Foundation of Intelligent Systems, Part I Statistical Learning Theory (II)

mcuturi@i.kyoto-u.ac.jp

Previous Lecture : Probabilistic Setting, Loss, Risk

- We observe the outcomes of a pair of random variables (X, Y).
- **Probability** P for couples (\mathbf{x}, y) on $\mathbb{R}^d \times S$, with density p

$$\boldsymbol{p}(X = \mathbf{x}, Y = y).$$

• Loss l to quantify by $l(y, f(\mathbf{x}))$ the accuracy of a guess $f(\mathbf{x})$ for y, e.g.

$$S = \{0, 1\}: l(a, b) = \delta_{a \neq b}, \quad S = \mathbb{R}: l(a, b) = ||a - b||^2$$

• Risk(l, p): average loss for a given function

$$\boldsymbol{R(f)} = \mathbb{E}_{\boldsymbol{p}}[\boldsymbol{l}(Y, f(X))] = \int_{\mathbb{R}^d \times \mathcal{S}} \boldsymbol{l}(y, f(\mathbf{x})) \, \boldsymbol{p(\mathbf{x}, y)} d\mathbf{x} dy$$

Previous Lecture: Bayes Risk, Bayes Classifier/Estimator

• Bayes **Risk**: average loss for a given function

$$R^* = \inf_{\boldsymbol{f} \in (\mathbb{R}^d)^{\mathcal{S}}} R(\boldsymbol{f}) = \inf_{\boldsymbol{f} \in (\mathbb{R}^d)^{\mathcal{S}}} \mathbb{E}_p[l(Y, \boldsymbol{f}(X))]$$

• Bayes Classifier (when $\mathcal{S} = \{0, 1\}$)

$$f_B(\mathbf{x}) = \begin{cases} 1, \text{ if } p(Y=1|X=\mathbf{x}) \ge \frac{1}{2}, \\ 0 \text{ otherwise.} \end{cases}$$

• Bayes Estimator (when $\mathcal{S} = \mathbb{R}$)

$$f_B(\mathbf{x}) = \mathbb{E}[Y|X = \mathbf{x}] = \int_{\mathbb{R}} y \, p(Y = y, X = \mathbf{x}) dy$$

The **Bayes** classifier (estimator) achieves the **Bayes Risk** for classification with 1/0 loss (regression with squared error) $R(f_B) = R^*$

Previous Lecture: Empirical Risk

• In practice, no access to P. The only thing we can use is a training set,

 $\{(\mathbf{x}_j, y_j)\}_{i=1,\cdots,n}.$

• Assuming the sampling is i.i.d, a counterpart to the Risk is

$$\boldsymbol{R_n^{\text{emp}}}(f) = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{l}(\boldsymbol{y_i}, f(\boldsymbol{x_i})) \dots \text{ compare with } \boldsymbol{R(f)} = \mathbb{E}_{\boldsymbol{p}}[\boldsymbol{l}(Y, f(X))]$$

• What is overfitting?

 $\circ~$ Choose $f^{\star}\textsc{,}$ the best function in a class of functions $\mathcal F$ w.r.t $R_n^{\mathrm{emp}}\textsc{,}$

$$\boldsymbol{R_n^{\text{emp}}}(f^{\star}) = \min_{f \in \mathcal{F}} \boldsymbol{R_n^{\text{emp}}}(f),$$

• find out (in practice!) that, unfortunately, $R_n^{emp}(f^*) \ll R(f^*)$.

overfitting: rely too much on R_n^{emp} to look for a function with low R.

Previous Lecture: Empirical Risk

• remedies for overfitting:

• Restrict the set of candidate functions

 $\min_{g \in \mathbf{\mathcal{G}}} R_n^{\mathrm{emp}}(g).$

• Penalize "undesirable" functions

 $\min_{g \in \mathcal{G}} R_n^{\mathrm{emp}}(g) + \lambda \|\boldsymbol{g}\|^2$

 $\circ\,$ Penalize properly sets of functions \mathcal{G}_d of increasing complexity

 $\min_{d \in \mathbb{N}, g \in \mathbf{\mathcal{G}}_{d}} R_n^{\mathrm{emp}}(g) + \lambda \mathrm{pen}(d, \mathcal{G}_d)$

