
Foundation of Intelligent Systems, Part I

Classification

mcuturi@i.kyoto-u.ac.jp

FIS - 2013 1



Last Lecture : Regression

• Mentioned the Maximum Likelihood perspective on LS-regression

logL(a, b) = C − 1

2σ2

N∑

j=1

‖yj − (aTxj + b)‖2

︸ ︷︷ ︸

L(a,b)

.

• Provided a geometric perspective on LS regression through projections

Least Squares Regression
m

Projecting the vector of observed predicted variable in
span{ vectors of observed predictor variables + constant vector}

• Many issues with LS regression... Hence advanced regression techniques

◦ Ridge Regression
◦ Subset selection
◦ Lasso

• we will talk about these in 3 lectures when discussing sparsity.
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Today

• Classification, differences with regression

• Binary classification

• Linear classification algorithms

◦ Logistic Regression
◦ Ideally, Linear Discriminant Analysis, but no time.
◦ Perceptron rule
◦ Support Vector Machine

• Once this is done, we will move on to more theory in next lecture about
statistical learning theory.
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Classification
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Starting Again With Regression

Many observations of the same data type, with label

• we still consider a database {x1, · · · , xN},

• each datapoint xj is represented as a vector of features xj =







x1,j

x2,j
...

xd,j







• To each observation is associated a label yj...

◦ If yj ∈ R, we have regression
◦ If yj ∈ S where S is a finite set, multiclass classification.
◦ If S only has two elements, binary classification.
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Examples

Multiclass Classification

• Classify images of fruits into fruit category

• Classify images of handwritten digits into digits from 0 to 9

• Classify musical tunes, books, movies into genres

• Classify proteins into functional classes

img source
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Examples

Binary Classification

• Using elementary measurements, guess if someone has or not a disease that is

◦ difficult to detect at an early stage
◦ difficult to measure directly (fetus)

• Classify chemical compounds into toxic / nontoxic

• Classify a passenger as suspect/not suspect

• Classify body tumor as begign/malign to detect cancer

• etc.
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Why use a new name?

Solve a classification problem ⇔ build a function f : Rd → S
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Why use a new name?

Solve a classification problem ⇔ build a function f : Rd → S

To do so, we need to evaluate the accuracy of a function f .
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Why use a new name?

Solve a classification problem ⇔ build a function f : Rd → S

To do so, we need to evaluate the accuracy of a function f ,

Namely, for each j, can we measure whether f(xj) ≈ yj?
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Why use a new name?

Solve a classification problem ⇔ build a function f : Rd → S
for each j, can we measure whether f(xj) ≈ yj?

In conventional regression - linear regression

• We have used consistently
∑N

j=1‖f(xj)− yj‖2 to select a good f .

• R is a metric space... ‖37.354 JPY− 36.000 JPY‖ = 1354

◦ sense of closeness between possible answers

• R is a totally ordered set... 36.000 JPY<37.354 JPY

◦ notion of total hierarchy between possible answers
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Why use a new name?

Solve a classification problem ⇔ build a function f : Rd → S
for each j, can we measure whether f(xj) ≈ yj?

In discrete labels in classification

• No distance nor order is available on S
◦ No order for musical genres jazz > bossa-nova ?
◦ No distance between fruits ‖kiwi− banana‖?

This creates challenges to quantify how f(xj) is close to yj
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Digits recognition

• Use a database such as

paired with the corresponding labels,

(2, 6, 0, 1, 9, 2, 7, 1, 4, 0, 5, 4, 3, 0, 8, 4, 3, 9, 4, 7).

to build an automated recognition system for handwritten digits.

• useful for post office, check recognition, tax office, etc..
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Labels are usually unordered and without a metric

• The set of labels is S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• Yet there is no distance/order in S for this task.

• Suppose the image given to the recognition system is

• Although |5− 6| < |0− 6|, the answer 5 is not better than 0.
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Labels are usually unordered and without a metric

• The set of labels is S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
• Yet there is no distance/order in S for this task.

• Suppose the image given to the recognition system is

• Although |5− 6| < |0− 6|, the answer 5 is not better than 0.

