Language Information Processing, Advanced

Text Classifiers

mcuturi@i.kyoto-u.ac.jp

Kyoto University - LIP, Adv. - 2012

Today's talk

- Objective: supervised inference on text data.
 - **Ex.1** Given a large database of **news articles** about *business, sports, literature, politics etc.etc.*
 - ▷ Build a system that can classify **automatically** new articles.

Business »

AP reports pipeline operations can restart

KHAS-TV - 8 hours ago

Economic Times - 19 hours ago

GMail hacking draws FBI interest

WASHINGTON: The computer phishing scam that Google says originated in China was directed at an unknown n staff officials and set off the FBI inquiry that began this week, according to several administration officials.

Giant open-pit mine raises questions in Uruguay AFP-10 hours ago

CERRO CHATO, Uruguay - A plan to build a giant open pit mine has created a sharp rift between those who think agricultural land should be protected, and those wanting to exploit its wealth. The Aratiri project, owned by Zamin

More Business stories

Sci/Tech »

WWDC, iPhone 5 in limelight: What new Android smartphones are lined up?

International Business Times - 2 hours ago By IB Times Staff Reporter | June 5, 2011 7:02 AM EDT All eyes are on Apple Worldwide Developer Conference on Monday and whether Steve Jobs will unveil Apple iPhone 5. Most observers say Apple will not unveil the next

Internation

Today's talk

- **Ex.2** Given a large set of e-mails in a mailbox, *family, friends, spam, ads, newletters etc.*
 - ▷ Build a system that **categorizes** automatically a new email.

Quality Medicine Available C7 - The most complete Pha
Viagra Professional as low as \$3.84 - Visit our new of
制造型金业车间 管理技能高级训练 GB2312?E
Re[13]: - Hot selling meds at cheeap All countriess shiipin
Our store is your cureall! - My Canadian Pharmacy We
We offer a variety of different licenses and discounts
Effortless Discount Offerings xh - Check Out our new
(no subject) -
We will help you get laid - Hey there. Just came across
Lively Benefits of Creativity - When it comes to corpora
FW:hope you didn't mind - usasia , lond the liisi or ype I
RE: What's new out there? - tv-channel may dokeyromp
Looking to ReFi or a Home Equity Loan? - Isn't some
We cure any desease! - My Canadian Pharmacy We shi
Unlimited Systemworks Downloads, get your 70% di
cheap oem soft shipping //orldwide - TOP 10 NEW TO

Today's talk

- **Ex.3** Given a set of requests/messages sent to a retailer: complaints, need for technical support, praise
 - ▷ Build a system that **forwards directly** the message to the relevant department.

- Who is interested in this?
 - internet companies,
 - companies with large customer support receiving requests,
 - polling institutions,
 - \circ social scientists who want to use text for their studies *etc*.

• Assume that there is a probability p_{text} on texts on the internet

Today will be a rainy day

In Ecuador tiger-hunters enjoy eating marshmallows

Buffalo buffalo buffalo buffalo Buffalo buffalo buffalo buffalo buffalo

- A probability quantifies how **likely** sentences are to appear
- Any idea on how this likelihood might be measured?

- This probability takes into account grammar and meaning.
- Search engines are useful to have an idea about p_{text}

Today will be a rainy day

"today will be a rainy day"

About 288,000 results (0.24 seconds)

In Ecuador tiger-hunters enjoy eating marshmallows

"In Ecuador tiger-hunters enjoy eating marshmallows"

A No results found for "In Ecuador tiger-hunters enjoy eating marshmallows".

Buffalo buffalo buffalo buffalo buffalo buffalo buffalo buffalo buffalo

"Buffalo buffalo Buffalo buffalo buffalo Buffalo Buffalo buffalo"

About 4,980,000 results (0.29 seconds)

- We assume that there is **something to learn from data** (supervised inference)
- We assume our task is to categorize a given text among C given classes
 - agriculture, computer chips, energy, environment, sports, politics, gossip *etc.*friends, family, spam, advertisements, newsletters *etc.*

• We also assume there is a probability p_{cat} on categories.

