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Today's talk

e Seen recently: hidden markov models, latent variables

e Today, present Conditional Random Fields (ICML 2001).

Conditional random fields: Probabilistic models for segmenting and labeling sequence data, by Lafferty McCallum Pereira
e Proposed by the authors when working for (now defunct) WhizBang! labs.

e WhizBang! labs was a company specialized in extracting automatically
information from web-pages.

e Objective: parse millions of webpages to select important content

o job advertisements
o company reports

e Problem: recover structure in very large databases.

Reference text: |An Introduction to Conditional Random Fields Sutton, McCallum
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Conditional random fields: Probabilistic models for segmenting and labeling sequence data
http://arxiv.org/abs/1011.4088

Today's talk

Objective :Annotate Subparts of Large Complex Objects

e The theory is a general and applies to “random fields".

Difference with Hidden Markov Models: we do not use a generative model
X = cat eat mice, Y=NVN

P(X, Y )
—~— —~—
text  parsing result

But only a discriminative approach, i.e. we only focus on

P(Y|X)

e Difference? P(X,Y) = P(Y|X)P(X). no need to take care of P(X).
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Graphical Models

an introduction
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Structured Predictions

e For many applications, predicting many joint variables is fundamental.

e Examples

o classify regions of an image,
o segmenting genes in a strand of DNA,
o extract syntax from natural-language text

e The goal is to produce local predictors

Yy = {y())ylv' °'7yT} giVen X

e Of course, one could only focus on individual regression/classification task
X — 1, for each s,

independently... but then how can we make sure the final answer is coherent?
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Graphical Models

e A natural way to model constraints on output variables is provided by
graphical models, e.g.

Bayesian networks,
Neural networks,

o factor graphs,

o Markov random fields,
o Ising models, etc.

©)
0]

e Graphical models represent a complex distribution over many variables as a
product of local factors on smaller subsets of variables.

e Two types of graphical models: directed and undirected
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http://en.wikipedia.org/wiki/Graphical_model

Some Notations First

e We consider probabilities on variables indexed by V = X uY,

o X is a set of input variables
o Y is a set of output variables that we wish to predict.

e \We assume that each variable takes values in a discrete set.

e An assignment to all variables indexed in X (resp. Y') is denoted x (resp. y).
e An assignment to all variables indexed in X and Y is denoted z = (x,y).

o For s € X, x5 denotes the value assigned to s by x.
o For seY, ys denotes the value assigned to s by y.
o For v eV, zs; denotes the value assigned to s by z.
o For a subset a cV, z, = (25)sca-
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Undirected Graphical Models

e Given a collection of subsets F c £(V'), an undirected graphical model is
the set of all distributions that can be written as

pCey) = 7 T a(na)

for any choice of local function F' = {¥,}, where ¥, : Vol - R,
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Undirected Graphical Models

p(Xa Y) - % [Taer \Ija(za)

e Usually sets a are much smaller than the full variable set V.

e / is a normalization factor, defined as

Z = Z H U, (z,).

X,y acF

e Computations are easier if each local function is an exponential model:

\Ija(Xaa Ya) = €Xp {zk: Hakfak:(za)} )

For each k£ and subset of variables a, a weighted feature f,r(z,) with 6.
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Directed Graphical Model

e Let G=(V,FE) be a directed acyclic graph.

e For each v, w(v) c V is the set of parents of v in G.

e A directed graphical model is a family of distributions that factorize as:

p(y,x) =[] p(zo|Zr(v))-
veV

e Difference: not only subsets a, but also directions, given by 7.
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http://en.wikipedia.org/wiki/Directed_acyclic_graph
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Text Classes

e Suppose a whole text can only belong to one category.
TEXT <> CATEGORY

e Here, we assume also that there is a joint probability on texts and their

category.
P(text, category)

which quantifies how likely the match between

a text text and a category category is
e For instance,
P(‘I am feeling hungry these days’,’poetry’) ~0
}D(‘Manchester United’s stock rose after their Victory’,’business’)

V

fj(‘Manchester United’s stock rose after their victory’,’sports’)

PRA - 2013
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Text classification & probabilistic framework

e Hence, given a sequence of words (including punctuation),

W = (w17 w2, W3, Wy, Ws, We, W7, W, "+, wn)

e assuming we know P, the joint probability between texts and categories,

e an easy way to guess the category of w is by looking at

category-prediction(w) = argmax P(C|wq, wa, -, w,,)
C

PRA - 2013
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Text classification & probabilistic framework

P(’poetry’|‘I am feeling hungry these days’) =0.0037
P(’business’|‘I am feeling hungry these days’) =0.005
P(’sports’|‘I am feeling hungry these days’)=0.003
P(’food’|‘TI am feeling hungry these days’)=0.2
P(’economy’|‘I am feeling hungry these days’)=0.04
P(’society’|‘I am feeling hungry these days’)=0.08
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Text classification & probabilistic framework