Previous Lecture: Excess Risk

- For any candidate set of functions \mathcal{G} ,
- We introduce g^* as a function achieving the lowest risk in \mathcal{G} ,

$$R(g^{\star}) = \inf_{g \in \mathcal{F}} R(g),$$

- Note that g^* depends on p which we do not have access to.
- Useful however to decompose

$$R(g_n) - R(f_B) = \underbrace{[R(g_n) - R(g^*)]}_{\text{Estimation Error}} + \underbrace{[R(g^*) - R(f_B)]}_{\text{Approximation Error}}$$

Bounds

An overdue definition

Definition of "Empirical"

1. derived from or relating to experiment and observation rather than theory

2. Guided by practical experience and not theory

$$\boldsymbol{R_n^{\text{emp}}}(f) = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{l}(\boldsymbol{y_i}, f(\boldsymbol{x_i})) \dots \text{ compare with } \boldsymbol{R(f)} = \mathbb{E}_{\boldsymbol{p}}[\boldsymbol{l}(Y, f(X))]$$

Alleviating Notations

• More convenient to see a couple (\mathbf{x},y) as a realization of Z, namely

$$\mathbf{z}_i = (\mathbf{x}_i, y_i), Z = (X, Y).$$

Alleviating Notations

• More convenient to see a couple (\mathbf{x}, y) as a realization of Z, namely

$$\mathbf{z}_i = (\mathbf{x}_i, y_i), Z = (X, Y).$$

• Define the **emphloss class**

$$\mathcal{F} = \{ f : \mathbf{z} = (\mathbf{x}, y) \to \delta_{g(\mathbf{x}) \neq y}, \ g \in \mathcal{G} \},\$$

Alleviating Notations

• More convenient to see a couple (\mathbf{x}, y) as a realization of Z, namely

$$\mathbf{z}_i = (\mathbf{x}_i, y_i), Z = (X, Y).$$

• Define the **emphloss class**

$$\mathcal{F} = \{ f : \mathbf{z} = (\mathbf{x}, y) \to \delta_{g(\mathbf{x}) \neq y}, \ g \in \mathcal{G} \},\$$

• use simpler notations:

$$Pf = \mathbb{E}[f(X,Y)], \quad P_n f = \frac{1}{n} \sum_{i=1}^n f(\mathbf{x}_i, y_i),$$

where we recover

$$Pf = R(g), \quad P_n f = R_n^{emp}(g)$$

For each $f \in \mathcal{F}$, $P_n f$ is a random variable which depends on n random realizations $[\mathbf{z}_i = (\mathbf{x}_i, y_i))]_{i=1\cdots,n}$ of Z = (X, Y).

For each $f \in \mathcal{F}$, $P_n f$ is a random variable which depends on n random realizations $[\mathbf{z}_i = (\mathbf{x}_i, y_i))]_{i=1\cdots,n}$ of Z = (X, Y).

• P_n can be seen as a random function (because of the $\mathbf{z}_i = (\mathbf{x}_i, y_i)$) operating on functions in \mathcal{F} .

For each $f \in \mathcal{F}$, $P_n f$ is a random variable which depends on n random realizations $[\mathbf{z}_i = (\mathbf{x}_i, y_i))]_{i=1\cdots,n}$ of Z = (X, Y).

- P_n can be seen as a random function (because of the $\mathbf{z}_i = (\mathbf{x}_i, y_i)$) operating on functions in \mathcal{F} .
- If we consider P_n on **all** possible functions $f \in \mathcal{F}$, we obtain

The set of random variables $\{P_n f\}_{f \in \mathcal{F}}$ is called an Empirical measure indexed by \mathcal{F} .

For each $f \in \mathcal{F}$, $P_n f$ is a random variable which depends on n random realizations $[\mathbf{z}_i = (\mathbf{x}_i, y_i))]_{i=1\cdots,n}$ of Z = (X, Y).

- P_n can be seen as a random function (because of the $\mathbf{z}_i = (\mathbf{x}_i, y_i)$) operating on functions in \mathcal{F} .
- If we consider P_n on **all** possible functions $f \in \mathcal{F}$, we obtain

The set of random variables $\{P_n f\}_{f \in \mathcal{F}}$ is called an Empirical measure indexed by \mathcal{F} .

