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Support Vector Machines
The linearly-separable case
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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Largest Margin Linear Classifier ?
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Support Vectors with Large Margin
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In equations

e The training set is a finite set of n data/class pairs:

T ={(x1,¥1),---» (X8, ¥YN) },

where x; € R? and y, € {—1,1}.

e We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w,b) € R? x R such that:

wix;+0>0 ify, =1,
wix;+b<0 ify,=—1.
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How to find the largest separating hyperplane?

For the linear classifier f(x) = wlx + b consider the interstice defined by the
hyperplanes

o f(x)=wlx+b=+1
e f(x)=wlix+b=-1

A
X+b=0
WX\\A
\

O
O

O w.x
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The margin is 2/||w/||

e Indeed, the points x; and x5 satisfy:

WTX1—|—b:O,
WTXQ—I—b: 1.

e By subtracting we get w!(x, — x;) = 1, and therefore:

2
v = 2||x2 — xq|| = Tl

where v is the margin.
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All training points should be on the appropriate side

e For positive examples (y; = 1) this means:

WTX@—I—[)Zl

e For negative examples (y; = —1) this means:

WTXZ'—I—b S —1

e in both cases:
Vi=1,...,n, yi(WTxH—b)Zl

FIS - 2012
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Finding the optimal hyperplane

’
’
/
@
’
’
’
’
’
/7
@
’

e Finding the optimal hyperplane is equivalent to finding (w,b) which minimize:

lwlJ?

under the constraints:
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Vi=1,...,n, y; (wix;+b) —1>0.

This is a classical quadratic program on R%+!
linear constraints - quadratic objective
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Lagrangian

e |In order to minimize:

1
il

under the constraints:

Vi=1,...,n, yi(waier)—lzo.

e introduce one dual variable «; for each constraint,

e one constraint for each training point.

e the Lagrangian is, for @ > 0 (that is for each «; > 0)

FIS - 2012

1 n
L(w,b, ) = §||W||2 — g a; (yi (Wwhx;+b) —1).
i=1
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The Lagrange dual function

g(o) = inf {;HWH2 - ZO@; (yi (Whx; +b) — 1)}

WERd,bER 3
1=1

the saddle point conditions give us that at the minimum in w and b
mn
W = Z a;¥;X;, ( derivating w.r.t w) (%)
i=1

0= Z o;y;, (derivating w.r.t b) ()
i=1

substituting (x) in g, and using (*x) as a constraint, get the dual function g(«).
e To solve the dual problem, maximize g w.r.t. a.
e Strong duality holds : primal and dual problems have the same optimum.

o KKT gives us «;(y; (WTXZ' + b) —1) =0,
..hence, either a; = 0 ory; (whx; +b) = 1.

e «; # 0 only for points on the support hyperplanes {(x,y)|y,(w!x; +b) = 1}.
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Dual optimum

The dual problem is thus

FIS - 2012

maximize g(a) = D07, i — 51 g QiQGYYX] X;

such that ar=0,> 7"  ay; =0.

This is a quadratic program in R", with box constraints.

o can be computed using optimization software
(e.g. built-in matlab function)
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Recovering the optimal hyperplane

e With a*, we recover (w',b*) corresponding to the optimal hyperplane.

o wl is given by wl = Z?:l yz'Oéixq;Ta

e b* is given by the conditions on the support vectors o; > 0, y,(wlx; +b) =1,

1
* T . T, T,
"= 2 (W;Ir{l,gz;o(w XZ)+Y¢=r—n1a,§i>0(W XZ)>

e the decision function is therefore:

f*(x) =wix +b*

— <i yiaix;r> X+ b*.
1=1

e Here the dual solution gives us directly the primal solution.
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Interpretation: support vectors
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Another interpretation: Convex Hulls

go back to 2 sets of points that are linearly separable
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Another interpretation: Convex Hulls
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Linearly separable = convex hulls do not intersect
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Another interpretation: Convex Hulls
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Find two closest points, one in each convex hull
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Another interpretation: Convex Hulls

The SVM = bisection of that segment
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Another interpretation: Convex Hulls

support vectors = extreme points of the faces on which the two points lie
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The non-linearly separable case

(when convex hulls intersect)
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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Soft-margin SVM ?

e Find a trade-off between large margin and few errors.

e Mathematically:

mfin { ! + C' % errors(f)}

margin(f)

e (' is a parameter

FIS - 2012
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Soft-margin SVM formulation ?
e The margin of a labeled point (x,y) is
margin(x,y) =y (WTx — b)

e [he error is

o 0 if margin(x,y) > 1,
o 1 — margin(x,y) otherwise.

e The soft margin SVM solves:

: 2 1
E 1—v. |
mll?{HWH +C : max{0, Y; (W X; + b)}

e c(u,y) =max{0,1 — yu} is known as the hinge loss.
o c(wlx;+b,y,) associates a mistake cost to the decision w, b for example x;.