P(’poetry’|‘I am feeling hungry these days’) =0.0037
P(’business’|‘I am feeling hungry these days’) =0.005
P(’sports’|‘I am feeling hungry these days’)=0.003
— P(’food’|‘I am feeling hungry these days’)=0.2
P(’economy’|‘I am feeling hungry these days’)=0.04
P(’society’|‘I am feeling hungry these days’)=0.08
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Bayes Rule

e Using Bayes theorem p(A, B) = p(A|B)p(B),

P(Cawla W, '”7wn)

P(Clws, ws, -+ wn) = P(wi,wa, -+ Wy)
9 9 9 n

e \When looking for the category C' that best fits w, we only focus on the
numerator.

e Bayes theorem also gives that

P(C, w1,y wy) = P(C)P(w,ws, -, wy|C)
= P(C)P(w|C)P(ws, w3,y w,|C,wi)
:P(C)P(w1|C)P(w2|Cawl)P(w?n w49"'9wn|caw17w2)

= P(C) H P(w;|C,wy, ey w;i_q1)
i=1
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Examples

e Assume we have the beginning of this news title

Wi,y W12 = ‘The weather was so bad that the organizers decided
to close the’

e If C =business, then
P(W3i3 = ‘market’ |business, wy, -+, Wi2)

should be quite high, as well as summit, meeting etc..

e On the other hand, if we know C =sports, the probability for w3 changes
significantly...
P(Wi3 = ‘game’|sports, wi, -+, Wi2)
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The Naive Bayes Assumption

e From a factorization

P(Cawla"'awn) :P(C)Hp(wi|caw17"'7wi—1)
1=1

which handles all the conditional structures of text,

e we assume that each word appears independently conditionally to C,

P(wi|caw17"'7wi—1) :P(wilcawawawi—/l)

e and thus .
P(C,wy,-,wy) = P(C) HP(’ULAC)
i=1

PRA - 2013
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e Bayes classifier can be interpreted as a directed graphical model, where

Naive Bayes

Recall the Naive Bayes Assumption on p(x,y)

p(x,v) = p(y) ]Blp(:vkly)

o V={X = {1, N}}u{y =1
o All elements of X have only one parent:

PRA - 2013

(i) = 1.
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Logistic Regression

e Famous technique for classification (with binary variables):

Logistic Regression (or Maximum Entropy Classifier), model p(y|x)

1 N
p(ylx) = 7(x) exp {Qy + Z Hy,j:vj} :

g=1

e by malaxing things a bit, introducing

o fuyrj(y;X) = 0yr=y T;
© fy’(yax) = 5y’=y

e and renumbering all these functions (and the corresponding weights 6, ; and

0,) 1to K,

Z(lx) exp {g O fr (v, X)} :

p(ylx) =

we obtain an undirected graphical model.

PRA - 2013
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A Simple Example: Classification

Naive Bayes Assumption, p(x,y)

p(x,y) = p(y) ]Blp(:vkly)

equivalent to a directed graphical model

Logistic Regression, p(y|x)

1 K
) = Ziges | 0|

equivalent to an undirected graphical model

PRA - 2013
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Link between Naive Bayes and Logistic Regression

Deriving the conditional distribution p(y|x) of Naive Bayes

p(x.1) = p(y) ﬁ (i)

e Let us study the case where all variables are binary.

PRA - 2013
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Link between Naive Bayes and Logistic Regression

o Set
p1=P(y=1)
pio = P(x; = 1jy = 0)
pi1 = P(x; =1y =1)
e Then
p(xi =iy =y) = pgé_y)xi(l = pio) TIUEI I — pyy )P )
and
p(y=y)=p(1-p1)'"Y
e Define

b1 L 1 — Pi1
0o = log + ) log
1-p1 ; 1 - pig

¢; = log Dio
1 - pio
1 —p. .
(9¢=10g Pio Pil
pio 1 —-pa

Source: Y.Bulatov
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http://yaroslavvb.blogspot.jp/2006/04/naive-bayes-vs-logistic-regression.html

Link between Naive Bayes and Logistic Regression

e then N N
efoy p2il1 PiTi p2ily OiyT;

[TY, (1 +e®i) + e [T, (1 + ebi+dr)

p(x,y) =
e which can be decomposed again as

N N
o(00+23Y 0;1;)" eXiz1 PitTi (1 + P02ty 97;:1:7;)

P{X, = X
( y) 1+ 6«90+ZZ£\:[1 0;x; Hff\:[l(]- + ng@) + 690 H:L]\:fl(l + 69i+¢i)

=p(ylx) x  p(x)

e \We have highlighted the conditional distribution induced by naive Bayes in the
case of binary variables.

e This conditional distribution coincides with the logistic regression form

e This can be shown for many other cases (e.g. p(xx|y) is Gaussian)
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Next Example, Sequence Models

Predict the corresponding structure Y =1,---,7T of T"words, X =1,---,T

Recall the Hidden Markov Model on p(x,y)

p(x,y) = p(y1) gp(ytlyt-l)p(wtlyt)

e Of course, HMM's are directed graphical model, where

o V={X={1,-T};u{Y ={1,-,T}}
o Each element of X has only one parent:

(1) = 1.
o Each element of {2,---, T} has one parent:

m(i)=i-1.

