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Support Vector Machines

The linearly-separable case
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A criterion to select a linear classifier: the margin ?
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Largest Margin Linear Classifier ?
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Support Vectors with Large Margin
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In equations

• The training set is a finite set of n data/class pairs:

T = {(x1, y1), . . . , (xN , yN)} ,

where xi ∈ R
d and yi ∈ {−1, 1}.

• We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w, b) ∈ R

d × R such that:

{

wTxi + b > 0 if yi = 1 ,

wTxi + b < 0 if yi = −1 .
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How to find the largest separating hyperplane?

For the linear classifier f(x) = wTx+ b consider the interstice defined by the
hyperplanes

• f(x) = wTx+ b = +1

• f(x) = wTx+ b = −1

w.x+b=0

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1
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The margin is 2/||w||

• Indeed, the points x1 and x2 satisfy:

{

wTx1 + b = 0,

wTx2 + b = 1.

• By subtracting we get wT (x2 − x1) = 1, and therefore:

γ = 2||x2 − x1|| =
2

||w||.

where γ is the margin.
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All training points should be on the appropriate side

• For positive examples (yi = 1) this means:

wTxi + b ≥ 1

• For negative examples (yi = −1) this means:

wTxi + b ≤ −1

• in both cases:
∀i = 1, . . . , n, yi

(

wTxi + b
)

≥ 1
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Finding the optimal hyperplane

• Finding the optimal hyperplane is equivalent to finding (w, b) which minimize:

‖w‖2

under the constraints:

∀i = 1, . . . , n, yi
(

wTxi + b
)

− 1 ≥ 0.

This is a classical quadratic program on R
d+1

linear constraints - quadratic objective
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Lagrangian

• In order to minimize:
1

2
||w||2

under the constraints:

∀i = 1, . . . , n, yi
(

wTxi + b
)

− 1 ≥ 0.

• introduce one dual variable αi for each constraint,

• one constraint for each training point.

• the Lagrangian is, for α � 0 (that is for each αi ≥ 0)

L(w, b, α) =
1

2
||w||2 −

n
∑

i=1

αi

(

yi
(

wTxi + b
)

− 1
)

.
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The Lagrange dual function

g(α) = inf
w∈Rd,b∈R

{

1

2
‖w‖2 −

n
∑

i=1

αi

(

yi
(

wTxi + b
)

− 1
)

}

the saddle point conditions give us that at the minimum in w and b

w =
n
∑

i=1

αiyixi, ( derivating w.r.t w) (∗)

0 =
n
∑

i=1

αiyi, (derivating w.r.t b) (∗∗)

substituting (∗) in g, and using (∗∗) as a constraint, get the dual function g(α).

• To solve the dual problem, maximize g w.r.t. α.

• Strong duality holds : primal and dual problems have the same optimum.

• KKT gives us αi(yi
(

wTxi + b
)

− 1) = 0,
...hence, either αi = 0 or yi

(

wTxi + b
)

= 1.

• αi 6= 0 only for points on the support hyperplanes {(x, y)| yi(wTxi + b) = 1}.
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Dual optimum

The dual problem is thus

maximize g(α) =
∑n

i=1
αi − 1

2

∑n

i,j=1
αiαjyiyjx

T
i xj

such that α � 0,
∑n

i=1
αiyi = 0.

This is a quadratic program in R
n, with box constraints.

α∗ can be computed using optimization software
(e.g. built-in matlab function)
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Recovering the optimal hyperplane

• With α∗, we recover (wT , b∗) corresponding to the optimal hyperplane.

• wT is given by wT =
∑n

i=1
yiαix

T
i ,

• b∗ is given by the conditions on the support vectors αi > 0, yi(w
Txi + b) = 1,

b∗ = −1

2

(

min
yi=1,αi>0

(wTxi) + max
yi=−1,αi>0

(wTxi)

)

• the decision function is therefore:

f∗(x) = wTx+ b∗

=

(

n
∑

i=1

yiαix
T
i

)

x+ b∗.

• Here the dual solution gives us directly the primal solution.
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Interpretation: support vectors

α>0

α=0
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Another interpretation: Convex Hulls

go back to 2 sets of points that are linearly separable
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Another interpretation: Convex Hulls

Linearly separable = convex hulls do not intersect
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Another interpretation: Convex Hulls

Find two closest points, one in each convex hull
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Another interpretation: Convex Hulls

The SVM = bisection of that segment
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Another interpretation: Convex Hulls

support vectors = extreme points of the faces on which the two points lie
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The non-linearly separable case

(when convex hulls intersect)
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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Soft-margin SVM ?

• Find a trade-off between large margin and few errors.

• Mathematically:

min
f

{

1

margin(f)
+ C × errors(f)

}

• C is a parameter
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Soft-margin SVM formulation ?

• The margin of a labeled point (x, y) is

margin(x, y) = y
(

wTx+ b
)

• The error is

◦ 0 if margin(x, y) > 1,
◦ 1−margin(x, y) otherwise.

