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FIS -

Previous Lecture : Classification

Classification: mapping objects onto S where |S| < c.
Binary classification: answers to yes/no questions

Linear classification algorithms: split the yes/no zones with a hyperplane

Yes = {c'z+b >0}, No = {clz+b< 0}

How to select c, b given a dataset?

o Linear Discriminant Analysis (multivariate Gaussians)

o Logistic Regression (classification from a lienar regression viewpoint)

o Perceptron rule (iterative, random update rule)

o brief introduction to Support Vector Machine (optimal margin classifier)
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Today

e Usual steps when using ML algorithms

o Define problem (classification? regression? multi-class?)
o Gather data

o Choose representation for data to build a database

o Choose method/algorithm based on training set

o Choose/estimate parameters

o Run algorithm on new points, collect results

FIS - 2013



Today

e Usual steps when using ML algorithms

Define problem (classification? regression? multi-class?)
Gather data

Choose representation for data to build a database
Choose method/algorithm

Choose/estimate parameters based on training set
Run algorithm on new points, collect results

o 0O O O O O

o ... did I overfit?
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Probabilistic Framework
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General Framework

e Couples of observations, (x,y) appear in nature.

e [ hese observations are
xeRY yeS8

e S CR, thatis § could be R, Ry, {1,2,3,...,L}, {0,1}

e Sometimes only x is visible. We want to guess the most likely y for that x.

e Example 1 x: Height € R, y: Gender € {M, F'}
X is 164cm tall is X a male or a female?
e Example 2 x: Height € R, y: Weight € R.

X is 164cm tall, how many kilos does X weight?

FIS - 2013



Estimating the relationship between x and y

e To provide a guess < estimate a function f : R? — S such that

f(x) =~ y.
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Estimating the relationship between x and y

e To provide a guess < estimate a function f : RY — S such that
fx) =y

e |deally, f(x) ~ y should apply both to

o couples (x,y) we have observed in the training set
o couples (x,y) we will observe... (guess y from x)
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Probabilistic Framework

e We assume that each observation (x,y) arises as an

o independent,
o identically distributed,

random sample from the same probability law.
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Probabilistic Framework

e We assume that each observation (x,y) arises as an

o independent,
o identically distributed,

random sample from the same probability law.

e This probability P on R? x S has a density,

p(X =x,Y =y).
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Probabilistic Framework

e We assume that each observation (x,y) arises as an

o independent,
o identically distributed,

random sample from the same probability law.

e This probability P on R? x S has a density,
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Probabilistic Framework

e Assuming that p exists is fundamental in statistical learning theory.

p(X =x,Y =y).

e \What happens to learning problems if we know p?..

(in practice, this will never happen, we never know p).

e |f we know p, learning problems become trivial.

(/ running a marathon on a motorbike)
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Example 1: S = {M, F'}, Height vs Gender

p(Height,Gender)

—PX.Y)

0.025
0.02
0.015
0.01
0.005-

200
180
160
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Example 2: S = R™, Height vs Weight

p(Height,Weight)
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0 Height
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Probabilistic Framework

Conditional probability (or density)

p(A, B) = p(A|B)p(B)

e Suppose:
p(X = 184cm,y = M) = 0.015
ply = M) = 0.5

What is p(X = 184cm |y = M)?

o1l. 0.15

o 2. 0.03

o3. 05

o 4. 0.0075

ob 02
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e Suppose:

Probabilistic Framework

Bayes Rule
_ p(B|A)p(A)

p(X =184cm |y = M) = 0.03
p(y = M) =0.5
p(X = 184) = 0.02

What is p(y = M|X = 164)7

o O O O O

s w
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0.6
0.04
0.75
0.8
0.2
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Loss, Risk and Bayes Decision
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Building Blocks: Loss (1)

e A loss is a function & x R — R, designed to quantify mistakes,

how good is the prediction f(x) given that the true answer is y?

0

How small is I(y, f(x))?

Examples
e S$=1{0,1}
1ifaz#b
O].l :l 7b :50, p—

o S=R

o Squared euclidian distance i(a,b) = (a — b)?
o norm l(a,b) = |la — b4, 0 < g < o0

FIS - 2013
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Building Blocks: Risk (2)

e The Risk of a predictor f with respect to loss [ is

R(f) = EplI(Y, F(X))] = / Uy, £(x)) p(x, y)dxdy

Rdx S

e Risk = average loss of f on all possible couples (x,y),

weighted by the probability density.

Risk(f) measures the performance of f w.r.t. [ and p.

e Remark: a function f with low risk can make very big mistakes for some x
as long as the probability p(x) of x is small.

FIS - 2013
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FIS

A lower bound on the Risk? Bayes Risk

Since [ >0, R(f) > 0.
Consider all possible functions R? — S, usually written (R%)®.

