogonal projection of Y on the image of X

Y
T
~
(Y
~
s e
P / -~
P -
PR
Spal {X())Xla"' 7Xd}
e Namely the point Y such that
Y = argmin 1Y — u]|.

uespan Xg,Xq,+ ,Xqg

SML-2015
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Case 1: RankX < N

Lemma 1. {X,, Xy, -, Xy} is a Li. family & X1X is invertible

SML-2015
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Case 1: RankX < N

e Computing the projection W of a point w on a subspace V is well understood.

e In particular, if (Xg, X1, ,Xy) is a basis of span{Xg, X1, -+, X4}...
(that is {Xg, X1, -+, Xy} is a linearly independent family)
... then (X*'X) is invertible and ...
Y = X(XTX)"1XTy

e This gives us the a vector of weights we are looking for:

V=XX'X)"' X'y =XarYora'X=Y

X
x

e What can go wrong?

SML-2015 40


http://en.wikipedia.org/wiki/Projection_(linear_algebra)

Case 1: RankX < N

e If XTX is invertible, )
Y = X(XTX)"'X*TY

o If X*X is not invertible... we have a problem.

e If XX X's condition number
)\maX(XTX)

Amin (XTX)’
is very large, a small change in Y can cause dramatic changes in «.

e |n this case the linear system is said to be badly conditioned...

e Using the formula )
Y = X(X'X)"'X'Y

might return garbage as can be seen in the following Matlab example.

SML-2015
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http://en.wikipedia.org/wiki/Condition_number

Case 2: RankX=Nandd+1>N

high-dimensional low-sample setting

e lll-posed inverse problem, the set
{acR? | Xa=Y}
is a whole vector space. We need to choose one from many admissible
points.
e When does this happen?
o High-dimensional low-sample case (DNA chips, multimedia etc.)

e How to solve for this?

o Use something called regularization.

SML-2015
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A practical perspective:
Colinearity and Overfitting
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A Few High-dimensions Low sample settings

e DNA chips are very long vectors of measurements, one for each gene

CeeCee
GC

G
Cee6

[
o @

CeecCccc

e
4]
2
! ]
@
-
@
2
@
2

(=N - - - R -
- & G
e &

c e
c6CC

a
CE6CECCLe C:

o

e Task: regress a health-related variable against gene expression levels

Image:http://bioinfo.cs.technion.ac.il/projects/Kahana-Navon /DNA-chips.htm

SML-2015
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http://bioinfo.cs.technion.ac.il/projects/Kahana-Navon/DNA-chips.htm

A Few High-dimensions Low sample settings

e Emails represented as bag-of-words email; =

pIeas.e = 2
send- =1
money = 2
assignm-ent =0

- Q @
products do g:a 2 g ngp"m hbb gg ag
égeb ?au G £ gégfoﬁ,g gE;;]WhE' addresses help EEEE §
work @ &;Jgg, ¢ S program iss send Internet =a.uce
o855 - Be8 P OFREE o ity sreceive s QFu
ni‘f?rgegéo ngm @ i, mgg; @ Credt NOW -I-Q O'Esoﬂsware
s 8 i csumetsSseMmalli= .z
menths TYOW Qc-omcg';r%gm-c 3 Iiigyls (U; ESII‘IfOI'maanapmmcu
g wangomeen 3 &= ' GE £520Ne-: removed
t free g 58 0 5know o ¥ ; 2make=3 order £.¥
2click :&'g D 5 5 phone & ggg o e 2 5 besoOOst 18
- Tg 9§50 Tl300 G U =weu§§""“

e Task: regress probability that this is an email against bag-of-words

Image: http://clg.wlv.ac.uk/resources/junk-emails/index.php

SML-2015
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http://clg.wlv.ac.uk/resources/junk-emails/index.php

Correlated Variables

e Suppose you run a real-estate company.

SRR A
- BT EUTES £
EERLIE

| Sl P
maks RBHEREILKES RET
ERAE

b AE . YA: £
(p  REmERELNES RET
e

—| musnxs
BEE | RSt ERE R /A
B E]

TR B 4/ L T i
M SRR SE FE
EiE]

e For each apartment you have compiled a few hundred predictor variables, e.g.

o distances to conv. store, pharmacy, supermarket, parking lot, etc.
o distances to all main locations in Kansai

o socio-economic variables of the neighboorhood

o characteristics of the apartment

e Some are obviously correlated (correlated= “almost” colinear)
o distance to Post Office / distance to Post ATM

e In that case, we may have some problems (Matlab example)

Source: http://realestate.yahoo.co.jp/
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Overfitting

e Given d variables (including constant variable), consider the least squares
criterion

j d 2
Lq(aq, - ,0q) = E Ny — Qi Lq,j
i=1 i=1
e Add any variable vector £441,,7 = 1,--- , N, and define
; 2
Ld+1(041, T, Qg 04d+1) = E Y; — E QLG 5 — Xd41Ld+1,5
i=1 i=1