• The soft margin SVM solves:

min
w,b

{‖w‖2 + C

n
∑

i=1

max{0, 1− yi
(

wTxi + b
)

}

• c(u, y) = max{0, 1− yu} is known as the hinge loss.

• c(wTxi + b, yi) associates a mistake cost to the decision w, b for example xi.
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Dual formulation of soft-margin SVM

• The soft margin SVM program

min
w,b

{‖w‖2 + C
n
∑

i=1

max{0, 1− yi
(

wTxi + b
)

}

can be rewritten as

minimize ‖w‖2 + C
∑n

i=1
ξi

such that yi
(

wTxi + b
)

≥ 1− ξi

• In that case the dual function

g(α) =
n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjyiyjx
T
i xj,

which is finite under the constraints:
{

0 ≤ αi≤ C, for i = 1, . . . , n
∑n

i=1
αiyi = 0.
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Interpretation: bounded and unbounded support vectors

C
α=0

0<α<C

α=
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What about the convex hull analogy?

• Remember the separable case

• Here we consider the case where the two sets are not linearly separable, i.e.
their convex hulls intersect.
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What about the convex hull analogy?

Definition 1. Given a set of n points A, and 0 ≤ C ≤ 1, the set of finite
combinations

n
∑

i=1

λixi, 1 ≤ λi ≤ C,
n
∑

i=1

λi = 1,

is the (C) reduced convex hull of A

• Using C = 1/2, the reduced convex hulls of A and B,

• Soft-SVM with C = closest two points of C-reduced convex hulls.
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Kernels
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Kernel trick for SVM’s

• use a mapping φ from X to a feature space,

• which corresponds to the kernel k:

∀x, x′ ∈ X , k(x, x′) = 〈φ(x), φ(x′) 〉

• Example: if φ(x) = φ

([

x1

x2

])

=

[

x2
1

x2
2

]

, then

k(x, x′) = 〈φ(x), φ(x′) 〉 = (x1)
2(x′

1)
2 + (x2)

2(x′
2)

2.
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Training a SVM in the feature space

Replace each xTx′ in the SVM algorithm by 〈φ(x), φ(x′) 〉 = k(x, x′)

• Reminder: the dual problem is to maximize

g(α) =

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αi αj yi yj k(xi, xj),

under the constraints:
{

0 ≤ αi ≤ C, for i = 1, . . . , n
∑n

i=1
αiyi = 0.

• The decision function becomes:

f(x) = 〈w, φ(x) 〉+ b∗

=
n
∑

i=1

yiαik(xi, x)+ b∗.
(1)
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The Kernel Trick ?

The explicit computation of φ(x) is not necessary.
The kernel k(x, x′) is enough.

• the SVM optimization for α works implicitly in the feature space.

• the SVM is a kernel algorithm: only need to input K and y:

maximize g(α) = αT1− 1

2
αT (K ⊙ yyT )α

such that 0 ≤ αi ≤ C, for i = 1, . . . , n
∑n

i=1
αiyi = 0.

• K’s positive definite ⇔ problem has an unique optimum

• the decision function is f(·) =∑n

i=1
αi k(xi, ·) + b.
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Kernel example: polynomial kernel

• For x = (x1, x2)
⊤ ∈ R

2, let φ(x) = (x2
1,
√
2x1x2, x

2
2) ∈ R

3:

K(x, x′) = x2
1x

′2
1 + 2x1x2x

′
1x

′
2 + x2

2x
′2
2

= {x1x
′
1 + x2x

′
2}2

= {xTx′}2 .

2R

x1

x2

x1

x2

2
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Kernels are Trojan Horses onto Linear Models

• With kernels, complex structures can enter the realm of linear models
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What is a kernel

In the context of these lectures...

• A kernel k is a function

k : X × X 7−→ R

(x, y) −→ k(x, y)

• which compares two objects of a space X , e.g....

◦ strings, texts and sequences,

◦ images, audio and video feeds,

◦ graphs, interaction networks and 3D structures

• whatever actually... time-series of graphs of images? graphs of texts?...
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Fundamental properties of a kernel

symmetric

k(x, y) = k(y, x).

positive-(semi)definite
for any finite family of points x1, · · · , xn of X , the matrix

K =

















k(x1, x1) k(x1, x2) · · · k(x1, xi) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xi) · · · k(x2, xn)

... ... . . . ... ... ...
k(xi, x1) k(xi, x2) · · · k(xi, xi) · · · k(x2, xn)

... ... ... ... . . . ...
k(xn, x1) k(xn, x2) · · · k(xn, xi) · · · k(xn, xn)

















� 0

is positive semidefinite (has a nonnegative spectrum).

K is often called the Gram matrix of {x1, · · · , xn} using k
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What can we do with a kernel?
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The setting

• Pretty simple setting: a set of objects x1, · · · , xn of X

• Sometimes additional information on these objects

◦ labels yi ∈ {−1, 1} or {1, · · · ,#(classes)},
◦ scalar values yi ∈ R,
◦ associated object yi ∈ Y

• A kernel k : X × X 7→ R.
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A few intuitions on the possibilities of kernel methods

Important concepts and perspectives

• The functional perspective: represent points as functions.

