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Today’s talk

• Objective: supervised inference on text data.

◦ Ex.1 Given a large database of news articles about business, sports,
literature, politics etc.etc.

⊲ Build a system that can classify automatically new articles.
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Today’s talk

◦ Ex.2 Given a large set of e-mails in a mailbox, family, friends, spam, ads,

newletters etc.

⊲ Build a system that categorizes automatically a new email.
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Today’s talk

◦ Ex.3 Given a set of requests/messages sent to a retailer: complaints, need
for technical support, praise
⊲ Build a system that forwards directly the message to the relevant department.

• Who is interested in this?

◦ internet companies,
◦ companies with large customer support receiving requests,
◦ polling institutions,
◦ social scientists who want to use text for their studiesetc.
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Text classification & probabilistic framework

• Assume that there is a probability ptext on texts on the internet

Today will be a rainy day

In Ecuador tiger-hunters enjoy eating marshmallows

Buffalo buffalo Buffalo buffalo buffalo Buffalo buffalo Buffalo buffalo

• A probability quantifies how likely sentences are to appear

• Any idea on how this likelihood might be measured?
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Text classification & probabilistic framework

• This probability takes into account grammar and meaning.

• Search engines are useful to have an idea about ptext

Today will be a rainy day

In Ecuador tiger-hunters enjoy eating marshmallows

Buffalo buffalo Buffalo buffalo buffalo Buffalo buffalo Buffalo buffalo
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Text classification & probabilistic framework

• We assume that there is something to learn from data (supervised inference)

• We assume our task is to categorize a given text among C given classes

◦ agriculture, computer chips, energy, environment, sports, politics, gossip etc.

◦ friends, family, spam, advertisements, newsletters etc.

• We also assume there is a probability pcat on categories.
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Text classification & probabilistic framework

• We assume that there is something to learn from data (supervised inference)

• We assume our task is to categorize a given text among C given classes

◦ agriculture, computer chips, energy, environment, sports, politics, gossip etc.

◦ friends, family, spam, advertisements, newslettersetc.

• Some documents appear more frequently than others.

pcat(gossip) > pcat(philosophy)
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Text classification & probabilistic framework

• Our goal will be to understand better the relationship betwee

TEXT
?↔ CATEGORY

• Here, we assume also that there is a joint probability on texts and their
category.

P (text, category)

which quantifies how likely the match between

a text text and a category category is

• For instance,

P (‘I am feeling hungry these days’, ’poetry’) ≈ 0

P (‘Manchester United’s stock rose after their victory’, ’business’)
∨

P (‘Manchester United’s stock rose after their victory’, ’sports’)
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Text classification & probabilistic framework

• Hence, given a sequence of words (including punctuation),

w = (w1, w2, w3, w4, w5, w6, w7, w8, · · · , wn)

• assuming we know P , the joint probability between texts and categories,

• an easy way to guess the category of w is by looking at

category-prediction(w) = argmax
C

P (C|w1, w2, · · · , wn)
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Text classification & probabilistic framework

P (’poetry’|‘I am feeling hungry these days’) = 0.0037

P (’business’|‘I am feeling hungry these days’) = 0.005

P (’sports’|‘I am feeling hungry these days’) = 0.003

P (’food’|‘I am feeling hungry these days’) = 0.2

P (’economy’|‘I am feeling hungry these days’) = 0.04

P (’society’|‘I am feeling hungry these days’) = 0.08
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Text classification & probabilistic framework

P (’poetry’|‘I am feeling hungry these days’) = 0.0037

P (’business’|‘I am feeling hungry these days’) = 0.005

P (’sports’|‘I am feeling hungry these days’) = 0.003

→ P (’food’|‘I am feeling hungry these days’) = 0.2

P (’economy’|‘I am feeling hungry these days’) = 0.04

P (’society’|‘I am feeling hungry these days’) = 0.08
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Bayes Rule

• Using Bayes theorem p(A,B) = p(A|B)p(B),

P (C|w1, w2, · · · , wn) =
P (C,w1, w2, · · · , wn)

P (w1, w2, · · · , wn)

• When looking for the category C that best fits w, we only focus on the
numerator.