- We assume that there is **something to learn from data** (supervised inference)
- We assume our task is to categorize a given text among C given classes
 - agriculture, computer chips, energy, environment, sports, politics, gossip etc.
 friends, family, spam, advertisements, newsletters etc.

• Some documents appear more frequently than others.

 $p_{cat}(gossip) > p_{cat}(philosophy)$

• Our goal will be to understand better the relationship betwee

 $\mathsf{TEXT} \stackrel{?}{\leftrightarrow} \mathsf{CATEGORY}$

• Here, we assume also that there is a **joint** probability on texts and their category.

P(text, category)

which quantifies how likely the match between

a text text and a category category is

• For instance,

 $P('I \text{ am feeling hungry these days'}, 'poetry') \approx 0$

P(`Manchester United's stock rose after their victory', `business') \bigvee P(`Manchester United's stock rose after their victory', `sports')

• Hence, given a sequence of words (including punctuation),

$$\mathbf{w} = (w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, \cdots, w_n)$$

- assuming we know P, the **joint** probability between texts and categories,
- $\bullet\,$ an easy way to guess the category of ${\bf w}$ is by looking at

category-prediction(w) =
$$\operatorname{argmax}_{C} P(C|w_1, w_2, \cdots, w_n)$$

P('poetry'|'I am feeling hungry these days') = 0.0037P('business'|'I am feeling hungry these days') = 0.005P('sports'|'I am feeling hungry these days') = 0.003P('food'|'I am feeling hungry these days') = 0.2P('economy'|'I am feeling hungry these days') = 0.04P('society'|'I am feeling hungry these days') = 0.08

P('poetry'|'I am feeling hungry these days') = 0.0037P('business'|'I am feeling hungry these days') = 0.005P('sports'|'I am feeling hungry these days') = 0.003 $\rightarrow P(\text{'food'}|\text{'I am feeling hungry these days'}) = 0.2$ P('economy'|'I am feeling hungry these days') = 0.04P('society'|'I am feeling hungry these days') = 0.08

Bayes Rule

• Using Bayes theorem p(A, B) = p(A|B)p(B),

$$P(\boldsymbol{C}|\boldsymbol{w_1}, \boldsymbol{w_2}, \cdots, \boldsymbol{w_n}) = \frac{P(\boldsymbol{C}, \boldsymbol{w_1}, \boldsymbol{w_2}, \cdots, \boldsymbol{w_n})}{P(\boldsymbol{w_1}, \boldsymbol{w_2}, \cdots, \boldsymbol{w_n})}$$

- When looking for the category C that best fits w, we only focus on the numerator.
- Bayes theorem also gives that

$$P(\boldsymbol{C}, \boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{n}) = P(\boldsymbol{C})P(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \cdots, \boldsymbol{w}_{n} | \boldsymbol{C})$$

$$= P(\boldsymbol{C})P(\boldsymbol{w}_{1} | \boldsymbol{C})P(\boldsymbol{w}_{2}, \boldsymbol{w}_{3}, \cdots, \boldsymbol{w}_{n} | \boldsymbol{C}, \boldsymbol{w}_{1})$$

$$= P(\boldsymbol{C})P(\boldsymbol{w}_{1} | \boldsymbol{C})P(\boldsymbol{w}_{2} | \boldsymbol{C}, \boldsymbol{w}_{1})P(\boldsymbol{w}_{3}, \boldsymbol{w}_{4}, \cdots, \boldsymbol{w}_{n} | \boldsymbol{C}, \boldsymbol{w}_{1}, \boldsymbol{w}_{2})$$

$$= \prod_{i=1}^{n} P(\boldsymbol{w}_{i} | \boldsymbol{C}, \boldsymbol{w}_{1}, \cdots, \boldsymbol{w}_{i-1})$$

Examples

• Assume we have the beginning of this news title

 $w_1, \cdots, w_{12} =$ 'The weather was so bad that the organizers decided to close the'

• If C = business, then

 $P(W_{13} = \text{`market'} | \text{business}, w_1, \cdots, w_{12})$

should be quite high, as well as summit, meeting etc..