If all mistakes are equally wrong, then we consider the 0/1 loss:

l (f(xj),yj)
def
=

{

0 if f(xj) = yj,

1 if f(xj) 6= yj.
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Sometimes discrete labels are regression variables in disguise

• Suppose the task is to guess the rating of a movie

• User inputs are in S = {1, 2, 3, 4, 5}
• In this case standard regression techniques may be applied because,

◦ the natural metric ‖5− 3‖ is meaningful
◦ the final user does not mind getting fractional predictions (e.g. 3.85)
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Binary Classification

cardS = 2.

Usually S = {0, 1} or S = {−1, 1} or S = {−,+} or S = {Y,N}
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Data

• Data: vectors x1, x2, x3, · · · , xN .

• To infer a “yes/no” rule, we need the correct answer for each vector.

• We consider thus a set of pairs of (vector,bit)

“training set” =












xi =







xi
1

xi
2
...
xi
d






∈ R

d, yi ∈ {0, 1}







i=1..N







• For illustration purposes only we will consider vectors in the plane, d = 2.

• Points are easier to represent in 2 dimensions than in 20.000...

• The ideas for d≫ 3 are exactly the same.
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Binary Classification Separation Surfaces for Vectors

What is a classification rule?
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Binary Classification Separation Surfaces for Vectors

Classification rule = a partition of Rd into two sets
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Binary Classification Separation Surfaces for Vectors

This partition is recovered as the level set of a function on R
d
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Binary Classification Separation Surfaces for Vectors

Namely, {x ∈ R
d|f(x) > 0} and {x ∈ R

d|f(x) ≤ 0}
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Classification Separation Surfaces for Vectors

What kind of function? any. For instance, a curved line
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Classification Separation Surfaces for Vectors

Even more simple: using straight lines and halfspaces.
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Linear Classifiers

• Straight lines (hyperplanes when d > 2) are the simplest type of classifiers.

• A hyperplane Hc,b is a set in R
d defined by

◦ a normal vector c ∈ R
d

◦ a constant b ∈ R. as

Hc,b = {x ∈ R
d | cTx = b}

• Letting b vary we can “slide” the hyperplane across Rd

c

Hc,0

Hc,b0
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Linear Classifiers

• Exactly like lines in the plane, hypersurfaces divide R
d into two halfspaces,

{
x ∈ R

d | cTx< b
}
∪
{
x ∈ R

d | cTx≥ b
}
= R

d

• Linear classifiers attribute the “yes” and “no” answers given arbitrary c and b.

NO

YES

Hc,b

c

• Assuming we only look at halfspaces for the decision surface...
...how to choose the “best” (c⋆, b⋆) given a training sample?
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Linear Classifiers

• This specific question,

“training set”
{(

xi ∈ R
d, yi ∈ {0, 1}

)

i=1..N

} ????
=⇒“best”c⋆, b⋆

has different answers. Depends on the meaning of “best” ?:

• Linear Discriminant Analysis (or Fisher’s Linear Discriminant);

• Logistic regression maximum likelihood estimation;

• Perceptron, a one-layer neural network;

• Support Vector Machine, the result of a convex program

• etc.
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Classification Separation Surfaces for Vectors

Given two sets of points...
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Classification Separation Surfaces for Vectors

It is sometimes possible to separate them perfectly
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Classification Separation Surfaces for Vectors

Each choice might look equivalently good on the training set,
but it will have obvious impact on new points
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Classification Separation Surfaces for Vectors
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom

Specially close to the border of the classifier
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom

For each different technique, different results, different performance.
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A few linear classifiers:

(1) Linear Discriminant Analysis
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Reminder: Gaussian Multivariate Density

Gaussian Multivariate Density

A multivariate (= for vectors) generalization of the Gaussian density for x ∈ R

p(x) =
1√
2πσ

e−
1
2x

2

A very common density to characterize random vectors.
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Reminder: Gaussian Multivariate Density

Gaussian Multivariate Density

x ∈ R
d ∼ N (µ,Σ),Σ positive definite

m

Density of x is 1
(2π)d/2|Σ|

e(x−µ)TΣ−1(x−µ)

FIS - 2013 39



Reminder: Gaussian Multivariate Density
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Linear Discriminant Analysis in a Nutshell

• Assume points from two classes, 0 and 1 are generated by two Gaussian
densities