• Bayes theorem also gives that

P (C,w1, · · · , wn) = P (C)P (w1, w2, · · · , wn|C)

= P (C)P (w1|C)P (w2, w3, · · · , wn|C,w1)

= P (C)P (w1|C)P (w2|C,w1)P (w3, w4, · · · , wn|C,w1, w2)

=
n
∏

i=1

P (wi|C,w1, · · · , wi−1)
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Examples

• Assume we have the beginning of this news title

w1, · · · , w12 = ‘The weather was so bad that the organizers

decided to close the’

• If C =business, then

P (W13 = ‘market’|business,w1, · · · , w12)

should be quite high, as well as summit, meeting etc..

• On the other hand, if we know C =sports, the probability for w13 changes
significantly...

P (W13 = ‘game’|sports,w1, · · · , w12)
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The Naive Bayes Assumption

• From a factorization

P (C,w1, · · · , wn) =
n
∏

i=1

P (wi|C,w1, · · · , wi−1)

which handles all the conditional structures of text,

• we assume that each word appears independently conditionally to C,

P (wi|C,w1, · · · , wi−1) = P (wi|C,��
�w1, ���· · ·,

�����wi−1)

= P (wi|C)

• and thus

P (C,w1, · · · , wn) =
n
∏

i=1

P (wi|C)
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The Naive Bayes Assumption Leads to Word Counts

• The factorization

P (wi|C,w1, · · · , wi−1) = P (wi|C)

• means that we take for granted that

P (C, ‘The weather was bad so the meeting was closed’)
=

P (C, ‘was The bad the closed meeting weather was so’)

Kyoto University - LIP, Adv. - 2012 16



The Naive Bayes Assumption Leads to Word Counts

• Assume we know P (C, w) for all words w in the dictionary and all categories.

P (‘business’,‘stock’) > P (‘sports’,‘stock’)

• Given a text T =But Federer has been quite a French Open security blanket

for Nadal. Their rivalry is one of the greatest in tennis history, yet it

has been decidedly short on suspense here. Nadal is now 5-0 against

Federer at Roland-Garros. Nadal is the greatest ...

• The only thing the Bayes classifier will consider is the word histogram

mathematics history stock Nadal Federrer tennis Roland−Garros blanket ...
0

2

4
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The Naive Bayes Assumption Leads to Word Counts

• To each text,

◦ count the frequency of each word w in the dictionary D, hw. Then

P (T|C) =
∏

w∈D

P (w|C)hw

• In the example below, it seems obvious that the terms

P (W = ‘Nadal’|tennis), P (W = ‘Federer’|tennis), · · ·

will be quite big.

• The Naive Bayes should easily classify this text as tennis...

• if the probabilities P (w|C) were known!!!
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Term Frequencies

We need to build an estimate of P (w|C) for all words of D, all categories
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Term Frequencies

We need to build an estimate of P (w|C) for all words of D, all categories

A typical approach

• Consider a corpus of documents with different categories of text
{(T1, c1), · · · , (TN , cN)}.

• Build a reduced dictionary D̂

◦ using all words appearing in all Ti,
◦ usually removing non-informative words such as articles, prepositions etc.

• Compute histograms hiw for each Ti which only track words in D̂.

• Compute an estimate p̂(w|c) for each word w ∈ D̂ and estimates p̂(c).
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Term Frequencies

• Use these elements, p̂, D̂ to classify a new text T using his representation hT
w

category-prediction(T) = argmax
c



p̂(c)
∏

w∈D̂

p̂(w|c)
hT
w





• of course, if we use the logarithm of the r.h.s., we get the rule

category-prediction(T) = argmax
c

log p̂(c)+
∑

w∈D̂

hT
w log p̂(w|c)

Naive Bayes for text ⇔ Linear Classifier Using Term Frequencies as Features

• Once this is established... we could imagine any linear classifier using TF.
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Term Frequency Data Seen from a Classification Perspective

• The Data we have:

◦ texts Ti translated as histograms of words h1, h2, h3, · · · , hN .
◦ Each histogram is a vector of the simplex Σd where d = #D − 1 and

Σd = {x ∈ R
d+1|xi ≥ 0,

d+1
∑

i=1

xi = 1}.

