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Previous Lecture : Probabilistic Setting, Loss, Risk

e \We observe the outcomes of a pair of random variables (X,Y").

e Probability P for couples (x,y) on R? x S, with density p

p(X =x,Y =y).

e Loss [ to quantify by I(y, f(x)) the accuracy of a guess f(x) for y, e.g.

S=10,1}: l(a,b) = Sarp, S=R: l(a,b) =]|a—b|?
e Risk(l,p): average loss for a given function

R(f) = Epll(Y, f(X))] = / [y, 1(x)) p(x, y)dxdy

RdxS
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Previous Lecture: Bayes Risk, Bayes Classifier /Estimator

e Bayes Risk: average loss for a given function

R*= inf R(f)= inf E,[I(Y,f(X))]
fe(rRA)S fe(rR4)S

e Bayes Classifier (when & = {0,1})

1, if p(Y = 1|X =x) > 1
fi(x) = v
0 otherwise.

e Bayes Estimator (when § = R)

Fox) = EIYIX =% = [ yp(Y =9, X = x)dy

The Bayes classifier (estimator) achieves the Bayes Risk
for classification with 1/0 loss (regression with squared error)

R(fp) = R*

FIS - 2012



Previous Lecture: Empirical Risk

e In practice, no access to P. The only thing we can use is a training set,
{(Xj,yj)}izl,---,n'

e Assuming the sampling is i.i.d, a counterpart to the Risk is
n

RE™ (1) = 2 3 U(ys, f(xs)).. compare with R(f) = E,[I(Y, f(X))

n 1=1

e What is overfitting?

o Choose f*, the best function in a class of functions F w.r.t RSP,

Remp *\ — : Remp

o find out (in practice!) that, unfortunately, RS™P(f*) < R(f*).

overfitting: rely too much on R{™P to look for a function with low R.

FIS - 2012



Previous Lecture: Empirical Risk

e remedies for overfitting:

o Restrict the set of candidate functions

min RSP (qg).
min ft, (9)

o Penalize “undesirable” functions

min RE™P(g) + A g]|?
min RS (g) + Allg|

o Penalize properly sets of functions G, of increasing complexity

in ReWP Apen(d
ein o R, (g) + Apen(d, Gq)
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Previous Lecture: Excess Risk

e For any candidate set of functions G,

e We introduce g™ as a function achieving the lowest risk in G,

R(g™) = inf R(g),

geF

e Note that g* depends on p which we do not have access to.

e Useful however to decompose

R(gn) — R(fB) = [R(gn) — R(g")] + [R(g") — R(fB)]

Estimation Error Approximation Error

FIS - 2012



Bounds
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An overdue definition

Definition of "Empirical”

1. derived from or relating to experiment and observation rather
than theory

2. Guided by practical experience and not theory

n

RSP (f) = > Uy, (x0)... compare with R(f) = Ep[L(Y, (X))
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Alleviating Notations

e More convenient to see a couple (x,y) as a realization of Z, namely

Z; — (xiayi)az — (X7 Y)
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Alleviating Notations

e More convenient to see a couple (x,y) as a realization of Z, namely

Z; — (xiayi)az — (X7 Y)

e Define the emphloss class

F=A{f:z2=(Xy) = dgmzry 9 € G},

FIS - 2012
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Alleviating Notations

e More convenient to see a couple (x,y) as a realization of Z, namely

Z; — (xiayi)az — (X7 Y)

e Define the emphloss class

F = {f -4 = (X,y) — 5g(x)7éy7 g c g}a
e use simpler notations:
1 n
Pf=E[f(X,Y)], Puf=—% fxu),
i=1

where we recover
Pf=R(g), Pu.f=R."(g)

FIS - 2012
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Empirical Processes

For each f € F, P, f is a random variable

which depends on n random realizations [z; = (x;,¥i))]i=1... n of Z = (X,Y).
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Empirical Processes

For each f € F, P, f is a random variable

which depends on n random realizations [z; = (x;,¥i))]i=1... n of Z = (X,Y).