• On the other hand, if we know C = sports, the probability for w_{13} changes significantly...

$$P(W_{13} = \text{`game'} | \text{sports}, w_1, \cdots, w_{12})$$

The Naive Bayes Assumption

• From a factorization

$$P(\boldsymbol{C}, \boldsymbol{w_1}, \cdots, \boldsymbol{w_n}) = \prod_{i=1}^n P(\boldsymbol{w_i} | \boldsymbol{C}, \boldsymbol{w_1}, \cdots, \boldsymbol{w_{i-1}})$$

~~

which handles all the conditional structures of text,

• we assume that each word appears independently conditionally to C,

$$P(\boldsymbol{w_i}|\boldsymbol{C}, \boldsymbol{w_1}, \cdots, \boldsymbol{w_{i-1}}) = P(\boldsymbol{w_i}|\boldsymbol{C}, \boldsymbol{w_1}, \cdots, \boldsymbol{w_{i-1}})$$
$$= P(\boldsymbol{w_i}|\boldsymbol{C})$$

• and thus

$$P(\boldsymbol{C}, \boldsymbol{w_1}, \cdots, \boldsymbol{w_n}) = \prod_{i=1}^n P(\boldsymbol{w_i} | \boldsymbol{C})$$

The Naive Bayes Assumption Leads to Word Counts

• The factorization

$$P(\boldsymbol{w_i}|\boldsymbol{C}, \boldsymbol{w_1}, \cdots, \boldsymbol{w_{i-1}}) = P(\boldsymbol{w_i}|\boldsymbol{C})$$

• means that we take for granted that

P(C, `The weather was bad so the meeting was closed') = P(C, `was The bad the closed meeting weather was so')

The Naive Bayes Assumption Leads to Word Counts

• Assume we know P(C, w) for all words w in the dictionary and all categories.

```
P(\text{`business', `stock'}) > P(\text{`sports', `stock'})
```

- Given a text T =But Federer has been quite a French Open security blanket for Nadal. Their rivalry is one of the greatest in tennis history, yet it has been decidedly short on suspense here. Nadal is now 5-0 against Federer at Roland-Garros. Nadal is the greatest ...
- The only thing the Bayes classifier will consider is the word histogram

The Naive Bayes Assumption Leads to Word Counts

• To each text,

 $\circ\,$ count the frequency of each word w in the dictionary \mathcal{D} , $\pmb{h_w}.$ Then

$$P(\mathbf{T}|\boldsymbol{C}) = \prod_{w \in \mathcal{D}} P(w|\boldsymbol{C})^{\boldsymbol{h}_{\boldsymbol{w}}}$$

• In the example below, it seems obvious that the terms

$$P(W = `Nadal' | tennis), P(W = `Federer' | tennis), \cdots$$

will be quite big.

- The Naive Bayes should easily classify this text as tennis...
 - if the probabilities P(w|C) were known!!!

Term Frequencies

We need to build an estimate of P(w|C) for all words of \mathcal{D} , all categories

Term Frequencies

We need to build an estimate of P(w|C) for all words of \mathcal{D} , all categories

A typical approach

- Consider a corpus of documents with different categories of text $\{(\mathbf{T}_1, c_1), \cdots, (\mathbf{T}_N, c_N)\}.$
- Build a reduced dictionary $\hat{\mathcal{D}}$
 - \circ using **all** words appearing in all \mathbf{T}_i ,
 - $\circ\,$ usually removing non-informative words such as articles, prepositions etc.
- Compute histograms h_w^i for **each** \mathbf{T}_i which only track words in $\hat{\mathcal{D}}$.
- Compute an estimate $\hat{p}(w|c)$ for each word $w \in \hat{D}$ and estimates $\hat{p}(c)$.