• We consider 2 categories only here, for instance “spam” vs “non-spam”.

• The corpus consists in a large number of histogram/bit pairs

“training set” =



























hi =









hiw1

hiw2...
hiwd+1









∈ Σd, yi ∈ {0, 1}









i=1..N



















• For illustration purposes only we will consider the 2 dimensional simplex, that
is #D = 3.
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Binary Classification Separation Surfaces for Vectors

What is a classification rule?

Kyoto University - LIP, Adv. - 2012 23



Binary Classification Separation Surfaces for Vectors

Classification rule = a partition of Rd into two sets
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Binary Classification Separation Surfaces for Vectors

This partition is usually interpreted as the level set of a function
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Binary Classification Separation Surfaces for Vectors

Typically, {h ∈ Σd|f(h) > 0} and {h ∈ Σd|f(h) ≤ 0}
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Classification Separation Surfaces for Vectors

Can be defined by a single surface, e.g. a curved line
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Classification Separation Surfaces for Vectors

Even more simple: using straight lines and halfspaces.
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Linear Classifiers

• Straight lines (hyperplanes when d > 2) are the simplest type of classifiers.

• A hyperplane Hc,b is a set in R
p defined by

◦ a normal vector c ∈ R
p

◦ a constant b ∈ R. as

Hc,b = {x ∈ R
d | cTx = b}

• Letting b vary we can “slide” the hyperplane across Rp

c

Hc,0

Hc,b0
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Linear Classifiers

• In Σd, things hypersurfaces divide R
d into two halfspaces,

{

h ∈ R
d | cTh< b

}

∪
{

h ∈ R
d | cTh≥ b

}

= R
d

• Linear classifiers attribute the “yes” and “no” answers given arbitrary c and b.

NO

YES

Hc,b

c

• Assuming we only look at halfspaces for the decision surface...
...how to choose the “best” (c⋆, b⋆) given a training sample?
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Linear Classifiers

• Training a classifier is mapping a dataset to a c and b.

“training set”
{(

hi ∈ Σd, yi ∈ {0, 1}
)

i=1..N

} ????
=⇒“best”c⋆, b⋆

has different answers.

• Linear Discriminant Analysis (or Fisher’s Linear Discriminant);

• Logistic regression maximum likelihood estimation;

• Perceptron, a one-layer neural network;

• Support Vector Machine, the result of a convex program

• etc.
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What is special about natural text?

• Remember we have

◦ A corpus of N documents {(T1, c1), · · · , (TN , cN)}.
◦ Build a reduced dictionary D̂ of M words
◦ Compute histograms hiw for each Ti which only track words in D̂.

• What is difficult about text processing usually?

Usually, M is very large, possible bigger than N

H =

























T1 T2 T3 T4 · · · TN

eat 0 3 1 0 · · · 0
ball 4 0 0 0 · · · 1
dinosaur 0 2 0 0 · · · 0
genome 0 0 2 0 · · · 0
planet 0 1 0 0 · · · 0
Clooney 0 0 0 2 · · · 0
Guatemala 0 0 0 2 · · · 0
... ... ... ... ... ... ...

























Kyoto University - LIP, Adv. - 2012 32



Sparse Classifiers

sparse (adj. sparser, sparsest)
Occurring, growing, or settled at widely spaced intervals; not thick or dense
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What’s the goal

• The goal when estimating linear classifiers: define c ∈ R
M and b ∈ R.

NO

YES

Hc,b

c

• The number of words is M , defining a vector c means setting a value for:

c =





















ceat
cball

cdinosaur
cgenome

cplanet
cClooney

...




