• Nonlinearity : linear combination of kernel evaluations.

• Summary of a sample through its kernel matrix.
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Represent any point in X as a function

For every x, the map
x −→ k(x, ·)

associates to x a function k(x, ·) from X to R.

• Suppose we have a kernel k on bird images

• Suppose for instance

k ( , ) = .32
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Represent any point in X as a function

• We examine one image in particular:

• With kernels, we get a representation of that bird as a real-valued function,
defined on the space of birds, represented here as R2 for simplicity.

schematic plot of k ( , · ) .
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Represent any point in X as a function

• If the bird example was confusing...

• k
(

[ xy ] ,
[

x′

y′

])

=
(

[ x y ]
[

x′

y′

]

+ .3
)2

• From a point in R
2 to a function defined over R2.

1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

→
−5

0

5−6 −4 −2 0 2 4 6

0

100

200

300

400

500

x

y

((2 x+1.5 y) + .3)2

• We assume implicitly that the functional representation will be more useful
than the original representation.
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Decision functions as linear combination of kernel evaluations

• Linear decisions functions are a major tool in statistics, that is functions

f(x) = βTx+ β0.

• Implicitly, a point x is processed depending on its characteristics xi,

f(x) =
d
∑

i=1

βixi + β0.

the free parameters are scalars β0, β1, · · · , βd.

• Kernel methods yield candidate decision functions

f(x) =
n
∑

j=1

αjk(xj, x) +α0.

the free parameters are scalars α0, α1, · · · , αn.
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Decision functions as linear combination of kernel

evaluations

• linear decision surface / linear expansion of kernel surfaces (here kG(xi, ·))

−6 −4 −2 0 2 4 6−5

0

5

−3

−2

−1

0

1

2

3

4

x
y

−20

−10

0

10

20 −20
−10

0
10

20

−0.1

0

0.1

0.2

0.3

0.4

• Kernel methods are considered non-linear tools.

• Yet not completely “nonlinear” → only one-layer of nonlinearity.

kernel methods use the data as a functional base to define decision functions
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Decision functions as linear combination of kernel evaluations

with a kernel machine

f(x) =
∑N

i=1 αi k (xi,x)

kernel definition

weights α estimated

database {xi, i = 1, . . . , N}

• f is any predictive function of interest of a new point x.

• Weights α are optimized with a kernel machine (e.g. support vector machine)

intuitively, kernel methods provide decisions based on how similar a
point x is to each instance of the training set
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The Gram matrix perspective

• Imagine a little task: you have read 100 novels so far.

• You would like to know whether you will enjoy reading a new novel.

• A few options:

◦ read the book...
◦ have friends read it for you, read reviews.
◦ try to guess, based on the novels you read, if you will like it
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The Gram matrix perspective

Two distinct approaches

• Define what features can characterize a book.

◦ Map each book in the library onto vectors

−→ x =









x1

x2
...
xd









typically the xi’s can describe...
⊲ # pages, language, year 1st published, country,
⊲ coordinates of the main action, keyword counts,
⊲ author’s prizes, popularity, booksellers ranking

• Challenge: find a decision function using 100 ratings and features.
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The Gram matrix perspective

• Define what makes two novels similar,

◦ Define a kernel k which quantifies novel similarities.
◦ Map the library onto a Gram matrix

−→ K =









k(b1, b1) k(b1, b2) · · · k(b1, b100)
k(b2, b1) k(b2, b2) · · · k(b2, b100)

... ... . . . ...
k(bn, b1) k(bn, b2) · · · k(b100, b100)









• Challenge: find a decision function that takes this 100×100 matrix as an input.
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The Gram matrix perspective

Given a new novel,

• with the features approach, the prediction can be rephrased as what are the
features of this new book? what features have I found in the past that were
good indicators of my taste?

• with the kernel approach, the prediction is rephrased as which novels this
book is similar or dissimilar to? what pool of books did I find the most
influentials to define my tastes accurately?

kernel methods only use kernel similarities, do not consider features.

Features can help define similarities, but never considered elsewhere.
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The Gram matrix perspective

in kernel methods, clear separation between the kernel...

dataset x3

x4

x5
x2

x1

convex optimization

K5×5, kernel matrix

k

α

and Convex optimization (thanks to psdness of K, more later) to output the α’s.
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Kernel Trick

Given a dataset {x1, · · · , xN} and a new instance xnew

Many data analysis methods only depend on xT
i xj and xT

i xnew

• Ridge regression

• Principal Component Analysis

• Linear Discriminant Analysis

• Canonical Correlation Analysis

• etc.

Replace these evaluations by k(xi, xj) and k(xi,xnew)

• This will even work if the xi’s are not in a dot-product space! (strings, graphs,
images etc.)
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