Term Frequencies

• Use these elements, \hat{p} , $\hat{\mathcal{D}}$ to classify a new text T using his representation h_w^{T}

$$\mathsf{category-prediction}(\mathbf{T}) = \operatorname*{argmax}_{c} \left(\hat{p}(c) \prod_{w \in \hat{\mathcal{D}}} \hat{p}(w|c)^{h_w^{\mathrm{T}}} \right)$$

• of course, if we use the logarithm of the r.h.s., we get the rule

$$\mathsf{category-prediction}(\mathbf{T}) = \operatorname*{argmax}_{c} \, \log \hat{p}(c) + \sum_{w \in \hat{\mathcal{D}}} \boldsymbol{h}_{\boldsymbol{w}}^{\mathbf{T}} \log \hat{p}(\boldsymbol{w}|\boldsymbol{c})$$

Naive Bayes for text \Leftrightarrow Linear Classifier Using Term Frequencies as Features

• Once this is established... we could imagine **any** linear classifier using TF.

Term Frequency Data Seen from a Classification Perspective

- The **Data** we have:
 - texts \mathbf{T}_i translated as histograms of words $h^1, h^2, h^3, \cdots, h^N$.
 - Each histogram is a vector of the simplex Σ_d where $d = \#\mathcal{D} 1$ and

$$\Sigma_d = \{ x \in \mathbb{R}^{d+1} | x_i \ge 0, \sum_{i=1}^{d+1} x_i = 1 \}.$$

- We consider 2 categories only here, for instance "spam" vs "non-spam".
- The corpus consists in a large number of histogram/bit pairs

"training set"
$$= \left\{ \left(h_i = \begin{bmatrix} h_{w_1}^i \\ h_{w_2}^i \\ \vdots \\ h_{w_{d+1}}^i \end{bmatrix} \in \Sigma^d, \ \mathbf{y}_i \in \{0, 1\} \right)_{i=1..N} \right\}$$

 For illustration purposes only we will consider the 2 dimensional simplex, that is #D = 3.

What is a classification rule?

Classification rule = a partition of \mathbb{R}^d into two sets

This partition is usually interpreted as the level set of a function

Typically,
$$\{h \in \Sigma_d | \mathbf{f}(h) > 0\}$$
 and $\{h \in \Sigma_d | \mathbf{f}(h) \le 0\}$

Can be defined by a single surface, e.g. a curved line

Even more **simple**: using **straight lines** and halfspaces.

Linear Classifiers

- Straight lines (hyperplanes when d > 2) are the simplest type of classifiers.
- A hyperplane $H_{\mathbf{c},b}$ is a set in \mathbb{R}^p defined by
 - \circ a normal vector $\mathbf{c} \in \mathbb{R}^p$
 - \circ a constant $b \in \mathbb{R}$. as

$$H_{\mathbf{c},b} = \{ \mathbf{x} \in \mathbb{R}^d \, | \, \mathbf{c}^T \mathbf{x} \, = \, b \}$$

• Letting b vary we can "slide" the hyperplane across \mathbb{R}^p

Linear Classifiers

• In Σ_d , things hypersurfaces **divide** \mathbb{R}^d into **two** halfspaces,

$$\left\{h \in \mathbb{R}^d \,|\, \mathbf{c}^T h < b\right\} \cup \left\{h \in \mathbb{R}^d \,|\, \mathbf{c}^T h \ge b\right\} = \mathbb{R}^d$$

• Linear classifiers attribute the "yes" and "no" answers given arbitrary c and b.

Assuming we only look at halfspaces for the decision surface...
 ...how to choose the "best" (c*, b*) given a training sample?

Linear Classifiers

• Training a classifier is mapping a dataset to a c and b.

"training set"
$$\left\{ \left(h^i \in \Sigma^d, \mathbf{y}_i \in \{0, 1\}\right)_{i=1..N} \right\} \stackrel{????}{\Longrightarrow}$$
 "best" $\mathbf{c}^{\star}, b^{\star}$

has different answers.

- Linear Discriminant Analysis (or Fisher's Linear Discriminant);
- Logistic regression maximum likelihood estimation;
- **Perceptron**, a one-layer neural network;
- Support Vector Machine, the result of a convex program
- *etc.*

What is special about natural text?