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Sparse and non-sparse

• Without any constraint, defining c⋆ is simply:

min
c∈RM ,b∈R

error(c, b)

for instance, error can be the logistic error, the hinge loss (SVM) etc...

• With a sparsity constraint, we have

min
c,b∈R,‖c‖0≤p

error(c, b), where ‖c‖0 def
=

M
∑

i=1

1ci 6=0
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Sparse and non-sparse

• sparse vector:

c =
[

0 0 0 1.324 0 0 −3.21 0 0 0
]

‖c‖0 = 2

• dense vector

c =
[

0.21 −4.65 3.2 6.982 5.43 −9.1 0.004 −0.37 12.1 3.94
]

‖c‖0 = 10

• a sparsity constraint enforces the solution to be sparse and not dense

min
c,b∈R,‖c‖0≤p

error(c, b), where ‖c‖0 def
=

M
∑

i=1

1ci 6=0
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Why we like sparse

Sparse solutions for c are desirable because

• they are lighter in memory. computations only grow in p, not M anymore.

c =
[

0 0 0 1.324 0 0 −3.21 0 0 0
]

cTx = 1.324× x4 − 3.21× x7

• since only p words matter, these are keywords which can be interpreted

◦ c4 > 0, genome is the important word to predict positively
◦ c7 > 0, Guatemala is the important word to predict negatively
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How we can solve a “sparsified” problem

How can we estimate sparse solutions c⋆?

• Direct approach

min
c,b∈R,‖c‖0≤p

error(c, b), where ‖c‖0 def
=

M
∑

i=1

1ci 6=0

is computationally intractable.

• Alternative approach: penalize with the l1 norm

min
c,b∈R

error(c, b) + λ‖c‖1, where ‖c‖1 def
=

M
∑

i=1

|ci|

can prove that we can recover sparse solutions.

• Many algorithms: LASSO, FISTA... see literature on compressive sensing.

• Example: http://statnews.org/ website by Laurent El Ghaoui
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Support Vector Machine

Check the very nice book on the subject by T.Joachims. It’s a bit old now but
contains a lot of fundamental ideas.
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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Largest Margin Linear Classifier ?
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Support Vectors with Large Margin
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Finding the optimal hyperplane

• Finding the optimal hyperplane is equivalent to finding (w, b) which minimize:

‖w‖2

under the constraints:

∀i = 1, . . . , n, yi
(

wTxi + b
)

− 1 ≥ 0.

This is a classical quadratic program on R
d+1

linear constraints - quadratic objective
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Lagrangian

• In order to minimize:
1

2
||w||2

under the constraints:

∀i = 1, . . . , n, yi
(

wTxi + b
)

− 1 ≥ 0.

• introduce one dual variable αi for each constraint,

• one constraint for each training point.

• the Lagrangian is, for α � 0 (that is for each αi ≥ 0)

L(w, b, α) =
1

2
||w||2 −

n
∑

i=1

αi
(

yi
(

wTxi + b
)

− 1
)

.
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The Lagrange dual function

g(α) = inf
w∈Rd,b∈R

{

1

2
‖w‖2 −

n
∑

i=1

αi
(

yi
(

wTxi + b
)

− 1
)

}

has saddle points when

w =
n
∑

i=1

αiyixi, ( derivating w.r.t w) (∗)

0 =

n
∑

i=1

αiyi, (derivating w.r.t b) (∗∗)

substituting (∗) in g, and using (∗∗) as a constraint, get the dual function g(α).

• To solve the dual problem, maximize g w.r.t. α.

• Strong duality holds. KKT gives us αi(yi
(

wTxi + b
)

− 1) = 0,
...hence, either αi = 0 or yi

(

wTxi + b
)

= 1.

• αi 6= 0 only for points on the support hyperplanes {(x, y)| yi(wTxi + b) = 1}.
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Dual optimum

The dual problem is thus

maximize g(α) =
∑n

i=1
αi − 1

2

∑n

i,j=1
αiαjyiyjx

T
i xj

such that α � 0,
∑n

i=1
αiyi = 0.

This is a quadratic program in R
n, with box constraints.

