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Today’s talk

● Seen recently: hidden markov models, latent variables

● Today, present Conditional Random Fields (ICML 2001).
Conditional random fields: Probabilistic models for segmenting and labeling sequence data, by Lafferty McCallum Pereira

● Proposed by the authors when working for (now defunct) WhizBang! labs.

● WhizBang! labs was a company specialized in extracting automatically
information from web-pages.

● Objective: parse millions of webpages to select important content

○ job advertisements○ company reports

● Problem: recover structure in very large databases.

Reference text: An Introduction to Conditional Random Fields Sutton, McCallum
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Conditional random fields: Probabilistic models for segmenting and labeling sequence data
http://arxiv.org/abs/1011.4088


Today’s talk

Objective :Annotate Subparts of Large Complex Objects

● The theory is a general and applies to “random fields”.

● Difference with Hidden Markov Models: we do not use a generative model

X = cat eat mice, Y= N V N

P (X®
text

, Y®
parsing result

)

● But only a discriminative approach, i.e. we only focus on

P (Y ∣X)

● Difference? P(X,Y) = P (Y ∣X)P(X). no need to take care of P (X).
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Graphical Models

an introduction
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Structured Predictions

● For many applications, predicting many joint variables is fundamental.

● Examples

○ classify regions of an image,○ segmenting genes in a strand of DNA,○ extract syntax from natural-language text

● The goal is to produce local predictors

y = {y0, y1, . . . , yT} given x

● Of course, one could only focus on individual regression/classification task

x↦ ys, for each s,

independently... but then how can we make sure the final answer is coherent?
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Graphical Models

● A natural way to model constraints on output variables is provided by
graphical models, e.g.

○ Bayesian networks,○ Neural networks,○ factor graphs,○ Markov random fields,○ Ising models, etc.

● Graphical models represent a complex distribution over many variables as a
product of local factors on smaller subsets of variables.

● Two types of graphical models: directed and undirected
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http://en.wikipedia.org/wiki/Graphical_model


Some Notations First

● We consider probabilities on variables indexed by V =X ∪ Y ,

○ X is a set of input variables○ Y is a set of output variables that we wish to predict.

● We assume that each variable takes values in a discrete set.

● An assignment to all variables indexed in X (resp. Y ) is denoted x (resp. y).

● An assignment to all variables indexed in X and Y is denoted z = (x,y).
○ For s ∈X , xs denotes the value assigned to s by x.○ For s ∈ Y , ys denotes the value assigned to s by y.○ For v ∈ V , zs denotes the value assigned to s by z.○ For a subset a ⊂ V , za = (zs)s∈a.
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Undirected Graphical Models

● Given a collection of subsets F ⊂ ℘(V ), an undirected graphical model is
the set of all distributions that can be written as

p(x,y) = 1

Z
∏
a∈F

Ψa(za),

for any choice of local function F = {Ψa}, where Ψa ∶ V ∣a∣ → R+.

PRA - 2013 8



Undirected Graphical Models

p(x,y) = 1

Z∏a∈F Ψa(za)
● Usually sets a are much smaller than the full variable set V .

● Z is a normalization factor, defined as

Z = ∑
x,y

∏
a∈F

Ψa(za).

● Computations are easier if each local function is an exponential model:

Ψa(xa,ya) = exp{∑
k

θakfak(za)} ,

● For each k and subset of variables a, a weighted feature fak(za) with θak.
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Directed Graphical Model

● Let G = (V,E) be a directed acyclic graph.

● For each v, π(v) ⊂ V is the set of parents of v in G.

● A directed graphical model is a family of distributions that factorize as:

p(y,x) = ∏
v∈V

p(zv∣zπ(v)).

● Difference: not only subsets a, but also directions, given by π.
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Starting Slowly: Naive Bayes
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Text Classes

● Suppose a whole text can only belong to one category.

TEXT
?
↔ CATEGORY

● Here, we assume also that there is a joint probability on texts and their
category.