• A branch of mathematics studies explicitly the convergence of $\{Pf - P_nf\}_{f \in \mathcal{F}}$,

This branch is known as Empirical process theory

• Recall that for a given g and corresponding f,

$$R(g) - R^{\text{emp}}(g) = Pf - P_n f = \mathbb{E}[f(Z)] - \frac{1}{n} \sum_{i=1}^n f(\mathbf{z}_i),$$

 \rightarrow difference between the expectation and the empirical average of f(Z).

• The **strong** law of large numbers says that

$$P\left(\lim_{n \to \infty} \left(\mathbb{E}[f(Z)] - \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{z}_i) \right) = 0 \right) = 1$$

Hoeffding's Inequality (1963)

• A more precise result is the

Theorem 1 (Hoeffding). Let Z_1, \dots, Z_n be *n* i.i.d random variables with $f(Z) \in [a, b]$. Then, $\forall \varepsilon > 0$,

$$P\left(\left|P_{n}f - Pf\right| > \varepsilon\right) \le 2e^{-\frac{2n\varepsilon^{2}}{(b-a)^{2}}}.$$

• From

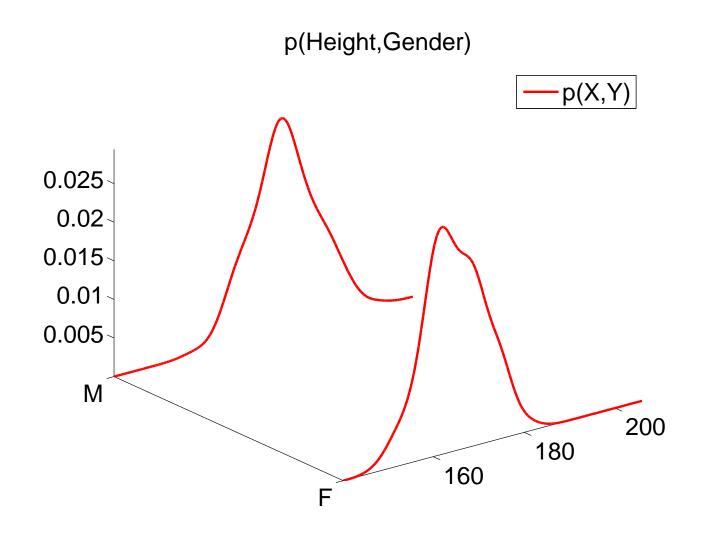
$$P\left(\lim_{n \to \infty} \left(\mathbb{E}[f(Z)] - \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{z}_i) \right) = 0 \right) = 1.$$

we get

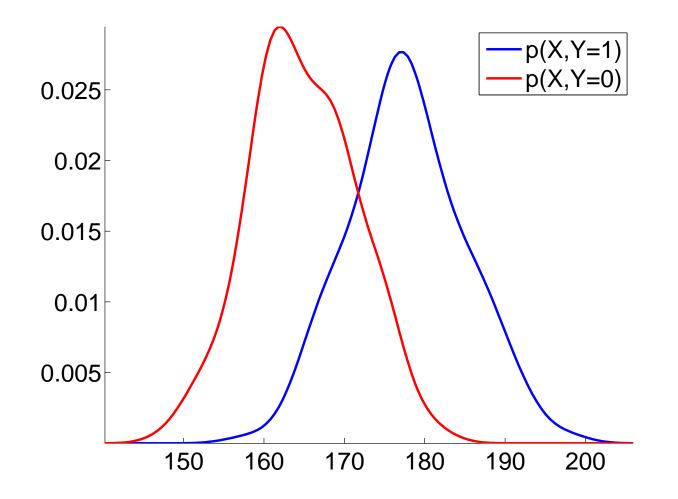
$$P\left(\left|\mathbb{E}[f(Z)] - \frac{1}{n}\sum_{i=1}^{n} f(\mathbf{z}_i)\right| > \varepsilon\right) \le 2e^{-\frac{2n\varepsilon^2}{(b-a)^2}}.$$

• Hoeffding's inequality is a **concentration inequality**.

