Foundation of Intelligent Systems, Part I

Statistical Learning Theory (III)

mcuturi@i.kyoto-u.ac.jp

Previous Lecture: Hoeffding's Bound

- Hoeffding's Inequality: $P\left(|P_nf Pf| > \varepsilon\right) \leq 2e^{-\frac{2n\varepsilon^2}{(b-a)^2}}$.
- With probability at least 1δ ,

$$|P_n f - Pf| \le (b - a) \sqrt{\frac{\log \frac{2}{\delta}}{2n}}$$

Previous Lecture: Hoeffding's Bound

Today: VC-dimension, SVM's

- Continue where we left:
 - Hoeffding's bound for finite families
 - Hoeffding's bound for countable families
 - Hoeffding's bound for arbitrary families of functions

 - > VC dimension
- VC-dimension for linear classifiers
- SVM

Obtaining Uniform Bounds

- Simple example with two functions f_1 and f_2 .
- Define the two sets of n-uples,

$$C_1 = \{\{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_n, y_n)\} \mid Pf_1 - P_n f_1 > \varepsilon\}$$

and

$$C_2 = \{\{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_n, y_n)\} \mid Pf_2 - P_nf_2 > \varepsilon\}$$

• These sets are the "bad" sets for which empirical risk is much lower than the real risk.

Obtaining Uniform Bounds

• For each, we have the Hoeffing's inequalities (no absolute value), that

$$P(C_1) \leq \delta, P(C_2) \leq \delta$$
 where $\delta = e^{-2n\varepsilon^2}$.

• Note that whenever a n-uple is in $C_1 \cup C_2$, then either

$$Pf_1 - P_nf_1 > \varepsilon$$
 or $Pf_2 - P_nf_2 > \varepsilon$.

- Of course, $P(C_1 \cup C_2) \leq P(C_1) + P(C_2) \leq 2\delta$.
- Thus, with probability smaller than 2δ at least one of f_1 or f_2 will be such that $Pf_1 P_nf_1 > \varepsilon$. or $Pf_2 P_nf_2 > \varepsilon$.

Generalizing to ${\cal N}$ functions

- Consider f_1, \cdots, f_N functions.
- Define the corresponding sets of n-uples, C_1, \dots, C_N with ε fixed.
- Of course,

$$P(C_1 \cup C_2 \cup \dots \cup C_N) \le \sum_{i=1}^N P(C_i)$$

Use now Hoeffding's inequality

$$P(\exists f \in \{f_1, \dots, f_N\} \mid Pf - P_n f > \varepsilon) = P\left(\bigcup_{i=1}^N C_i\right)$$

$$\leq \sum_{i=1}^N P(C_i) \leq N\delta = Ne^{-2n\varepsilon^2}$$

Error bound for finite families of functions

We thus have that for any family of N functions,

$$P(\sup_{f \in \mathcal{F}} Pf - P_n f \ge \varepsilon) \le N e^{-2n\varepsilon^2},$$

ullet or equivalently, that if $\mathcal{G}=\{g_1,\cdots,g_N\}$, with probability at least $1-\delta$,

$$\forall g \in \mathcal{G}, \quad R(g) \le R_n(g) + \sqrt{\frac{\log N + \log \frac{1}{\delta}}{2n}}$$

Estimation bound for finite families of functions

- Recall that g^* is a function in \mathcal{G} such that $R(g^*) = \min_{g \in \mathcal{G}} R(g)$.
- The inequality

$$R(g^*) \le R_n^{\text{emp}}(g^*) + \sup_{g \in \mathcal{G}} (R(g) - R_n^{\text{emp}}(g)),$$

• combined with $R_n^{\text{emp}}(g^*) - R_n^{\text{emp}}(g_n) \ge 0$ by definition of g_n , we get

$$R(g_n) = R(g_n) - R(g^*) + R(g^*) \leq \underbrace{R_n^{\text{emp}}(g^*) - R_n^{\text{emp}}(g_n)}_{\geq 0} + R(g_n) - R(g^*) + R(g^*)$$
$$\leq 2 \sup_{g \in \mathcal{G}} |R(g) - R_n^{\text{emp}}(g)| + R(g^*)$$

• Hence, with probability at least $1 - \delta$,

$$R(g_n) \le R(g^*) + 2\sqrt{\frac{\log N + \log \frac{2}{\delta}}{2n}}$$

Hoeffding's bound for countable families of functions

- ullet Suppose now that we have a countable family ${\cal F}$
- Suppose that we assign a number $\delta(f) > 0$ to each $f \in \mathcal{F}$, which we use to set

$$P\left(|Pf - P_n f| > \sqrt{\frac{\log \frac{2}{\delta(f)}}{2n}}\right) \le \delta(f),$$

• Using the union bound on a countable set (basic probability axiom),

$$P\left(\exists f \in \mathcal{F} : |P_n f - P f| > \sqrt{\frac{\log \frac{2}{\delta(f)}}{2n}}\right) \le \sum_{f \in \mathcal{F}} \delta(f).$$