- Remember we have
 - A corpus of N documents $\{(\mathbf{T}_1, c_1), \cdots, (\mathbf{T}_N, c_N)\}$.
 - Build a reduced dictionary $\hat{\mathcal{D}}$ of M words
 - Compute histograms h_w^i for **each** \mathbf{T}_i which only track words in $\hat{\mathcal{D}}$.
- What is difficult about text processing usually?

Usually, ${\cal M}$ is very large, possible bigger than ${\cal N}$

		\mathbf{T}_1	\mathbf{T}_2	\mathbf{T}_3	\mathbf{T}_4	•••	\mathbf{T}_N
H =	eat	0	3	1	0	•••	0]
	ball	4	0	0	0	•••	1
	dinosaur	0	2	0	0	•••	0
	genome	0	0	2	0	•••	0
	planet	0	1	0	0	•••	0
	Clooney	0	0	0	2	•••	0
	Guatemala	0	0	0	2	• • •	0
	:	:	:	:	:	:	:

Sparse Classifiers

sparse (adj. sparser, sparsest) Occurring, growing, or settled at widely spaced intervals; not thick or dense

Kyoto University - LIP, Adv. - 2012

What's the goal

• The goal when estimating linear classifiers: define $c \in \mathbb{R}^M$ and $b \in \mathbb{R}$.

• The number of words is M, defining a vector c means setting a value for:

$$c = \begin{bmatrix} C_{eat} \\ C_{ball} \\ C_{dinosaur} \\ C_{genome} \\ C_{planet} \\ C_{Clooney} \\ \vdots \end{bmatrix}$$

Sparse and non-sparse

• Without any constraint, defining c^* is simply:

 $\min_{c \in \mathbb{R}^M, b \in \mathbb{R}} \operatorname{error}(c, b)$

for instance, error can be the logistic error, the hinge loss (SVM) etc...

• With a **sparsity** constraint, we have

$$\min_{c,b\in\mathbb{R},\|\boldsymbol{c}\|_{0}\leq\boldsymbol{p}}\operatorname{error}(c,b), \text{ where } \|c\|_{0} \stackrel{\text{def}}{=} \sum_{i=1}^{M} \mathbf{1}_{c_{i}\neq0}$$

Sparse and non-sparse

• sparse vector:

$$c = \begin{bmatrix} 0 & 0 & 0 & 1.324 & 0 & 0 & -3.21 & 0 & 0 \end{bmatrix}$$
$$\|c\|_0 = 2$$

• dense vector

 $c = \begin{bmatrix} 0.21 & -4.65 & 3.2 & 6.982 & 5.43 & -9.1 & 0.004 & -0.37 & 12.1 & 3.94 \end{bmatrix}$ $\|c\|_0 = 10$

• a **sparsity constraint** enforces the solution to be sparse and **not dense**

$$\min_{c,b\in\mathbb{R},\|\boldsymbol{c}\|_{0}\leq\boldsymbol{p}}\operatorname{error}(c,b), \text{ where } \|c\|_{0} \stackrel{\text{def}}{=} \sum_{i=1}^{M} \mathbf{1}_{c_{i}\neq 0}$$

Why we like sparse

Sparse solutions for c are desirable because

• they are lighter in memory. computations only grow in p, not M anymore.

$$c = \begin{bmatrix} 0 & 0 & 0 & 1.324 & 0 & 0 & -3.21 & 0 & 0 \end{bmatrix}$$

$$c^T x = 1.324 \times x_4 - 3.21 \times x_7$$

• since only p words matter, these are **keywords** which can be interpreted

• $c_4 > 0$, genome is the important word to predict positively • $c_7 > 0$, Guatemala is the important word to predict negatively

How we can solve a "sparsified" problem

How can we estimate sparse solutions c^* ?

• **Direct** approach

$$\min_{c,b\in\mathbb{R},\|\boldsymbol{c}\|_{0}\leq\boldsymbol{p}}\operatorname{error}(c,b), \text{ where } \|c\|_{0} \stackrel{\text{def}}{=} \sum_{i=1}^{M} \mathbf{1}_{c_{i}\neq 0}$$

is computationally intractable.