P (text,category)
which quantifies how likely the match between

a text text and a category category is

● For instance,

P (‘I am feeling hungry these days’,’poetry’) ≈ 0
P (‘Manchester United’s stock rose after their victory’, ’business’)

⋁
P (‘Manchester United’s stock rose after their victory’, ’sports’)
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Text classification & probabilistic framework

● Hence, given a sequence of words (including punctuation),

w = (w1,w2,w3,w4,w5,w6,w7,w8,⋯,wn)

● assuming we know P , the joint probability between texts and categories,

● an easy way to guess the category of w is by looking at

category-prediction(w) = argmax
C

P (C ∣w1,w2,⋯,wn)
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Text classification & probabilistic framework

P (’poetry’∣‘I am feeling hungry these days’) = 0.0037
P (’business’∣‘I am feeling hungry these days’) = 0.005

P (’sports’∣‘I am feeling hungry these days’) = 0.003
P (’food’∣‘I am feeling hungry these days’) = 0.2

P (’economy’∣‘I am feeling hungry these days’) = 0.04
P (’society’∣‘I am feeling hungry these days’) = 0.08
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Text classification & probabilistic framework

P (’poetry’∣‘I am feeling hungry these days’) = 0.0037
P (’business’∣‘I am feeling hungry these days’) = 0.005

P (’sports’∣‘I am feeling hungry these days’) = 0.003
→ P (’food’∣‘I am feeling hungry these days’) = 0.2

P (’economy’∣‘I am feeling hungry these days’) = 0.04
P (’society’∣‘I am feeling hungry these days’) = 0.08
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Bayes Rule

● Using Bayes theorem p(A,B) = p(A∣B)p(B),
P (C ∣w1,w2,⋯,wn) = P (C,w1,w2,⋯,wn)

P (w1,w2,⋯,wn)
● When looking for the category C that best fits w, we only focus on the
numerator.

● Bayes theorem also gives that

P (C,w1,⋯,wn) = P (C)P (w1,w2,⋯,wn∣C)
= P (C)P (w1∣C)P (w2,w3,⋯,wn∣C,w1)
= P (C)P (w1∣C)P (w2∣C,w1)P (w3,w4,⋯,wn∣C,w1,w2)
= P (C) n∏

i=1
P (wi∣C,w1,⋯,wi−1)
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Examples

● Assume we have the beginning of this news title

w1,⋯,w12 = ‘The weather was so bad that the organizers decided

to close the’

● If C =business, then
P (W13 = ‘market’∣business,w1,⋯,w12)

should be quite high, as well as summit, meeting etc..

● On the other hand, if we know C =sports, the probability for w13 changes
significantly...

P (W13 = ‘game’∣sports,w1,⋯,w12)
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The Naive Bayes Assumption

● From a factorization

P (C,w1,⋯,wn) = P (C) n∏
i=1

P (wi∣C,w1,⋯,wi−1)

which handles all the conditional structures of text,

● we assume that each word appears independently conditionally to C,

P (wi∣C,w1,⋯,wi−1) = P (wi∣C,
�
�
�w1,���⋯,�����wi−1)

= P (wi∣C)

● and thus

P (C,w1,⋯,wn) = P (C) n∏
i=1

P (wi∣C)
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Naive Bayes & Logistic Regression

Binary Case
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Naive Bayes

Recall the Naive Bayes Assumption on p(x, y)

p(x, y) = p(y) N∏
k=1

p(xk∣y)

● Bayes classifier can be interpreted as a directed graphical model, where

○ V = {X = {1,⋯,N}} ∪ {Y = 1}○ All elements of X have only one parent:

π(i) = 1.
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Logistic Regression

● Famous technique for classification (with binary variables):

Logistic Regression (or Maximum Entropy Classifier), model p(y∣x)

p(y∣x) = 1

Z(x) exp
⎧⎪⎪⎨⎪⎪⎩θy +

N∑
j=1

θy,jxj

⎫⎪⎪⎬⎪⎪⎭ ,
● by malaxing things a bit, introducing

○ fy′,j(y,x) = δy′=y xj○ fy′(y,x) = δy′=y
● and renumbering all these functions (and the corresponding weights θy,j and
θy) 1 to K,

p(y∣x) = 1

Z(x) exp{
K∑
k=1

θkfk(y,x)} .
we obtain an undirected graphical model.
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A Simple Example: Classification