The Bayes risk is the quantity

R*= inf R(f)= inf E,[(Y,f(X))]
fERDHS fe®RE)S

|deal classifier would have Bayes risk.

- 2013
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Bayes Classifier : S = {0,1}, [ is the 0/1 loss.
Let's write: n(x) = p(Y = 1]X = x).

e Define the following rule:

() = {1’ o0 2 3

0 otherwise.

where

The Bayes classifier achieves the Bayes Risk.

Theorem 1. R(fp) = R*.

FIS - 2013
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Bayes Classifier : S = {0,1}, [ is the 0/1 loss.

e Chain rule of conditional probability p(A, B) = p(B)p(A|B)

e Bayes rule
p(B|A)p(A4)
p(B)

p(A|B) =
e A simple way to compute 7:

p(Y =1, X =x)

n(x) =p(Y = 11X =x) =

p(X = x)
_p(X =x[Y =Dp(Y =1)
p(X = x)

p(X = x|V = p(Y = 1)

T (X =x]Y = 1)p(Y = 1) + p(X =x]Y = 0)p(Y = 0)’

FIS - 2013
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Bayes Classifier : S = {0,1}, [ is the 0/1 loss.

— Male: p(X|y=1)
0.057 —Female: p(X]y=0)
0.04¢
0.03¢
0.02r
0.01¢

150 160 170 180 190 200

in addition, p(Y = 1) = 0.4871. As a consequence
p(Y =0) =1 — 0.4871 = 0.5129

FIS - 2013
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Bayes Classifier : S = {0,1}, [ is the 0/1 loss.

—nX

0.9t
0.8t
0.7t
0.6f

o5
0.4+
0.3t
0.2t
0.1t

140 150 160 170 180 190 200 210
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Bayes Estimator : S = R, [ is the 2-norm

e Consider the following rule:

f5(x) = E[Y]X = x] = / yp(Y =y, X = x)dy

Here again, the Bayes estimator achieves the Bayes Risk.

Theorem 2. R(fp) = R*.

FIS - 2013
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Bayes Estimator : S = R, [ is the 2-norm

e Using Bayes rule again,

*(x) = E[Y|X = ] = / yp(Y = y|X = x)dy
B p(X =x|Y =y)pY =y)
/y p(X = x) %y

X =x|Y =y)p(Y =y)
/qj@ _AY_u(Y:ume

_ Jryp(X =x|Y = y)p(Y = y)dy
Jep(X =x|Y =y)p(Y = y)dy
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In practice: No p, Only Finite Samples

FIS - 2013
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What can we do?

e If we know the probability p, Bayes estimator would be impossible to beat.

e |n practice, the only thing we can use is a training set,
{6, %i) Fim1,e -

e For instance, a list of Heights, gender

163.0000
170.0000
175.3000
184.0000
175.0000
172.5000
153.5000
164.0000
163.0000

< <mTmTm<S << T
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Approximating Risk
e For any function f, we cannot compute its true risk R(f),

R(f) = Ep[l(Y, f(X))]

because we do not know p

e Instead, we can consider the empirical Risk 7P, defined as
1 mn
RU™P(f) = " Zl(yz‘, f(xi))
i=1

e The law of large numbers tells us that for any given f

RP(F) = R(f).

FIS - 2013
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http://en.wikipedia.org/wiki/Law_of_large_numbers

Relying on the empirical risk

As sample size grows, the empirical behaves like the real risk

e |t may thus seem like a good idea to minimize directly the empirical risk.

e [he intuition is that

o since a function f such that R(f) is low is desirable,
o since R™P(f) converges to R(f) as n — oo,

why not look directly for any function f such that R™P(f) is low?

e Typically, in the context of classification with 0/1 loss, find a function such that

(S144} 1 -
R, P(f) = " Z 5y7;7ff(xvz)
1=1

...I1s low.
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A flawed intuition

e However, focusing only on R°™P is not viable.

e Many ways this can go wrong...

FIS - 2013
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A flawed intuition

e Consider the function defined as
% .
Y, If X = X1,

Ya, If X = Xq,

Yn, If X = X,,

\O otherwise..

o Since, RE™P(h) = 23" | 0y 2n(x) = = D ieq Oys2y; = 0, h minimizes RE™P.

e However, h always answers 0, except for a few points.

e In practice, we can expect R(h) to be much higher, equal to P(Y = 1) in fact.
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Here is what this function would predict on the
Height/Gender Problem

fSO 160 170 180 190 200

Overfitting is probably the most frequent mistake made by ML practitioners.

FIS - 2013
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Ideas to Avoid Overfitting

e Our criterion RS™P(g) only considers a finite set of points.

e A function g defined on R? is defined on an infinite set of points.

A few approaches to control overfitting

e Restrict the set of candidates

min R°™"P(q).
min 12, (9)

e Penalize “undesirable” functions

FIS - 2013

min R°™P(g) + A 2
nin B5™(9) + A

Are there theoretical tools which justify such approaches?
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Flow of a learning process in Machine Learning

e Assumption 1. existence of a probability density p for (X,Y).

e Assumption 2. points are observed i.i.d. following this probability density.