e P, can be seen as a random function (because of the z; = (x;,y;)) operating
on functions in F.
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Empirical Processes

For each f € F, P, f is a random variable
which depends on n random realizations [z; = (x;,¥i))]i=1... n of Z = (X,Y).

e P, can be seen as a random function (because of the z; = (x;,y;)) operating
on functions in F.

e |f we consider P, on all possible functions f € F, we obtain

The set of random variables { P, f} rer is called an
Empirical measure indexed by F.
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http://en.wikipedia.org/wiki/Empirical_measure

Empirical Processes

For each f € F, P, f is a random variable
which depends on n random realizations [z; = (x;,¥i))]i=1... n of Z = (X,Y).

e P, can be seen as a random function (because of the z; = (x;,y;)) operating
on functions in F.

e |f we consider P,, on all possible functions f € F, we obtain

The set of random variables { P, f} rer is called an
Empirical measure indexed by F.

e A branch of mathematics studies explicitly the convergence of {Pf — P,,f} rer,

This branch is known as Empirical process theory |.
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Hoeffding’s Inequality

e Recall that for a given g and corresponding f,

R(g) - R*™(g) = Pf — Pof =E[f(2)] — =3 f(z).

n <

— difference between the expectation and the empirical average of f(Z).

e The strong law of large numbers says that

P (nlggo (E[f(Z)] - %Zf(za) = 0> = 1.

FIS - 2012
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http://en.wikipedia.org/wiki/Law_of_large_numbers#Strong_law

Hoeffding’s Inequality (1963)

e A more precise result is the

Theorem 1 (Hoeffding). Let Zy,--- , Z, be n i.i.d random variables with
f(Z) € [a,b]. Then, Ve >0,

2n€2

P(|P,f — Pf] >¢) <2 G-a7?,

e From

we get

. 2n€2
>c | <2e -a)2,

e Hoeffding's inequality is a concentration inequality.
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Some Intuitions: the Height/Gender problem

p(Height,Gender)

—PX.Y)

0.025
0.02
0.015
0.01
0.005-

200
180
160

In 3 dimensions

FIS - 2012
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Height /Gender

0.0257

0.02r

0.015;7

0.01r

0.0057

150 160 170 180 190 200

Easier to see in 2 dimensions, same content.
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Height /Gender

0.0257

0.02r

0.015;7

0.01r

0.0057

150 160 170 180 190 200

Assume for a minute that we known these two curves.
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Height /Gender

0.0257

0.02r

0.015;7

0.01r

0.0057

150 160 170 180 190 200

For any function f : Height — Gender we can compute the risk
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0.6

0.55

Height /Gender

Risk of Heaviside Functions

0.5+
0.45
0.4r

e
EO.SS*
0.3r
0.25

0.2
0.15f

o'1‘!'00

! ! ! ! !
120 140 160 180 200
Threshold

Risk for Heaviside functions f(x) = dz>+

J
220
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0.6

0.55

Height /Gender

Risk of Heaviside Functions

0.5+
0.45
0.4r

e
EO.SS*
0.3r
0.25

0.2
0.15f

Bayes Classifier, 171.5cm

o'1‘!'00

The risk is minimal for the thresholded function with 7 ~ 171.5

|
120

|
140

!
160
Threshold

| | J
180 200 220
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Height /Gender

—nX

0.9t
0.8t
0.7t
0.6f

o5
0.4+
0.3t
0.2t
0.1t

140 150 160 170 180 190 200 210

which matches our picture of the Bayes classifier and the
n(x) = P(Y = 1|X = x) function.
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Height /Gender

0.0257

0.02r

0.015;7

0.01r

0.0057

150 160 170 180 190 200

Unfortunately, we do not have access to this,
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0.025

0.02

0.015

0.01

0.005

FIS - 2012

Height /Gender

But rather this...
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0.025

0.02

0.015

0.01

0.005
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Height /Gender

or this...
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0.025

0.02

0.015

0.01

0.005

or even this...

Height /Gender

~
~
-~

1 | | ~ L |~

160 170 180 190 200

we assume our samples are random.