• Estimate ML covariance Σ0,Σ1 and mean µ0 and µ1 for each class

µ0 =
1

N0

∑

i|yi=0

xi, Σ0 =
1

N0 − 1

∑

i|yi=0

(xi − µ0)(xi − µ0)
T

µ1 =
1

N1

∑

i|yi=1

xi, Σ1 =
1

N1 − 1

∑

i|yi=1

(xi − µ1)(xi − µ1)
T

https://onlinecourses.science.psu.edu/stat557/book/export/html/45
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Linear Discriminant Analysis

• Define the two resulting densities, i = 0 or 1,

pi(x) =
1

(2π)d/2|Σi|
e(x−µi)

TΣ−1
i (x−µi)

• Decide that x belongs to 1 if p1(x) > p0(x) and 0 otherwise.

• In practice (after some computations), this means that:

◦ x belongs to class 1 if

(x− µ0)
TΣ−1

0 (x− µ0) + ln |Σ0| − (x− µ1)
TΣ−1

1 (x− µ1)− ln |Σ1| > T

◦ 0 otherwise
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Linear Discriminant Analysis

• If one assumes that Σ0 = Σ1 = Σ, the decision becomes a simple dot-product:

wTx > T

where
w = Σ−1(µ1 − µ0).

• Using the assumption that 0 and 1 have been generated with the same
covariance, we get a linear boundary.
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A few linear classifiers:

(2) Logistic Regression
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Regression does not work

• Consider the toy classification example:

◦ Points xj are taken randomly between -10 and 50.
◦ The label

yj =

{

0 if xj < π,

1 if xj > π.

• What happens if we feed this directly to regression?... matlab demo

−10 0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

x

.5 (1+sign(x−π))

π f
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How can we adapt regression? logistic map

• Logistic map :

g(z) =
ez

ez + 1
=

1

e−z + 1

−4 −3 −2 −1 0 1 2 3 4

0

0.1

0.2

0.3

0.4
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0.6
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1

x

1/(exp(−x)+1)

◦ for any z, 0 ≤ g(z) ≤ 1
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How can we adapt regression? logistic map

Basic Idea

• Rather than find the best c and b such that

f(xj) = cTxj + b ≈ yj ∈ {0, 1}

• logistic regression considers instead the best c and b such that

g ◦ f(xj) =
1

e−(cT xj+b) + 1
≈ yj ∈ {0, 1}.

• if for a new point x,

◦ g ◦ f(x) > 1/2, guess that the class is 1
◦ g ◦ f(x) < 1/2, guess that the class is 0
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Probabilistic Interpretation of Logistic Regression

• Suppose there is a probability density p(X,Y ) on couples (x, y) ∈ R
d × {0, 1}.

• Suppose for now that we know p.

• The ratio

r(x) =
p(Y = 1|X = x)

p(Y = 0|X = x)

is called the odds-ratio of a given point x.

• Obviously,

◦ if r(x) > 1, then it is more likely that y = 1 than y = 0.
◦ if r(x) < 1, then one is tempted to guess that y = 0 than y = 1.
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Probabilistic Interpretation of Logistic Regression

• In other words...

log
p(Y = 1|X = x)

p(Y = 0|X = x)
,

{

> 0 then y = 1 is the likely answer

< 0 then y = 0 is the likely answer

• Logistic regression assumes that the log-odds ratio follows a linear relationship

log
p(Y = 1|X = x)

p(Y = 0|X = x)
≈ c

Tx+ b

• This implies that the decision surface is linear.

Note that Logistic Regression
assumes a model only for the log-odds ratio,

not for the whole probability p
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Probabilistic Interpretation of Logistic Regression

• Since p(Y = 0|X = x) = 1− p(Y = 1|X = x), we hence have

log
p(Y = 1|X = x)

1− p(Y = 1|X = x)
= c

Tx+ b

• which in turn implies

p(Y = 1|X = x) =
1

e−(cT x+b) + 1
= g(cTx+ b).

Predictor variables contribute linearly
to the increase/decrease of the probability that y = 1.
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Estimation of c and b through Maximum Likelihood

• Flip coin, setting p(y = 1) = p and p(y = 0) = 1− p for binary random
variable y,

◦ Likelihood of a draw y knowing that probability is p,

py(1− p)1−y

• In the context of logistic regresion, p depends on c, b and xj for each point,

L(c, b) =
N∏

j=1

g(cTxj + b)yj(1− g(cTxj + b))1−yj
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Estimation of c and b through Maximum Likelihood

• Using again the log transformation,

logL(c, b) =
N∑

j=1

yj log g(c
Txj + b) + (1− yj) log g(1− (cTxj + b)).