FIS - 2012
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Dual formulation of soft-margin SVM

e The soft margin SVM program
migl{HwH2 + C’Z max{0,1 —y; (w'x; +b)}
’ i=1
can be rewritten as
minimize [w|?+C > &
such that vy, (waz- + b) >1-=&

e In that case the dual function

mn n
1
g9(a) = Z%‘ 5 Z QiCsyY X; X,
1=1

i,J=1

which is finite under the constraints:

0<y<C, fori=1,...,n
D i aiy; = 0.

FIS - 2012
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Interpretation: bounded and unbounded support vectors

FIS - 2012

0<o<C

Y
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What about the convex hull analogy?

e Remember the separable case

e Here we consider the case where the two sets are not linearly separable, i.e.
their convex hulls intersect.

Class B Class A
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What about the convex hull analogy?
Definition 1. Given a set of n points A, and 0 < C < 1, the set of finite

combinations N N
D Aixi 1SN <Oy A=1
i=1 i=1

is the (C') reduced convex hull of A

e Using C' = 1/2, the reduced convex hulls of A and B,

Class B Class A

e Soft-SVM with C' = closest two points of C-reduced convex hulls.

FIS - 2012
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Kernels
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Kernel trick for SVM'’s

e use a mapping ¢ from X to a feature space,

e which corresponds to the kernel k:

Vx,x' € X, k(x,x') = (¢(x),p(x'))

o Example: if ¢(x) = ¢ ([“D = [x%] then

i) ZC%

k(x,x') = (p(x), o(x) ) = (21)*(21)" + (w2)*(2)".

FIS - 2012
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Training a SVM in the feature space

Replace each x’x’ in the SVM algorithm by (¢(x), ¢(x") ) = k(x,x’)

e Reminder: the dual problem is to maximize
n 1 n
gla) = ZO@ 5 Z i Y Yj k(xiy %),
i=1 ij=1
under the constraints:

OSO@SC, fOF’iIl,...,n
Z?:laiYi:O'

e [ he decision function becomes:

f(x) =(w,o(z)) + 0

— Z Yok (%, x) + b*.

1=1

FIS - 2012
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The Kernel Trick ?

The explicit computation of ¢(x) is not necessary.
The kernel k(x,x’) is enough.

e the SVM optimization for o works implicitly in the feature space.

e the SVM is a kernel algorithm: only need to input K and y:

maximize g(a) =a’l — 1o’ (K @ yyl)a
suchthat 0<o; <C, fori=1,...,n
D i1 @Y = 0.

e K's positive definite < problem has an unique optimum

n

e the decision functionis f(:) = > ._; o; k(x;,-) + .

FIS - 2012
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Kernel example: polynomial kernel

o For x = (z1,22) " € R?, let ¢(x) = (2%, /22129, 22) € R3:

/ 2 12 ! ! 2 12
K (x,x") = x7x}" + 2z1207 75 + 2575

= {112} + x02h}?

— {XTXI}Z .

x1
P o
o

!j
o o
o
°
e
o
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Kernels are Trojan Horses onto Linear Models

e With kernels, complex structures can enter the realm of linear models

FIS - 2012
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What is a kernel

In the context of these lectures...

e A kernel k is a function

k: AxX — R
(Xay) — k(xv)’)

e which compares two objects of a space X, e.g....

o strings, texts and sequences,
o images, audio and video feeds, §J @

[
. . L
o graphs, interaction networks and 3D structures H

e whatever actually... time-series of graphs of images? graphs of texts?...