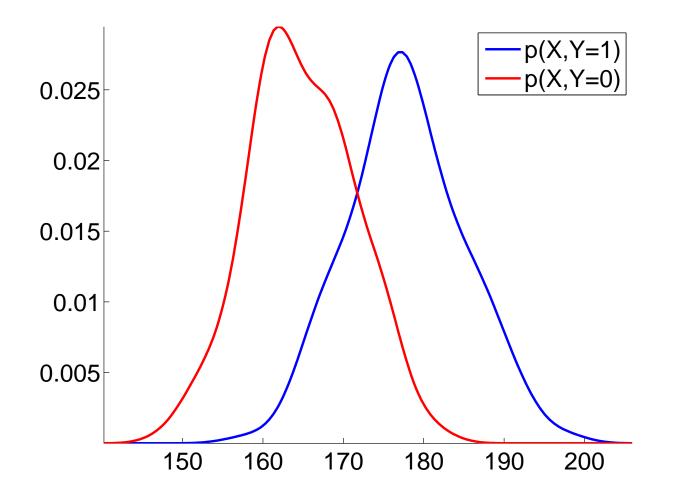
Some Intuitions: the Height/Gender problem



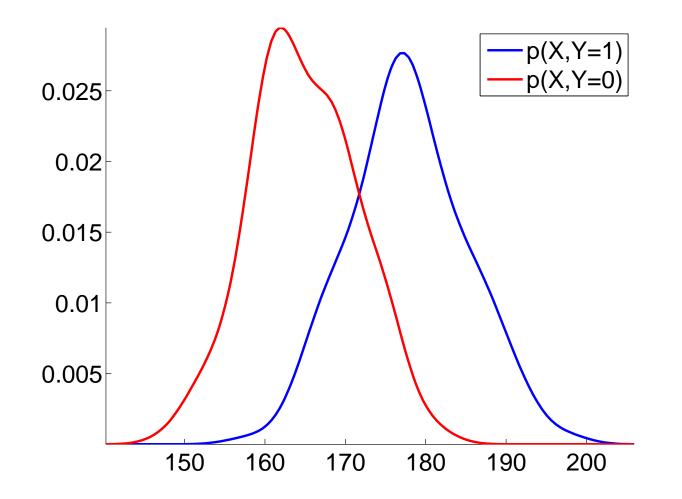
In 3 dimensions



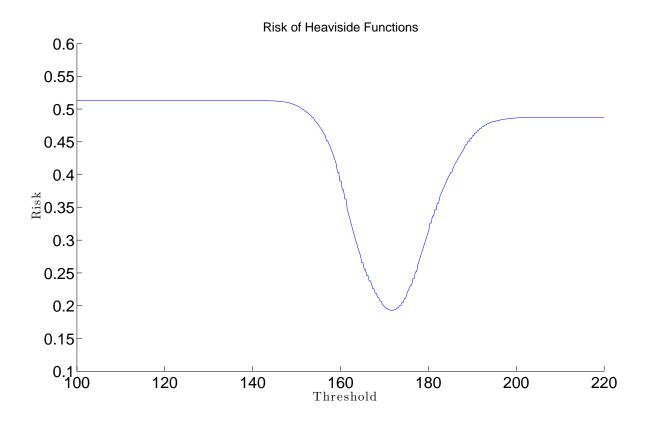
Easier to see in 2 dimensions, same content.



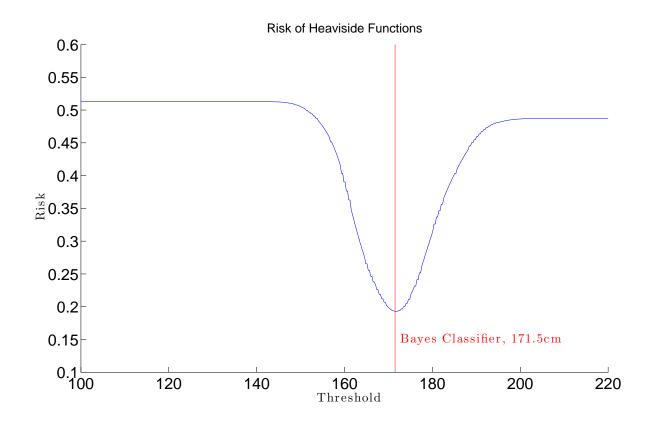
Assume for a minute that we known these two curves.