Naive Bayes Assumption, p(x, y)

p(x, y) = p(y) N∏
k=1

p(xk∣y)
equivalent to a directed graphical model

Logistic Regression, p(y∣x)

p(y∣x) = 1

Z(x) exp{
K∑
k=1

θkfk(y,x)} .
equivalent to an undirected graphical model
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Link between Naive Bayes and Logistic Regression

Deriving the conditional distribution p(y∣x) of Naive Bayes

p(x, y) = p(y) N∏
k=1

p(xk∣y)

● Let us study the case where all variables are binary.
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Link between Naive Bayes and Logistic Regression

● Set
p1 = P (y = 1)
pi0 = P (xi = 1∣y = 0)
pi1 = P (xi = 1∣y = 1)

● Then

p(xi = xi∣y = y) = p(1−y)xi

i0 (1 − pi0)(1−y)(1−xi)pyxi
i1 (1 − pi1)y(1−xi)

and
p(y = y) = py

1
(1 − p1)1−y

● Define

θ0 = log p1

1 − p1 +
n∑
i=1

log
1 − pi1
1 − pi0

φi = log pi0

1 − pi0
θi = log 1 − pi0

pi0

pi1

1 − pi1
Source: Y.Bulatov
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Link between Naive Bayes and Logistic Regression

● then

p(x, y) = eθ0y e∑N
i=1φixi e∑N

i=1 θiyxi

∏N
i=1(1 + eφi) + eθ0∏N

i=1(1 + eθi+φi)
● which can be decomposed again as

p(x, y) = e(θ0+∑N
i=1 θixi)y

1 + eθ0+∑N
i=1 θixi

× e∑N
i=1φixi (1 + eθ0+∑N

i=1 θixi)
∏N

i=1(1 + eφi) + eθ0∏N
i=1(1 + eθi+φi)

= p(y∣x) × p(x)

● We have highlighted the conditional distribution induced by naive Bayes in the
case of binary variables.

● This conditional distribution coincides with the logistic regression form

● This can be shown for many other cases (e.g. p(xk∣y) is Gaussian)
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Next Example, Sequence Models

Predict the corresponding structure Y = 1,⋯, T of T words, X = 1,⋯, T
Recall the Hidden Markov Model on p(x,y)

p(x,y) = p(y1) N∏
k=1

p(yt∣yt−1)p(xt∣yt)

● Of course, HMM’s are directed graphical model, where

○ V = {X = {1,⋯, T}} ∪ {Y = {1,⋯,T}}○ Each element of X has only one parent:

π(i) = i.
○ Each element of {2,⋯,T} has one parent:

π(i) = i − 1.
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Sequence Models

The Linear Conditional Random Field on p(y∣x)
○ A linear-chain CRF is a distribution p(y∣x) that takes the form

p(y∣x) = 1

Z(x)
T∏
t=1

exp{ K∑
k=1

θkfk(yt, yt−1,xt)} ,

where Z(x) is an instance-specific normalization function

Z(x) = ∑
y

T∏
t=1

exp{ K∑
k=1

θkfk(yt, yt−1,xt)} .

○ The Linear-Chain CRF is an undirected graphical model
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From HMM to Linear CRF

● Let us rewrite the HMM density

p(y,x) = 1

Z

T∏
t=1

exp

⎧⎪⎪⎨⎪⎪⎩ ∑i,j∈S θij1{yt=i}1{yt−1=j} +∑i∈S ∑o∈Oµoi1{yt=i}1{xt=o}
⎫⎪⎪⎬⎪⎪⎭ ,

where S (states) is the set of values possibly taken by y and O (outputs) by x.

● Every HMM can be written in this form by setting

θij = log p(y′ = i∣y = j) and µoi = log p(x = o∣y = i).
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From HMM to Linear CRF

● We can highlight again the feature functions perspective:

● Each feature function has the form

fk(yt, yt−1, xt).
● There needs to be one feature for each transition (i, j),

fij(y, y′, x) = 1{y=i}1{y′=j}
and one feature for each state-observation pair (i, o),

fio(y, y′, x) = 1{y=i}1{x=o}
● Once this is done, we get

p(y,x) = 1

Z

T∏
t=1

exp{ K∑
k=1

θkfk(yt, yt−1, xt)} .
where fk ranges over both all of the fij and all of the fio.
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From HMM to Linear CRF

● Last step: write the conditional distribution p(y∣x) induced by HMM’s

p(y∣x) = p(y,x)
∑y′ p(y′,x) =

∏T
t=1 exp{∑K

k=1 θkfk(yt, yt−1, xt)}
∑y′∏T

t=1 exp{∑K
k=1 θkfk(y′t, y′t−1, xt)}.