• Alternative approach: penalize with the l_1 norm

$$\min_{c,b\in\mathbb{R}}\operatorname{error}(c,b) + \lambda \|\boldsymbol{c}\|_{1}, \text{ where } \|c\|_{1} \stackrel{\text{def}}{=} \sum_{i=1}^{M} |c_{i}|$$

can prove that we can recover sparse solutions.

- Many algorithms: LASSO, FISTA... see literature on compressive sensing.
- Example: http://statnews.org/ website by Laurent El Ghaoui

Support Vector Machine

Check the very nice book on the subject by T.Joachims. It's a bit old now but contains a lot of fundamental ideas.

Largest Margin Linear Classifier ?

Support Vectors with Large Margin

Finding the optimal hyperplane

• Finding the optimal hyperplane is equivalent to finding (\mathbf{w}, b) which minimize:

 $\|\mathbf{w}\|^2$

under the constraints:

$$\forall i = 1, \dots, n, \quad \mathbf{y}_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \ge 0.$$

This is a classical quadratic program on \mathbb{R}^{d+1} linear constraints - quadratic objective

Lagrangian

• In order to minimize:

$$\frac{1}{2}||\mathbf{w}||^2$$

under the constraints:

$$\forall i = 1, \dots, n, \qquad y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \ge 0.$$

- introduce one dual variable α_i for each constraint,
- one constraint for each training point.
- the Lagrangian is, for $\alpha \succeq 0$ (that is for each $\alpha_i \ge 0$)

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right).$$

The Lagrange dual function

$$g(\alpha) = \inf_{\mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\mathbf{w}^T \mathbf{x}_i + b \right) - 1 \right) \right\}$$

has saddle points when

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{y}_i \mathbf{x}_i, \quad (\text{ derivating w.r.t } \mathbf{w}) \quad (*)$$
$$0 = \sum_{i=1}^{n} \alpha_i \mathbf{y}_i, \quad (\text{derivating w.r.t } b) \quad (**)$$

substituting (*) in g, and using (**) as a constraint, get the dual function $g(\alpha)$.

- To solve the dual problem, maximize g w.r.t. α .
- Strong duality holds. KKT gives us $\alpha_i (\mathbf{y}_i (\mathbf{w}^T \mathbf{x}_i + b) 1) = 0$, ...*hence*, either $\alpha_i = \mathbf{0}$ or $\mathbf{y}_i (\mathbf{w}^T \mathbf{x}_i + b) = \mathbf{1}$.
- $\alpha_i \neq 0$ only for points on the support hyperplanes $\{(\mathbf{x}, \mathbf{y}) | \mathbf{y}_i(\mathbf{w}^T \mathbf{x}_i + b) = 1\}$.

Dual optimum

The dual problem is thus

maximize
$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

such that $\alpha \succeq 0, \sum_{i=1}^{n} \alpha_i \mathbf{y}_i = 0.$

This is a **quadratic program** in \mathbb{R}^n , with *box constraints*. α^* can be computed using optimization software (*e.g.* built-in matlab function)

Recovering the optimal hyperplane

• With α^* , we recover (\mathbf{w}^T, b^*) corresponding to the **optimal hyperplane**.

•
$$\mathbf{w}^T$$
 is given by $\mathbf{w}^T = \sum_{i=1}^n y_i \alpha_i \mathbf{x}_i^T$,

• b^* is given by the conditions on the support vectors $\alpha_i > 0$, $\mathbf{y}_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$,

$$b^* = -\frac{1}{2} \left(\min_{\mathbf{y}_i = 1, \alpha_i > 0} (\mathbf{w}^T \mathbf{x}_i) + \max_{\mathbf{y}_i = -1, \alpha_i > 0} (\mathbf{w}^T \mathbf{x}_i) \right)$$

• the **decision function** is therefore:

$$f^*(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b^*$$
$$= \sum_{i=1}^n y_i \alpha_i \mathbf{x}_i^T \mathbf{x} + b^*.$$

• Here the **dual** solution gives us directly the **primal** solution.