FIS - 2012
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Fundamental properties of a kernel

symmetric

k(x,y) = k(y,x).

positive-(semi)definite
for any finite family of points x4, - - -

, X, of X', the matrix

k(x1,x1)  Kk(xq,x2) k(x1,X;) k(x1,Xp)
k(x2,x1) k(xs2,X3) k(x2, X;) k(x2, X;,)
K= k(x;,xl) k(x;, X2) k(x,;, X;) k(xg:, Xp,) =0
_k(xn:,xl) k(xf,;XQ) k(x;,xi) k(xne, Xn) |
is positive semidefinite (has a nonnegative spectrum).
K is often called the Gram matrix of {xy, -+ ,x,} using k
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What can we do with a kernel?
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The setting

e Pretty simple setting: a set of objects x,--- ,x, of X
e Sometimes additional information on these objects

o labelsy, € {—1,1} or {1,--- , #(classes)},
o scalar values y, € R,
o associated object y, € YV

e A kernel k: X x X — R.

FIS - 2012
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A few intuitions on the possibilities of kernel methods

Important concepts and perspectives

e The functional perspective: represent points as functions.
e Nonlinearity : linear combination of kernel evaluations.

e Summary of a sample through its kernel matrix.
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Represent any point in X' as a function

For every x, the map
x — k(x,-)
associates to x a function k(x, -) from X" to R.

e Suppose we have a kernel k£ on bird images

e Suppose for instance

FIS - 2012
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Represent any point in X' as a function

e \We examine one image in particular: ’

e With kernels, we get a representation of that bird as a real-valued function,
defined on the space of birds, represented here as R? for simplicity.

schematic plot of & ( )

FIS - 2012
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Represent any point in X' as a function

e |If the bird example was confusing...
/ / 2

k(51 [7]) = (=1 [7] +3)

e From a point in R? to a function defined over R?.

(@ x+15y) +.35

7777
',,,,I""',

7775 4

L7

L7

77777~

2,51

77
2L 77

(L LT
LT 7

1.5-

25

e We assume implicitly that the functional representation will be more useful

than the original representation.

49
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Decision functions as linear combination of kernel evaluations

e Linear decisions functions are a major tool in statistics, that is functions

f(x) = B"x+ Bo.
e Implicitly, a point x is processed depending on its characteristics x;,
d
f(x) = Z,Biﬂ% + Bo.
i=1

the free parameters are scalars Bg, 31, , B4.

e Kernel methods yield candidate decision functions
Fx) =) ajk(x;,x) + ao.
j=1

the free parameters are scalars o, v, + , (y,.

FIS - 2012
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Decision functions as linear combination of kernel evaluations

database {x;,7 = 1,

1 87 Xza

kernel definition

f(x) =

weights o estimated
with a kernel machine

e f is any predictive function of interest of a new point x.

e Weights «v are optimized with a kernel machine (e.g. support vector machine)

intuitively, kernel methods provide decisions based on how similar a
point x is to each instance of the training set
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The Gram matrix perspective

e Imagine a little task: you have read 100 novels so far.

e You would like to know whether you will enjoy reading a new novel.

e A few options:

o read the book...
o have friends read it for you, read reviews.
o try to guess, based on the novels you read, if you will like it

FIS - 2012
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The Gram matrix perspective

Two distinct approaches

e Define what features can characterize a book.

o Map each book in the library onto vectors
L1

N 12 B .
B

typically the x;'s can describe...

> 7 pages, language, year 1st published, country,
> coordinates of the main action, keyword counts,
> author’s prizes, popularity, booksellers ranking

e Challenge: find a decision function using 100 ratings and features.
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The Gram matrix perspective

e Define what makes two novels similar,

o Define a kernel & which quantifies novel similarities.
o Map the library onto a Gram matrix

k(bi,b1) k(bi,ba) -+ k(b1,bio0)
_ | k(b2 01)  k(b2,b2) --+ K(b2, b1oo)
| E(bn,b1)  k(bn,b2) -+ K(b1oo, b1o0)

e Challenge: find a decision function that takes this 100 x 100 matrix as an input.
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The Gram matrix perspective

Given a new novel,

e with the features approach, the prediction can be rephrased as what are the
features of this new book? what features have | found in the past that were
good indicators of my taste?

e with the kernel approach, the prediction is rephrased as which novels this
book is similar or dissimilar to? what pool of books did | find the most
influentials to define my tastes accurately?

kernel methods only use kernel similarities, do not consider features.

Features can help define similarities, but never considered elsewhere.
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The Gram matrix perspective

in kernel methods, clear separation between the kernel...

dataset X3
Xxl X X4N
X
X9 .
x X5 K55, kernel matrix o

N

convex optimization

and Convex optimization (thanks to psdness of K, more later) to output the «'s.
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