● this is the linear CRF induced by HMM’s...
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Differences between HMM and Linear CRF

● If p(y,x) factorizes as an HMM ⇒ distribution p(y∣x) is a linear-chain CRF.

However, other types of linear-chain CRFs,
not induced by HMM’s,

are also useful

● For example,

○ in an HMM, a transition from state i to j receives the same score,

log p(yt = j∣yt−1 = i),
regardless of the xt−1.○ In a CRF, the score of the transition (i, j) might depend for instance on
the current observation vector, e.g. by defining

fk = 1{yt=j}1{yt−1=1}1{xt=o}.
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General CRF

p(y∣x) is a conditional random field
if the distribution p(y∣x) can be written as

p(y∣x) = 1

Z(x)∏Ψa∈F exp{∑K(a)
k=1 θakfak(ya,xa)} .

● Many parameters potentially...

● For linear chain CRF, same weights/functions are used for factors
Ψt(yt, yt−1,xt), ∀t.
● Solution: Partition set of subsets of variables F into groups F = F1,⋯,FP .

● Each subset Fi is a set of subsets of variables which share the same local
functions, i.e.

p(y∣x) = 1

Z(x) ∏Fi∈F ∏Ψa∈Fi
Ψa(ya,xa)

where

Ψa(ya,xa) = exp
⎧⎪⎪⎨⎪⎪⎩
K(i)∑
k=1

θikfik(ya,xa)
⎫⎪⎪⎬⎪⎪⎭ .

● Most CRF’s of interest implement such structures.
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Features - Factorization

● CRF’s are very general structures. What about the practical implementation?

● Features depend on the task. In some NLP tasks with linear CRF,

fpk(yc,xc) = 1{yc=ỹc}qpk(xc).
● Each feature is factorized

○ is nonzero only for a single output configuration ỹc,
○ its value only depends input observation xc.

● This factorization is attractive because computationally efficient:

○ computing each qpk may involve nontrivial text or image processing,
○ However, we only need to evaluate it once, even if it shared across many
features.

● These functions qpk(xc) are called observation functions.

● Examples of observation functions are

○ “word xt is capitalized”,
○ “word xt ends in ing”.
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Learning with Linear Chain CRF’s
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Estimation and Prediction

A linear-chain CRF is a distribution p(y∣x) that takes the form

p(y∣x) = 1

Z(x)
T∏
t=1

exp{ K∑
k=1

θkfk(yt, yt−1,xt)} ,

● Two major tasks ahead:

Given a set of features fk, estimate all parameters θk

Predict the labels of a new input x, y∗ = argmaxy p(y∣x).
● We first review the prediction task, estimation is covered next.

● In the prediction task, we will re-use the Forward-Backward and Viterbi

algorithms of HMM’s.
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Prediction - Backward Forward

● The HMM’s distribution can be factorized as a directed graphical model

p(y,x) =∏
t

Ψt(yt, yt−1, xt)
(with Z = 1) and factors defined as:

Ψt(j, i, x) def= p(yt = j∣yt−1 = i)p(xt = x∣yt = j).
● The HMM forward algorithm, used to compute the probability p(x) of
observations, uses the summation.

p(x) = ∑
y

p(x,y) = ∑
y

T∏
t=1

Ψt(yt, yt−1, xt)
= ∑

yT

∑
yT−1

ΨT(yT, yT−1, xT) ∑
yT−2

ΨT−1(yT−1, yT−2, xT−1) ∑
yT−3
⋯

● Idea: cache intermediate sum which are reused many times during the
computation of the outer sum.
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Prediction - Forward

● In that sense, define forward variables αt ∈ RM (where M is the number of
states),

αt(j) def= p(x⟨1...t⟩, yt = j)
= ∑

y⟨1...t−1⟩
Ψt(j, yt−1, xt) t−1∏

t′=1
Ψt′(yt′, yt′−1, xt′),

● The summation over y⟨1...t−1⟩ ranges over all assignments to y1, y2, . . . , yt−1.
● The αt can be computed by the recursion

αt(j) = ∑
i∈S

Ψt(j, i, xt)αt−1(i),

with initialization α1(j) = Ψ1(j, y0, x1). (Recall that y0 is the fixed initial state
of the HMM.)