α∗ can be computed using optimization software
(e.g. built-in matlab function)
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Recovering the optimal hyperplane

• With α∗, we recover (wT , b∗) corresponding to the optimal hyperplane.

• wT is given by wT =
∑n

i=1
yiαix

T
i ,

• b∗ is given by the conditions on the support vectors αi > 0, yi(w
Txi + b) = 1,

b∗ = −1

2

(

min
yi=1,αi>0

(wTxi) + max
yi=−1,αi>0

(wTxi)

)

• the decision function is therefore:

f∗(x) = wTx+ b∗

=

n
∑

i=1

yiαix
T
i x+ b∗.

• Here the dual solution gives us directly the primal solution.
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Interpretation: support vectors

α>0

α=0
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Another interpretation: Convex Hulls

go back to 2 sets of points that are linearly separable
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Another interpretation: Convex Hulls

Linearly separable = convex hulls do not intersect
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Another interpretation: Convex Hulls

Find two closest points, one in each convex hull

Kyoto University - LIP, Adv. - 2012 55



Another interpretation: Convex Hulls

The SVM = bisection of that segment
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Another interpretation: Convex Hulls

support vectors = extreme points of the faces on which the two points lie
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Kernel trick for SVM’s

• use a mapping φ from X to a feature space,

• which corresponds to the kernel k:

∀x, x′ ∈ X , k(x, x′) = 〈φ(x), φ(x′) 〉

• Example: if φ(x) = φ

([

x1
x2

])

=

[

x21
x22

]

, then

k(x, x′) = 〈φ(x), φ(x′) 〉 = (x1)
2(x′1)

2 + (x2)
2(x′2)

2.
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Training a SVM in the feature space

Replace each xTx′ in the SVM algorithm by 〈φ(x), φ(x′) 〉 = k(x, x′)

• Reminder: the dual problem is to maximize

g(α) =

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αi αj yi yj k(xi, xj),

under the constraints:
{

0 ≤ αi ≤ C, for i = 1, . . . , n
∑n

i=1
αiyi = 0.

• The decision function becomes:

f(x) = 〈w, φ(x) 〉+ b∗

=
n
∑

i=1

yiαik(xi, x)+ b∗.
(1)
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The Kernel Trick ?

The explicit computation of φ(x) is not necessary.
The kernel k(x, x′) is enough.

• the SVM optimization for α works implicitly in the feature space.

• the SVM is a kernel algorithm: only need to input K and y:

maximize g(α) = αT1− 1

2
αT (K ⊙ yyT )α

such that 0 ≤ αi ≤ C, for i = 1, . . . , n
∑n

i=1
αiyi = 0.

• K’s positive definite ⇔ problem has a unique optimum

• the decision function is f(·) = ∑n

i=1
αi k(xi, ·) + b.
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Kernel example: polynomial kernel

• For x = (x1, x2)
⊤ ∈ R

2, let φ(x) = (x21,
√
2x1x2, x

2
2) ∈ R

3:

K(x, x′) = x21x
′2
1 + 2x1x2x

′
1x

′
2 + x22x

′2
2

= {x1x′1 + x2x
′
2}2

= {xTx′}2 .

2R

x1

x2

x1

x2

2
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Kernels are Trojan Horses onto Linear Models

• With kernels, complex structures can enter the realm of linear models
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Kernels For Histograms

• An abridged bestiary of negative definite distances on the probability
simplex:

ψJD(θ, θ
′) = h

(

θ + θ′

2

)

− h(θ) + h(θ′)

2
,

ψχ2(θ, θ′) =
∑

i

(θi − θ′i)
2

θi + θ′i
, ψTV (θ, θ

′) =
∑

i

|θi − θ′i|,

ψH2
(θ, θ′) =

∑

i

|
√

θi −
√

θ′i|2, ψH1
(θ, θ′) =

∑

i

|
√

θi −
√

θ′i|.

• Recover kernels through

k(θ, θ′) = e−tψ, t > 0

Kyoto University - LIP, Adv. - 2012 63