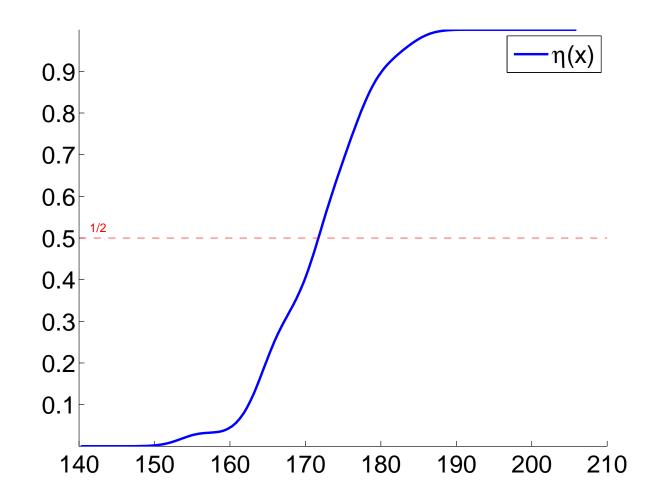
For any function f : Height \mapsto Gender we can compute the risk



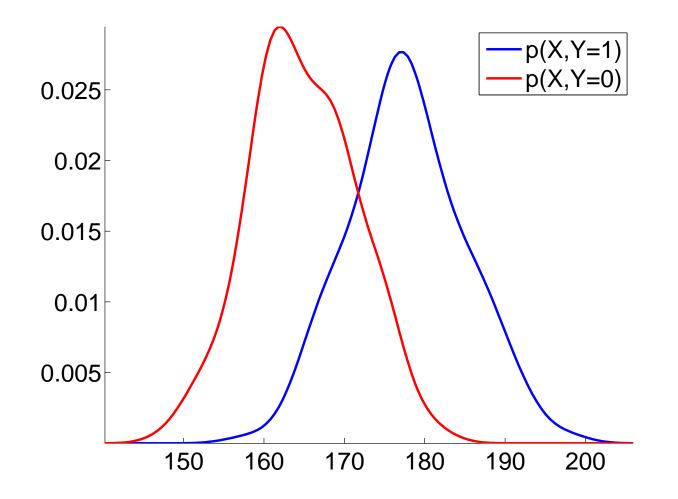
Risk for Heaviside functions $f(x) = \delta_{x > \tau}$



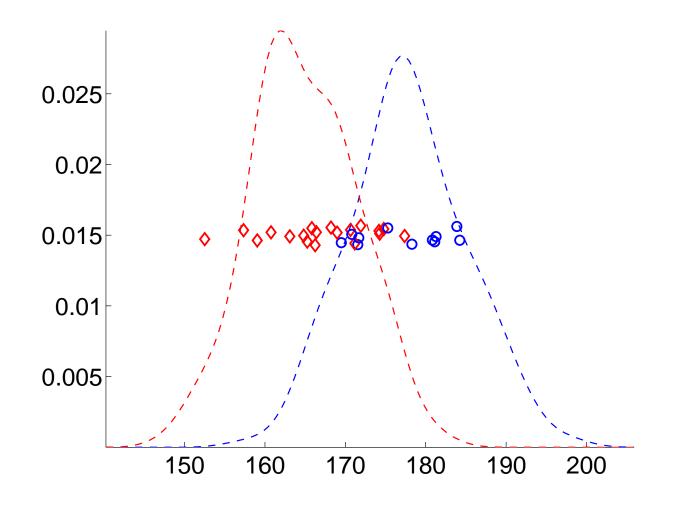
The risk is minimal for the thresholded function with $\tau\approx 171.5$



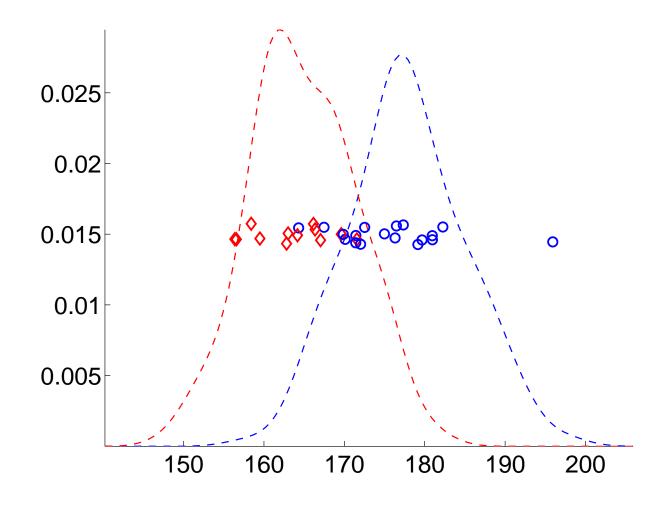
which matches our picture of the Bayes classifier and the $\eta(x)=P(Y=1|X=\mathbf{x})$ function.