● We can check that p(x) = ∑yT
αT(yT).
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Prediction - Backward

● Define a backward recursion, with reverse order: introduce βt’s

βt(i) def= p(x⟨t+1...T⟩∣yt = i)
= ∑

y⟨t+1...T⟩

T∏
t′=t+1

Ψt′(yt′, yt′−1, xt′),

and the recursion
βt(i) = ∑

j∈S
Ψt+1(j, i, xt+1)βt+1(j),

● Initialization: βT(i) = 1.
● Analogously to the forward case, p(x) can be computed using the backward
variables as

p(x) = β0(y0) def= ∑
y1

Ψ1(y1, y0, x1)β1(y1).
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Prediction - Forward Backward

● The FB recursions can be combined to obtain the marginal distributions

p(yt−1, yt∣x)

● Two perspectives can be applied, with identical result:

● Taking first a probabilistic viewpoint we can write

p(yt−1, yt∣x) = p(x∣yt−1, yt)p(yt, yt−1)
p(x)

= p(x⟨1...t−1⟩, yt−1)p(yt∣yt−1)p(xt∣yt)p(x⟨t+1...T⟩∣yt)
p(x)

∝ αt−1(yt−1)Ψt(yt, yt−1, xt)βt(yt),
where in the second line we have used the fact that x⟨1...t−1⟩ is independent
from x⟨t+1...T⟩ and from xt given yt−1, yt.
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Prediction - Forward Backward

● Taking a factorization perspective, we see that

p(yt−1, yt,x) = Ψt(yt, yt−1, xt)
⎛
⎝ ∑y⟨1...t−2⟩

t−1∏
t′=1

Ψt′(yt′, yt′−1, xt′)⎞⎠
⎛
⎝ ∑y⟨t+1...T⟩

T∏
t′=t+1

Ψt′(yt′, yt′−1, xt′)⎞⎠ ,

which can be computed from the forward and backward recursions as

p(yt−1, yt,x) = αt−1(yt−1)Ψt(yt, yt−1, xt)βt(yt).

● With p(yt−1, yt,x), renormalize over yt, yt−1 to obtain the desired marginal
p(yt−1, yt∣x).
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Prediction - Forward Backward

● To compute the globally most probable assignment y∗ = argmaxy p(y∣x),
● we observe that the trick earlier still works if all summations are replaced by
maximization.

● This yields the Viterbi recursion:

δt(j) =max
i∈S Ψt(j, i, xt)δt−1(i)
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Prediction - Forward Backward in Linear CRF’s

● Natural generalization of forward-backward and Viterbi algorithms to
linear-chain CRFs

● Only transition weights Ψt(j, i, xt) need to be redefined.

● The CRF model can be rewritten as:

p(y∣x) = 1

Z(x)
T∏
t=1

Ψt(yt, yt−1,xt),

where we define

Ψt(yt, yt−1,xt) = exp{∑
k

θkfk(yt, yt−1,xt)} .

● Using these definitions, use identical algorithms.

● Instead of computing p(x) as in an HMM, in a CRF the forward and backward
recursions compute Z(x).
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Parameter Estimation

● Suppose we have i.i.d training data

D = {x(i),y(i)}Ni=1,
○ each x(i) = {x(i)

1
,x
(i)
2
, . . .x

(i)
T
} is a sequence of inputs,

○ each y(i) = {y(i)
1
, y
(i)
2
, . . . y

(i)
T
} is a sequence of the desired predictions.

● Parameter estimation can be performed by penalized maximum conditional

likelihood.

ℓ(θ) = N∑
i=1

log p(y(i)∣x(i)).
namely,

ℓ(θ) = N∑
i=1

T∑
t=1

K∑
k=1

θkfk(y(i)t , y
(i)
t−1,x(i)t ) −

N∑
i=1

logZ(x(i))
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