SML-2015
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Overfitting

e Given d variables (including constant variable), consider the least squares

criterion
. 2
j
Lq(aq, - ,0q) = E yj_E:O‘iwi,j
i=1 i=1
e Add any variable vector £441,,7 = 1,--- , N, and define
j d 2
Ld+1(041, T, Qg 04d+1) = E Y; — E QLG 5 — Xd41Ld+1,5
i=1 i=1

THEN min  cga+1 Lgi1(a)< ming, cpa La(a)

SML-2015
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Overfitting

e Given d variables (including constant variable), consider the least squares
criterion

j d 2
Lq(aq, - ,0q) = E Ny — Qi Lq,j
i=1 i=1
e Add any variable vector £441,,7 = 1,--- , N, and define
j d 2
Ld+1(041, T, Qg 04d+1) = E Y; — E QLG 5 — Xd41Ld+1,5
i=1 i=1

Then min, cpa+1 Lg11(e)< min,cpa Lg(a)

why? Lg (a1, -+ ,aq) = Lgy1 (o, -+, aq,0)

SML-2015
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Overfitting

e Given d variables (including constant variable), consider the least squares
criterion

j d 2
La(on, - ag) =Y |y — Y oumy
i=1 i=1
e Add any variable vector £441,,7 = 1,--- , N, and define
j d 2
Ld+1(041, T, Qg Oéd+1) = E Y; — E QLG 5 — Xd41Ld+1,5
i=1 i=1

Then min, cpa+1 Lg11(e)< min,cpa Lg(a)

why? Lg (a1, -+ ,aq) = Lgy1 (o, -+, aq,0)

Residual-sum-of-squares goes down... but is it relevant to add variables?

SML-2015
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Occam'’s razor formalization of overfitting

Minimizing least-squares (RSS) is not clever enough.
We need another idea to avoid overfitting.

e Occam’s razor:lex parsimoniae

e law of parsimony: principle that recommends selecting the hypothesis that
makes the fewest assumptions.

one should always opt for an explanation in terms of the fewest possible causes,
factors, or variables.

Wikipedia: William of Ockham| born 1287- died 1347
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http://en.wikipedia.org/wiki/William_of_Ockham
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Advanced Regression Techniques
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Quick Reminder on Vector Norms

For a vector a € R?, the Euclidian norm is the quantity

szz\ijﬁ-

1=1

More generally, the g-norm is for ¢ > 0,

1
d q-

jall, = (zw)
=1

d
lalli =) lail
i=1

In particular for ¢ =1,

In the limit ¢ — oo and ¢ — 0,

lalloc = max [ai]. |lallo = #{ila; # O}.

i=1,---,

SML-2015
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Tikhonov Regularization '43 - Ridge Regression '62

e [ikhonov's motivation :

solve ill-posed inverse problems by regularization

e If min, L(«) is achieved on many points... consider

min L (o) + Ao

e We can show that this leads to selecting

o= (XT'X +Algq) XY

e The condition number has changed to

SML-2015

Amax (XTX) 4+ A
)\min(XTX) + A .

54



Subset selection : Exhaustive Search

e Following Ockham's razor, ideally we would like to know for any value p

min  L(«)
o, [lallo=p

e — select the best vector a which only gives weights to p variables.

e — Find the best combination of p variables.

Practical Implementation

e For p <n, ( ) possible combinations of p variables.

n
p

e Brute force approach: generate (Z) regression problems and select the one that
achieves the best RSS.

Impossible in practice with moderately large n and p...(350) = 150.000

SML-2015
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Subset selection : Forward Search

Since the exact search is intractable in practice, consider the forward heuristic

e In Forward search:

o define I; = {0}.
o given a set I, C {0,---,d} of k variables, what is the most informative

variable one could add?
> Compute for each variable ¢ in {0,--- ,d} \ I

N

t; = min E Yj — E QT j + QT

« ,O .
(ak)ker, s hel,

> Set Iy, = I, U {i*} for any ¢* such that i* = min ¢;.
> k = k + 1 until desired number of variablse
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Subset selection : Backward Search

. or the backward heuristic

e In Backward search:

o define Iy ={0,1,--- ,n}.
o given a set I, C {0,---,d} of k variables, what is the least informative

variable one could remove?
> Compute for each variable ¢ in I

N
ti = Z Yj — Z QT j

(O‘k)kEIk\{z}

> Set Ip_1 = I \ {¢*} for any ¢* such that i* = max ¢,.
> k =k — 1 until desired number of variables

SML-2015
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Subset selection : LASSO

Naive Least-squares

min L(«)

Best fit with p variables (Occam!)

min  L(«)
o ||ello=p

Tikhonov regularized Least-squares
min L(a) + Alloe|
(87
LASSO (least absolute shrinkage and selection operator)

min L(a) + Allels
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