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Previous Lecture : Hoeffding’s Bound
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e Hoeffding's Inequality: P (|P,f — Pf| >¢) < 2e (-a)?,

e With probability at least 1 — 9,

2
)

1
Puf = P < (b= a)\|
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Previous Lecture : Hoeffding’s Bound
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Today: VC-dimension, SVM'’s

e Continue where we left:

o Hoeffding's bound for finite families
o Hoeffding's bound for countable families

o Hoeffding's bound for arbitrary families of functions
> Growth function

>~ VC dimension

e VC-dimension for linear classifiers

e SVM
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Obtaining Uniform Bounds

e Simple example with two functions f; and fs.

e Define the two sets of n-uples,

Cl — {{(xlayl)a"' ,(xn,yn)} ‘Pfl _Pnfl > 8}

and
Cz — {{(xlayl)a"' ,(xn,yn)} ‘PfZ — Pnf2 > 8}

e These sets are the "bad"” sets for which empirical risk is much lower than the
real risk.

FIS - 2013



Obtaining Uniform Bounds

e For each, we have the Hoeffing's inequalities (no absolute value), that

2

P(Cl) < (5,P(CQ) < 0 where § = e 2ne”

e Note that whenever a n-uple is in C7 U (5, then either

Pfi—P,fi >cor Pfy— P, fy > ¢.

e Of course, P(C1 UC5) < P(Ch) + P(C3) < 26.

e Thus, with probability smaller than 20 at least one of f; or f5 will be such that
Pfl—Pnf1>€. orsz—Pnf2>€.
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Generalizing to N functions

e Consider f1,---, fn functions.
e Define the corresponding sets of n-uples, C,--- ,Cyn with ¢ fixed.

e Of course,

N
P(CLUCLU---UCY) gz

e Use now Hoeffding's inequality

N

1=1

) < N6 = Ne—2ne

||Mz
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Error bound for finite families of functions

e We thus have that for any family of /N functions,

P(sup Pf — P,f > ¢) < N€_2n€27
fer

e or equivalently, that if G = {g1,--- ,gn}, with probability at least 1 — 6,

log N + log %
2n

Vg€ G, R(g) <R,(g)+ \/
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Estimation bound for finite families of functions

e Recall that ¢g* is a function in G such that R(¢g*) = mingcg R(g).

e The inequality

R(g*) < R;™(g9%) + Sup (R(g) — R;™P(9))

e combined with RS™P(g*) — RS™P(gy,) > 0 by definition of g,,, we get

R(gn) = R(gn)—R(g")+R(g") < B, 7(97) — By (gn) +12(gn) —R(g7)+1(g7)
>0

< 2sup|R(g) — R,""(9)| + R(g")
geg

e Hence, with probability at least 1 — 9,

log N + log 2
R(gn>sz~z<g*>+z\/ T
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Hoeffding’s bound for countable families of functions

e Suppose now that we have a countable family F

e Suppose that we assign a number §(f) > 0 to each f € F, which we use to set

2
lOg W

P||Pf—P.f|] >
2n

<4(f),

e Using the union bound on a countable set (basic probability axiom),

logﬁ
P\3feF:|P.f=Pfl>\— "= | <) d()).

fer
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Hoeffding’s bound for countable families of functions

o Let usset o(f) = pp(f) with p>0and > . -p(f) =1

e Then with probability 1 — p,

1 1
log o(F) + log -
on '

VfEF,PfSPanr\/
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Hoeffding’s bound for countable families of functions

o Let usset o(f) = pp(f) with p>0and > . -p(f) =1

e Then with probability 1 — p,

1 1
log o(F) + log -
on '

VfEF,PfSPanr\/

Problem: requires knowledge of p & F to be a countable family.

FIS - 2013

12



Hoeffding’'s bound for general families of functions

e Vapnik/Chervonenkis argue that, what really matters for a sample z4,--- , 2z, is

Faroan = (f(21), f(22), -, f(2n)), [ € F}

® Fy, ... 2, s a large, finite set of binary vectors C {0,1}"
e The more complex F, the larger F,, ... 5, with maximum 2" possible elements.

Definition 1 (Growth Function). The growth function of F is equal to

Sr(n) = sup |Fu ..

(21, ,2n)

e This size = the number of possible ways in which the data {zi,--- ,z,} can be
classified using functions in F.
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Vapnik-Chervonenkis

Theorem 1 (Vapnik-Chervonenkis). For any 6 > 0, with probability at least
1—96,

log Sg(2n) + log 2
n

Vg € G,R(g) < R.(g) + 2\/2

e To prove it, we will need two lemmas,

Lemma 1 (Symmetrization). For any t > 0 such that nt* > 2, and any n’ more
independent samples of P,

P(sup Pf — Puf 2 1) < 2P(sup PLf — Pof > t/2)
ferF fer

Lemma 2 (Chebyshev's Inequality). For any t > 0,

var X
t2

P(IX - E[X]| >t <
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Vapnik-Chervonenkis Entropy

e The VC bound holds for any probability distribution.
e As a result, it might be too loose. A density dependent result is given, using

Definition 2. The VC entropy is defined as

Hr(n) =logE[|Fy,,. zn]]

e The bound is then

Theorem 2. For any 0 > 0, with probability at least 1 — 0,

Hz(2n) + log 2
VgEQ,R(g)SRn(9)+2\/2 o 71 55
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Vapnik-Chervonenkis Dimension

Definition 3 (VC Dimension). The VC dimension of a class G is the largest

n such that
Sg(n) p— 2”.

e Since n points can have 2" configurations, the VC dimension is the largest
number of points which can be shattered (i.e.split arbitrarily) by the function
class.

e The VC dimension of linear classifiers in R% is d + 1.
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Vapnik-Chervonenkis

e Given the VC dimension A of a family G, we can prove

2en 2
7 T log§

n

hl
Vg € G, R(g) < Rn(g) + 2\/2 s

Lemma 3 (Vapnik and Chervonenkis, Sauer, Shelah). Let G be a class of
functions with finite VC-dimension h. Then,

vn € N, Sg(n) < Z (Z’)

h
1=0

Vn > h,Sg(n) < (%)h.

e Combining with VC theorem, we obtain the result given above.

e Important thing: difference between true and empirical risks is at most of the

order of
hlogn

n
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