28



FIS - 2012

Height /Gender
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2ne

Hoeffding's Inequality: P (|P,f — Pf| >¢) < 2e (-a7?,
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Hoeffding’s Inequality

Frequency of deviations

I\\ 1
0.025¢ AR
', ‘\ '1 1‘ 08
002 1 o
S 0.6/
0015 6§B%"
,l' ’II “ ‘\‘ 04
001 o)
0005 1 o 0.2
II II \\ ‘\ True Risk
// _ 7 1\\ :\ ) | 0 ! |
160 180 200 0 0.5 1 0 02 04 06

Let's check on Matlab what this means
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0.025;

0.02;

0.015;

0.01}

0.005;

Hoeffding’s Inequality

160 180 200

with n = 5 resampled 300 times

True Risk

DXIBLEXK XK KR IO XK X

X X X X

0

0.5

0.8

0.6

0.4

0.2/

1,

Frequency of deviations

0 02 04 06
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Hoeffding’s Inequality

Frequency of deviations

I\\ 1
0.025¢ AR
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: II\ \‘ «
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with n = 10 resampled 300 times
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0.025;

0.02;

0.015;

0.01}

0.005;
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Hoeffding’s Inequality

180 200

with n = 20 resampled 300 times

True Risk

0

0.5

Frequency of deviations

1,

0.8

0.6

0.4

0.2/

0.2

0.4

0.6



Hoeffding’s Inequality

Frequency of deviations
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with n = 50 resampled 300 times
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Hoeffding’s Inequality

Frequency of deviations

1

0.025;
0.8

0.02
0.6

0.015]
04

0.01]
0.005] 02

I | 0 - ! ! \
200 0 0.5 1 0 0.2 0.4

with n = 100 resampled 300 times

0.6
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Hoeffding’s Inequality

Frequency of deviations

1

0.025;
0.8

0.02
0.6

0.015]
04

0.01]
0.005] 02

I | 0 ! ! \
200 0 0.5 1 0 0.2 0.4

with n = 200 resampled 300 times

0.6
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Some Proofs

Theorem 2 (Hoeffding). Let Z1,--- , Z, be n i.i.d random variables with
f(Z) € la,b]. Then, Ve > 0,

2n€2

P(|P,f — Pf] >¢) <2e G-a7,

Theorem 3 (Markov). Let X > 0 be a non-negative random variable in R, then
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Inverting Hoeffding’s Inequality

e Naturally, if

2

__2ne
P(|Pof — Pf| >¢) <2 (-2,

e then for 0 > 0,

log 2
P ‘Pnf_Pf|>(b_a) 2,”5 —

e which is also interpreted as, with probability at least 1 — ¢,

log 2
P.f—Pfl<(b— 0
Pof — PfI < (b a)y) =

FIS - 2012
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FIS -

Interpretation in terms of Risk

Functions f take values between a =0 and b = 1. b —a = 1 for all inequalities.

For any function g, and any o0, with probability at least 1 — 9,

ST\

log
2n

R(g) < R,™P(g) +

Note that the probability at least statement refers to samples of size n.
This result, seemingly nice, is not very useful... why?

o Get data first, estimate g,... gap between R(g,) and R,,(gn)?

o Define g as g(x;) = y; and g = 0 everywhere else. Of course,

R(§) > RI™(§) 0.
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Interpretation in terms of Risk

e This is why we focus now on uniform deviations on the function class,

Supr—Pnf,
fer

since we know that whatever the function g,, we choose with the sample,

R(Q) - Rn(gn) < sup R(Q) - Rn(g) =sup Pf — P,f,
geyg feF

FIS - 2012
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Obtaining Uniform Bounds

e Simple example with two functions f; and fs.

e Define the two sets of n-uples,

Cl — {{(xlayl)a"' ,(xn,yn)} ‘Pfl _Pnfl > 8}

and
Cz — {{(xlayl)a"' ,(xn,yn)} ‘PfZ — Pnf2 > 8}

e These sets are the "bad"” sets for which empirical risk is much lower than the
real risk.