FIS - 2013
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Flow of a learning process in Machine Learning

e Assumption 1. existence of a probability density p for (X,Y).

e Assumption 2. points are observed i.i.d. following this probability density.

Roadmap

e Get a random training sample {(x;,¥y;)}i=1.... n (training set)
e Choose a class of functions G (method or model)

e Choose g, in G such that R{™P(g,,) is low (estimation algorithm)

FIS - 2013

37



Flow of a learning process in Machine Learning

e Assumption 1. existence of a probability density p for (X,Y).

e Assumption 2. points are observed i.i.d. following this probability density.

Roadmap

e Get a random training sample {(x;,¥y;)}i=1.... n (training set)
e Choose a class of functions G (method or model)

e Choose g, in G such that RS™P(g,,) is low (estimation algorithm)

Next... use g, in practice
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Flow of a learning process in Machine Learning

Yet, you may want to have a partial answer to these questions

e How good would be fp if we knew the real probability p?
e what about R(g,)?
e What's the gap between them, R(g,) — R(fB)?

e s the estimation algorithm reliable? how big is R*"P(g,,) — inf,cg RS™P(g)7

e how big is RSP (g,) —inf,cg R(g)?

FIS - 2013
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Excess Risk

e In the general case fp ¢ G.

e Hence, by introducing g* as a function achieving the lowest risk in G,

R(g") = inf R(g),

gegyg

we decompose

R(gn) — R(fB) = [R(9n) — R(g")] + [R(9") — R(fB)]

FIS - 2013
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Excess Risk

e In the general case fp ¢ G.

e Hence, by introducing g* as a function achieving the lowest risk in G,

R(g™) = inf R(g),

geF

we decompose

R(gn) — R(fB) = [R(gn) _ R(g*)] + [R(g") ~ R(fB)]

Estimation Error Approximation Error

e Estimation error is random, Approximation error is fixed.

e In the following we focus on the estimation error.

FIS - 2013
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Types of Bounds

Error Bounds

R(gn) < RJ™(gn) + C(n,G).
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Types of Bounds

Error Bounds

R(gn) < Rqezmp(gn) + C(n,G).

Error Bounds Relative to Best in Class

R(gn) < R(g") +C(n,G).

43



FIS - 2013

Types of Bounds

Error Bounds

R(gn) < R (gn) + C(n,G).

Error Bounds Relative to Best in Class

R(gn) < R(g") + C(n,G).

Error Bounds Relative to the Bayes Risk

R(gn) < R(fB) +C(n,9).
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Error Bounds / Generalization Bounds

R(gn) o qu,mp (gn)

FIS - 2013
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What is Overfitting?

e Overfitting is the idea that,

o given n training points sampled randomly,

o given a function g,, estimated from these points,
o we may have...

R(gn) > R (gn).

FIS - 2013
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What is Overfitting?

e Overfitting is the idea that,

o given n training points sampled randomly,

o given a function g,, estimated from these points,
o we may have...

R(gn) > R,;™(gn).

e Question of interest:

P[R(gn) — R (gn) > €] =7

e From now on, we consider the classification case, namely G : R4 — {0,1}.

FIS - 2013
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Alleviating Notations

e More convenient to see a couple (x

,y) as a realization of Z, namely

Z; — (xiayi)az — (X7 Y)

e \We define the foss class

F={fz=(x

e with the additional notations

Pf=E[f(X,Y)],

where we recover

Y) = Ogx)£y> 9 € GY,

}:fmw

P.f = R)"™(g), Pf=R(g)]

FIS - 2013
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Empirical Processes

For each f € F, P,f is a random variable which depends on n realizations of Z.

e |f we consider all possible functions f € F, we obtain

The set of random variables {P,, f} e+ is called an
Empirical measure indexed by F.

e A branch of mathematics studies explicitly the convergence of {Pf — P,,f} rer,

This branch is known as Empirical process theory |.
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Hoeffding’s Inequality

e Recall that for a given g and corresponding f,

R(g) - R*™(g) = Pf — Pof =E[f(2)] — =3 f(z).

n <

which is simply the difference between the expectation and the empirical
average of f(Z).

e The strong law of large numbers says that

P (nlggo]E[f(Z)] - %Zf(zi) = 0) = 1.

FIS - 2013
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http://en.wikipedia.org/wiki/Law_of_large_numbers#Strong_law

Hoeffding’s Inequality

e A more detailed result is

Theorem 3 (Hoeffding). Let Zy,--- , Z, be n i.i.d random variables with
f(Z) € la,b]. Then, Ve,

2n€2

P[|P,f — Pf| >¢] <2 G-a7?,

FIS - 2013
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