PRA - 2013
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o A linear-chain CRF is a distribution p(y|x) that takes the form

Sequence Models

The Linear Conditional Random Field on p(y|x)

pvb) = s TTew { . Oufin i xt>} |

where Z(x) is an instance-specific normalization function

Z(x) = Z ﬁ eXp {l; Or 1 (Yt, yt—1,Xt)} :

y t=1

o The Linear-Chain CRF is an undirected graphical model

PRA - 2013
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From HMM to Linear CRF

e Let us rewrite the HMM density

p(y,x) = HeXp{ > OiiliyeiyLiy, =y + 20 D Hoiliy=iyLiz,- o}}

t 1 1,j5€S 1S 0€O

where S (states) is the set of values possibly taken by y and O (outputs) by x.

e Every HMM can be written in this form by setting

05 =logp(y' =ily=7) and po; = logp(x = oly = i).
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From HMM to Linear CRF

We can highlight again the feature functions perspective:

e Each feature function has the form
fk(ytayt—laxt)°
e There needs to be one feature for each transition (i, ),

fij(yaylvx) = 1{y=z‘}1{y’=j}

and one feature for each state-observation pair (7, 0),
fio(ya yla ZC) = 1{y:7j}]—{x:0}

e Once this is done, we get

1 T K
p(y,x) = - []exp { > ekfk(ytayt—laxt)} :
t=1 k=1

where f} ranges over both all of the f;; and all of the f,.

PRA - 2013
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From HMM to Linear CRF

o Last step: write the conditional distribution p(y|x) induced by HMM's

p(y,x) _ Hthl exXp {Zg; Or fr:(yt, Yt-1, I‘t)}
Zy/p(Y', X) Dy H£1 exp {25:1 Or (Vs Vi1 ZCt)}

p(ylx) =

e this is the linear CRF induced by HMM's...

PRA - 2013
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Differences between HMM and Linear CRF

o If p(y,x) factorizes as an HMM = distribution p(y|x) is a linear-chain CRF.

However, other types of linear-chain CRFs,
not induced by HMM's,
are also useful

e For example,

o in an HMM, a transition from state 7 to j receives the same score,

log p(ye = jlye-1 = 1),

regardless of the x;_q.
o In a CRF, the score of the transition (i,7) might depend for instance on
the current observation vector, e.g. by defining

Je = Ly Ly =13 L a=0)-

PRA - 2013



General CRF

p(y|x) is a conditional random field
if the distribution p(y|x) can be written as

p(¥Ix) = 75 Mu,erexp { D1t arfar (Yar Xa)

e Many parameters potentially...

e For linear chain CRF, same weights/functions are used for factors
Uy (Y, Ye-1,Xt), V.

e Solution: Partition set of subsets of variables F into groups F = F1,---, Fp.

e Each subset F; is a set of subsets of variables which share the same local
functions, i.e.

p(ylx) = - Z( ) [T I] Ya(ya xa)

FieF VaeF;
where

k=1

K (i)
\Ija(}’aaxa) = exp{ Z eikfik(yaaxa)}'

e Most CRF's of interest implement such structures.
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Features - Factorization

e CRF's are very general structures. What about the practical implementation?

o Features depend on the task. In some NLP tasks with linear CRF,
fpk(y07xc) - 1{YC:5’C}ka(XC)°

e Each feature is factorized

o is nonzero only for a single output configuration y.,
o its value only depends input observation x..

e This factorization is attractive because computationally efficient:

o computing each g,; may involve nontrivial text or image processing,
o However, we only need to evaluate it once, even if it shared across many
features.

e These functions g,x(x.) are called observation functions.
e Examples of observation functions are

o “word z; is capitalized”,
o “word z; ends in ing".