FIS - 2012
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Obtaining Uniform Bounds

e For each, we have the Hoeffing's inequalities (no absolute value), that

2

P(Cl) < (5,P(CQ) < 0 where § = e 2ne”

e Note that whenever a n-uple is in C7 U (5, then either

Pfi—P,fi >cor Pfi — P, f1 > e.

e Of course, P(C1 UC5) < P(Ch) + P(C3) < 26.

e Thus, with probability smaller than 20 at least one of f; or f5 will be such that
Pfl — Pnfl > €.

FIS - 2012 42



Generalizing to N functions

e Consider f1,---, fn functions.

e Define the corresponding sets of n-uples, C1, - --

e Of course,

N
P(CLUCLU---UCY) gz

e Use now Hoeffding's inequality

FIS - 2012

PEAfel{fi, , IN}Pf—Pof >¢) = <

||Mz

Uc

1=1

, C'n with e fixed.

)

) < N6 = Ne—2ne
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Error bound for finite families of functions

e We thus have that for any family of /N functions,

P(sup Pf — P,f > ¢) < N€_2n€27
fer

e or equivalently, that if G = {g1,--- ,gn}, with probability at least 1 — 6,

log N + log %
2n

Vg€ G, R(g) <R,(g)+ \/

FIS - 2012
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Estimation bound for finite families of functions

e Recall that ¢g* is a function in G such that R(¢g*) = mingcg R(g).

e The inequality

R(g*) < R;™(g9%) + Sup (R(g) — R;™P(9))

e combined with RS™P(g*) — RS™P(gy,) > 0 by definition of g,,, we get

R(gn) = R(gn)—R(g")+R(g") < B, 7(97) — By (gn) +12(gn) —R(g7)+1(g7)
>0

< 2sup|R(g) — R,""(9)| + R(g")
geg

e Hence, with probability at least 1 — 9,

log N + log 2
R(gn>sz~z<g*>+z\/ T
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Hoeffding’s bound for countable families of functions

e Suppose now that we have a countable family F

e Suppose that we assign a number §(f) > 0 to each f € F, which we use to set

2
log m

P |Pf_Pnf|>
2n

<4(f),

e Using the union bound on a countable set (basic probability axiom),

logﬁ
P|3feF:|P.f—Pf] > > <> ().

fer

o Let usset 6(f) = pp(f) with p>0and > . -p(f) =1
e Then with probability 1 — p,

1 1
log oF) + log -
on '

er]:,Pf<Pnf—|—\/
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Hoeffding’'s bound for general families of functions

e Two problems:

o Most interesting families of functions are not countable.
o Defining the weights p(f) is not so obvious.

e However, what really matters for a sample z1,--- ,z, is

Faro o = U (21), f(22), -+, f(20)), f € F}
e F,, ..., is a large set of binary vectors C {0, 1}V

e The more complex F, the larger F,, ... 5, with maximum 2" possible elements.

Definition 1 (Growth Function). The growth function of F is equal to

Sr(n) = sup |Fu,..

(21, ,Zn)
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Vapnik-Chervonenkis

Theorem 4 (Vapnik-Chervonenkis). For any 6 > 0, with probability at least
1—96,

log Sg(2n) + log 2
n

Vg € G,R(g) < R.(g) + 2\/2

Definition 2 (VC Dimension). The VC dimension of a class G is the largest n
such that

Sg(n) = 2",

FIS - 2012
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Vapnik-Chervonenkis

e The VC dimension of linear classifiers in R% is d + 1.

FIS - 2012
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Vapnik-Chervonenkis

e Given the VC dimension A of a family G, we can prove

2en 2
7 T log§

n

hl
Vg € G, R(g) < Rn(g) + 2\/2 s

Lemma 1 (Vapnik and Chervonenkis, Sauer, Shelah). Let G be a class of
functions with finite VC-dimension h. Then,

vn € N, Sg(n) < Z (Z’)

h
1=0

Vn > h,Sg(n) < (%)h.

e Combining with VC theorem, we obtain the result given above.

e Important thing: difference between true and empirical risks is at most of the

order of
hlogn

n

FIS - 2012 50



