FIS - Statistical Machine Learning Assignment 1

This homework is due May 7th (Tue.) 11:59 AM

You can either:

- Send your homework to marcocuturicameto+report@gmail.com. Please put the word report in the title of your email.
- Provide a handwritten copy. Please leave it in the mailbox of the course (in the Engineering Building 8) before Tuesday noon.

Positive Definite Matrices

A square $n \times n$ matrix A is positive definite if

$$\forall x \in \mathbb{R}^d, x \neq 0 \Rightarrow x^T X x > 0.$$

Alternatively, A is said to be positive semi-definite if

$$\forall x \in \mathbb{R}^d, x^T X x \ge 0.$$

- 1. Suppose A is positive definite and symmetric. Prove that all the eigenvalues of A are positive. What can you say of these eigenvalues if A is a positive semi definite matrix?
- 2. Prove that the sum of two symmetric positive definite matrices $A, B \in \mathbb{R}^{d \times d}$ is positive definite.
- 3. Prove that if A is symmetric positive definite, then $\det A > 0$ and thus A is invertible. On the contrary, show that if $\det A > 0$, then A is not necessarily positive definite (you just need to provide a counterexample).
- 4. Prove that if A is positive semidefinite and $\lambda > 0$, then $(A + \lambda I)$ is positive definite.
- 5. Prove that if $X \in \mathbb{R}^{d \times n}$ then XX^T and X^TX are both positive semidefinite.
- 6. Prove that if $X \in \mathbb{R}^{d \times n}$ has rank d, then XX^T is positive definite (invertible).
- 7. Let $X \in \mathbb{R}^{d \times n}$ be a matrix, and $Y \in \mathbb{R}^n$. Prove that $\min_{\alpha \in \mathbb{R}^d} ||X^T \alpha Y||_2^2 + \lambda ||\alpha||_2^2$ is attained for $\alpha = (XX^T + \lambda I)^{-1}XY$.