• Maximizing this log-likelihood is equivalent to

max
c,b

logL(c, b)⇔ max
c,b

N∑

j=1

yj(c
Txj + b)− log(1 + ec

T xj+b).

• No closed form solution for this unfortunately... need efficient optimization.

• For datasets of reasonable size, Newton method for instance.
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Estimation of c and b through Maximum Likelihood

Compare...
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A few linear classifiers:

(3) Perceptron Rule
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Estimation of c and b through iterative updates

• Iterative algorithm that considers each data point successively.

• Here we consider S = {−1, 1}
• Start from any arbitrary estimate ω = [ bc ].

• Loop over j until ω does not change for a while...

◦ Consider a point
[

1
xj

]
and his label yj.

◦ Do uj = sign(ωT
[

1
xj

]
) and yj match?

◦ it not, set ω ← ω + ρ(yj − uj)
[

1
xj

]
.

• Not much more to add, better see in practice.
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A few linear classifiers:

(4) Support Vector Machine
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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Largest Margin Linear Classifier ?
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Support Vectors with Large Margin
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In equations

• We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w, b) ∈ R

d × R such that:

{

wTxi + b > 0 if yi = 1 ,

wTxi + b < 0 if yi = −1 .

• Next, we give a formula to compute the margin as a function of w.

• Obviously, for any t ∈ R,
Hw,b = Htw,tb

• Thus w and b are defined up to a multiplicative constant.

• We need to take care of this in the definition of the margin
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How to find the largest separating hyperplane?

For the linear classifier f(x) = wTx+ b,
consider the interstice defined by the hyperplanes:

• f(x) = wTx+ b = +1

• f(x) = wTx+ b = −1

w.x+b=0

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1

• Consider x1 and x2 such that x2 − x1 is parallel to w.
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The margin is 2/||w||

• Margin = 2/‖w‖: the points x1 and x2 satisfy:

{

wTx1 + b = 0,

wTx2 + b = 1.

• By subtracting we get wT (x2 − x1) = 1, and therefore:

γ
def
= 2||x2 − x1|| =

2

||w||.

where γ is by definition the margin.
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All training points should be on the appropriate side

• For positive examples (yi = 1) this means:

wTxi + b ≥ 1

• For negative examples (yi = −1) this means:

wTxi + b ≤ −1

• in both cases:
∀i = 1, . . . , n, yi

(
wTxi + b

)
≥ 1
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Finding the optimal hyperplane

• Find (w, b) which minimize:
‖w‖2

under the constraints:

∀i = 1, . . . , n, yi
(
wTxi + b

)
− 1 ≥ 0.

This is a classical quadratic program on R
d+1

linear constraints - quadratic objective
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Another interpretation: Convex Hulls ?

go back to 2 sets of points that are linearly separable
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Another interpretation: Convex Hulls

Linearly separable = convex hulls do not intersect
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Another interpretation: Convex Hulls

Find two closest points, one in each convex hull
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Another interpretation: Convex Hulls

The SVM = bisection of that segment
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Another interpretation: Convex Hulls

support vectors = extreme points of the faces on which the two points lie
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The non-linearly separable case for SVM’s

(when convex hulls intersect)
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What happens when the data is not linearly separable?

FIS - 2013 75



What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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Soft-margin SVM ?

• Find a trade-off between large margin and few errors.

• Mathematically:

min
f

{
1

margin(f)
+ C × errors(f)

}

• C is a parameter
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Soft-margin SVM formulation ?

• The margin of a labeled point (x, y) is

margin(x, y) = y
(
wTx+ b

)

• The error is

◦ 0 if margin(x, y) > 1,
◦ 1−margin(x, y) otherwise.

• The soft margin SVM solves:

min
w,b
{‖w‖2 + C

n∑

i=1

max{0, 1− yi
(
wTxi + b

)
}

• c(u, y) = max{0, 1− yu} is known as the hinge loss.

• c(wTxi + b, yi) associates a mistake cost to the decision w, b for example xi.
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