Interpretation: support vectors

go back to 2 sets of points that are linearly separable

Linearly separable = convex hulls do not intersect

Find two closest points, one in each convex hull

The SVM = bisection of that segment

support vectors = extreme points of the faces on which the two points lie

Kernel trick for SVM's

- use a mapping ϕ from ${\mathcal X}$ to a feature space,
- which corresponds to the **kernel** k:

$$\forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}, \quad k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$$

• Example: if
$$\phi(\mathbf{x}) = \phi\left(\begin{bmatrix} x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix} x_1^2\\x_2^2\end{bmatrix}$$
, then

$$k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = (x_1)^2 (x_1')^2 + (x_2)^2 (x_2')^2.$$

Training a SVM in the feature space

Replace each $\mathbf{x}^T \mathbf{x}'$ in the SVM algorithm by $\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = k(\mathbf{x}, \mathbf{x}')$

• **Reminder**: the dual problem is to maximize

$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j),$$

under the constraints:

$$\begin{cases} 0 \le \alpha_i \le C, & \text{for } i = 1, \dots, n \\ \sum_{i=1}^n \alpha_i \mathbf{y}_i = 0. \end{cases}$$

• The **decision function** becomes:

$$f(\mathbf{x}) = \langle \mathbf{w}, \phi(x) \rangle + b^*$$

= $\sum_{i=1}^n y_i \alpha_i \mathbf{k}(\mathbf{x}_i, \mathbf{x}) + b^*.$ (1)

The Kernel Trick ?

The explicit computation of $\phi(\mathbf{x})$ is not necessary. The kernel $k(\mathbf{x}, \mathbf{x}')$ is enough.

- the SVM optimization for α works **implicitly** in the feature space.
- the SVM is a kernel algorithm: only need to input *K* and **y**:

$$\begin{array}{ll} \text{maximize} & g(\alpha) = \alpha^T \mathbf{1} - \frac{1}{2} \alpha^T (\mathbf{K} \odot \mathbf{y} \mathbf{y}^T) \alpha \\ \text{such that} & 0 \leq \alpha_i \leq C, \quad \text{for } i = 1, \dots, n \\ & \sum_{i=1}^n \alpha_i \mathbf{y}_i = 0. \end{array}$$

- K's positive definite \Leftrightarrow problem has a unique optimum
- the decision function is $f(\cdot) = \sum_{i=1}^{n} \alpha_i \mathbf{k}(\mathbf{x}_i, \cdot) + b$.

Kernel example: polynomial kernel

• For
$$\mathbf{x} = (x_1, x_2)^\top \in \mathbb{R}^2$$
, let $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$:

$$\begin{aligned} \boldsymbol{K}(\mathbf{x}, \mathbf{x'}) &= x_1^2 x_1'^2 + 2x_1 x_2 x_1' x_2' + x_2^2 x_2'^2 \\ &= \{x_1 x_1' + x_2 x_2'\}^2 \\ &= \{\mathbf{x}^T \mathbf{x'}\}^2 . \end{aligned}$$

Kernels are Trojan Horses onto Linear Models

• With kernels, complex structures can enter the realm of linear models

Kernels For Histograms

• An abridged bestiary of **negative definite distances** on the probability simplex:

$$\psi_{JD}(\theta, \theta') = h\left(\frac{\theta + \theta'}{2}\right) - \frac{h(\theta) + h(\theta')}{2},$$

$$\psi_{\chi^2}(\theta, \theta') = \sum_i \frac{(\theta_i - \theta'_i)^2}{\theta_i + \theta'_i}, \quad \psi_{TV}(\theta, \theta') = \sum_i |\theta_i - \theta'_i|,$$

$$\psi_{H_2}(\theta, \theta') = \sum_i |\sqrt{\theta_i} - \sqrt{\theta'_i}|^2, \quad \psi_{H_1}(\theta, \theta') = \sum_i |\sqrt{\theta_i} - \sqrt{\theta'_i}|.$$

• Recover kernels through

$$k(\theta, \theta') = e^{-t\psi}, \quad t > 0$$