PRA - 2013
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Estimation and Prediction

A linear-chain CRF is a distribution p(y|x) that takes the form

1 T K
p(y|x) = TX) g exXp {k_l Hk:fk:(yta Yt-1, Xt)} 3

e Two major tasks ahead:

Given a set of features fj, estimate all parameters 6,

Predict the labels of a new input x, y* = argmax, p(y|x).

e We first review the prediction task, estimation is covered next.

e In the prediction task, we will re-use the Forward-Backward and Viterbi
algorithms of HMM's.
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Prediction - Backward Forward

e The HMM's distribution can be factorized as a directed graphical model
p(y,x) = 1:[ Wi (Ye, Yi-1, 1)
(with Z =1) and factors defined as:
Wi(j,0,2) € pye = lye-1 = D)p(ae = xlye = j).

e The HMM forward algorithm, used to compute the probability p(x) of
observations, uses the summation.

p(x) = > p(x,¥) = > [ Yeye, -1, x¢)

y t=1

= Z Z \IJT(yTJyT—lawT) Z \IJT—l(yT—lny—2,xT—1) Z

YT Y1-1 Yyr-2 Yyr-3

e Idea: cache intermediate sum which are reused many times during the
computation of the outer sum.
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Prediction - Forward

e In that sense, define forward variables o, ¢ RM (where M is the number of
states),

at(J) dzefp(X(l...tw Yi=17)

t-1
= Z U (F, Y1, t) H Uy (ye, Ypr-1, Ty ),
Y(1...t-1) t'=1

e The summation over y; ;1) ranges over all assignments to y1,y2,..., ¥y 1.

e The a; can be computed by the recursion

at(j) - Z:Q \Ijt(jv iv xt)o‘t—l(i%

with initialization a1(j) = V1(J, yo,x1). (Recall that yg is the fixed initial state
of the HMM.)

e We can check that p(x) = .. ar(yr).

PRA - 2013 37



Prediction - Backward

e Define a backward recursion, with reverse order: introduce 3;'s

By (e d:efp(X(t+1...T)|yt = 1)

T
- Y T o),

Y(t+1...T) t'=t+1

and the recursion

675(@) - Z \Ijt+1(j7i7xt+1)6t+1(j)a

jes
e Initialization: G1(i) = 1.

e Analogously to the forward case, p(x) can be computed using the backward
variables as

p(x) = Bo(yo) = Z U (y1, Y0, 21)B1(y1)-

PRA - 2013
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Prediction - Forward Backward

e The FB recursions can be combined to obtain the marginal distributions

P(Ye-1,Y4|x)

e Two perspectives can be applied, with identical result:

e Taking first a probabilistic viewpoint we can write

p(X|ye-1, ) p(Ye, Yi-1)
p(x)
B p(X(l...t—l)a yt—1)p(yt|yt—1)p($t|yt)p(x(t+1..m)|yt)
) p(x)
o< v 1(Ye-1) Ve (Y, ye-1,7¢) Be(Yt),

p(Ye-1,y4|x) =

where in the second line we have used the fact that x(; ;i) is independent
from x(;.1 1y and from x; given y; 1, ;.
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Prediction - Forward Backward

e Taking a factorization perspective, we see that

p(yt—laytax) = \Ijt(ytayt—laxt)

t-1
( Z H‘I’t’(yt'ayt'hi’?t’))
Y{

1..t-2) t'=1

T
( Z H \I’t’(yt’ayt’lafﬂ)),
Y{

t+1...T) t'=t+1

which can be computed from the forward and backward recursions as

P(Yi-1, Y6, X) = a1 (Ye-1) Ve (Ye, Ye-1,2¢) Be (Yr).-

e With p(y;_1,y:,%x), renormalize over y;,y; 1 to obtain the desired marginal
P(Ye-1, ye[x).
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Prediction - Forward Backward

e To compute the globally most probable assignment y* = arg maxy p(y|x),

e we observe that the trick earlier still works if all summations are replaced by
maximization.

e This yields the Viterbi recursion:

0¢(7) = max Wy (7, 4, 24)0r-1(7)
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Prediction - Forward Backward in Linear CRF’s

e Natural generalization of forward-backward and Viterbi algorithms to
linear-chain CRFs

e Only transition weights W;(j,4,x;) need to be redefined.

e [he CRF model can be rewritten as:
L1
p(y|X) = \I’t(yu yt—laxt)a
Z(X) t=1

where we define

Uy (Y, Yp-1,X¢) = €XPp {Z Or fre (Vs Y1, Xt)} .
k

e Using these definitions, use identical algorithms.

e Instead of computing p(x) as in an HMM, in a CRF the forward and backward
recursions compute Z(x).
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Parameter Estimation

e Suppose we have i.i.d training data

D = {X(z)’y(z)}z_ .

o each x(9) = {x1 ,X; ) ..ng)} is a sequence of inputs,
o each y(i) = {yl ,y; ) yéf)} is a sequence of the desired predictions.
e Parameter estimation can be performed by penalized maximum conditional

likelihood.

N
((0) = Y logp(y|x).
i=1
namely,

5(9)=§:§:§9kf (g, 92 %) - ZlogZ(X(”)

1=1t=1 k=1
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