Hoeffding's bound for countable families of functions

- Let us set $\delta(f) = \rho p(f)$ with $\rho > 0$ and $\sum_{f \in \mathcal{F}} p(f) = 1$.
- Then with probability 1ρ ,

$$\forall f \in \mathcal{F}, Pf \leq P_n f + \sqrt{\frac{\log \frac{1}{p(f)} + \log \frac{1}{\rho}}{2n}}.$$

Hoeffding's bound for countable families of functions

- Let us set $\delta(f) = \rho p(f)$ with $\rho > 0$ and $\sum_{f \in \mathcal{F}} p(f) = 1$.
- Then with probability 1ρ ,

$$\forall f \in \mathcal{F}, Pf \leq P_n f + \sqrt{\frac{\log \frac{1}{p(f)} + \log \frac{1}{\rho}}{2n}}.$$

Problem: requires knowledge of p & \mathcal{F} to be a countable family.

Hoeffding's bound for general families of functions

• Vapnik/Chervonenkis argue that, what really matters for a sample $\mathbf{z}_1, \cdots, \mathbf{z}_n$ is

$$\mathcal{F}_{\mathbf{z}_1,\cdots,\mathbf{z}_n} = \{ (f(\mathbf{z}_1), f(\mathbf{z}_2), \cdots, f(\mathbf{z}_n)), f \in \mathcal{F} \}$$

- $\mathcal{F}_{\mathbf{z}_1,\cdots,\mathbf{z}_n}$ is a large, **finite set** of binary vectors $\subset \{0,1\}^n$
- The more complex \mathcal{F} , the larger $\mathcal{F}_{\mathbf{z}_1,\cdots,\mathbf{z}_n}$ with maximum 2^n possible elements.

Definition 1 (Growth Function). The growth function of \mathcal{F} is equal to

$$S_{\mathcal{F}}(n) = \sup_{(\mathbf{z}_1, \dots, \mathbf{z}_n)} |\mathcal{F}_{\mathbf{z}_1, \dots, \mathbf{z}_N}|$$

• This size = the number of possible ways in which the data $\{\mathbf{z}_1, \dots, \mathbf{z}_n\}$ can be classified using functions in \mathcal{F} .

Vapnik-Chervonenkis

Theorem 1 (Vapnik-Chervonenkis). For any $\delta > 0$, with probability at least $1 - \delta$,

$$\forall g \in \mathcal{G}, R(g) \leq R_n(g) + 2\sqrt{2\frac{\log S_{\mathcal{G}}(2n) + \log \frac{2}{\delta}}{n}}$$

To prove it, we will need two lemmas,

Lemma 1 (Symmetrization). For any t > 0 such that $nt^2 \ge 2$, and any n' more independent samples of P,

$$P(\sup_{f \in \mathcal{F}} Pf - P_n f \ge t) \le 2P(\sup_{f \in \mathcal{F}} P'_n f - P_n f \ge t/2)$$

Lemma 2 (Chebyshev's Inequality). For any t > 0,

$$P(|X - \mathbb{E}[X]| \ge t| \le \frac{\operatorname{var} X}{t^2}$$

Vapnik-Chervonenkis Entropy

- The VC bound holds for any probability distribution.
- As a result, it might be too loose. A density dependent result is given, using **Definition 2.** The VC entropy is defined as

$$H_{\mathcal{F}}(n) = \log \mathbb{E}[|\mathcal{F}_{\mathbf{z}_1, \dots, \mathbf{z}_N}|]$$

The bound is then

Theorem 2. For any $\delta > 0$, with probability at least $1 - \delta$,

$$\forall g \in \mathcal{G}, R(g) \leq R_n(g) + 2\sqrt{2\frac{\boldsymbol{H}_{\mathcal{G}}(2n) + \log\frac{2}{\delta}}{n}}$$

Vapnik-Chervonenkis Dimension

Definition 3 (VC Dimension). The VC dimension of a class \mathcal{G} is the largest n such that

$$S_{\mathcal{G}}(n) = 2^n$$
.

- Since n points can have 2^n configurations, the VC dimension is the largest number of points which can be shattered (i.e.split arbitrarily) by the function class.
- The VC dimension of linear classifiers in \mathbb{R}^d is d+1.

Vapnik-Chervonenkis

ullet Given the VC dimension h of a family ${\mathcal G}$, we can prove

$$\forall g \in \mathcal{G}, R(g) \leq R_n(g) + 2\sqrt{2\frac{h\log\frac{2en}{h} + \log\frac{2}{\delta}}{n}}$$

Lemma 3 (Vapnik and Chervonenkis, Sauer, Shelah). Let \mathcal{G} be a class of functions with finite VC-dimension h. Then,

$$\forall n \in \mathbb{N}, S_{\mathcal{G}}(n) \leq \sum_{i=0}^{h} \binom{n}{i},$$

$$\forall n \geq h, S_{\mathcal{G}}(n) \leq \left(\frac{en}{h}\right)^h.$$

Combining with VC theorem, we obtain the result given above.

 Important thing: difference between true and empirical risks is at most of the order of