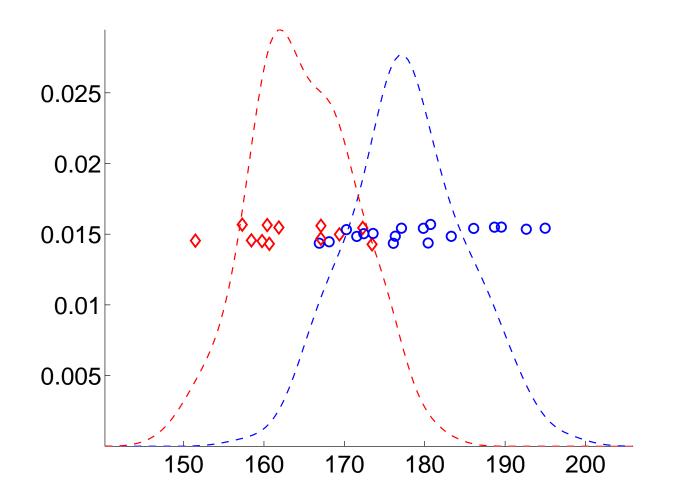
Unfortunately, we do not have access to this,



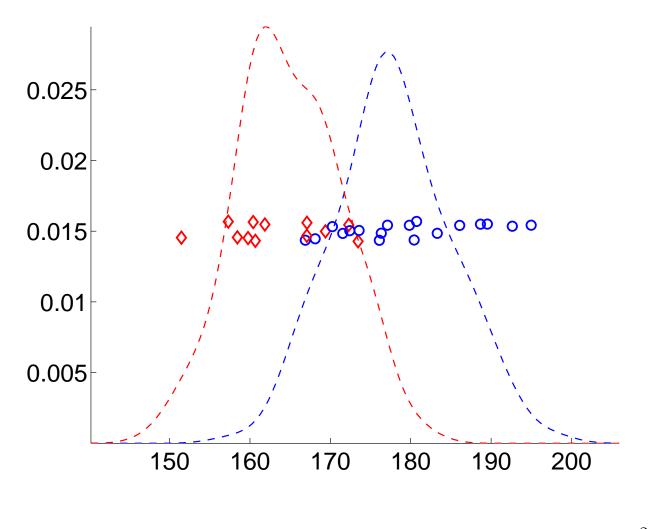
But rather this...



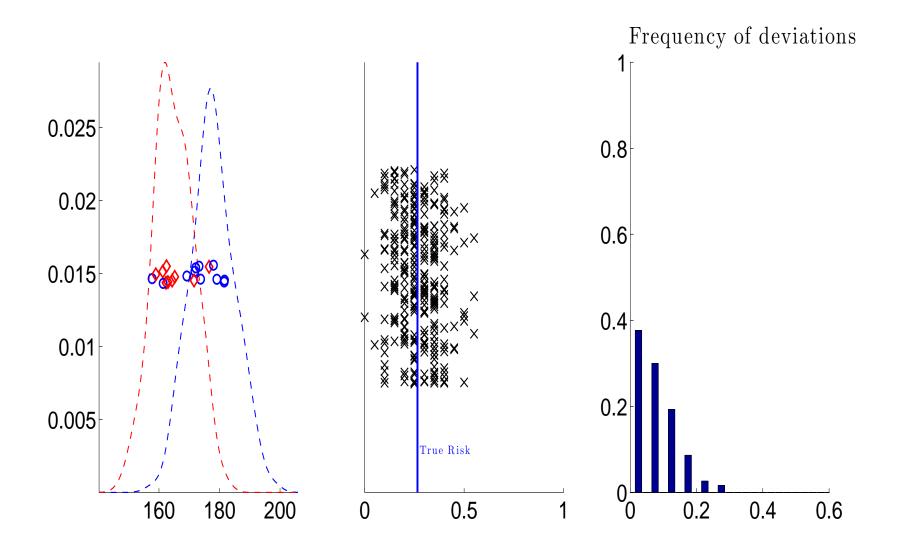
or this...



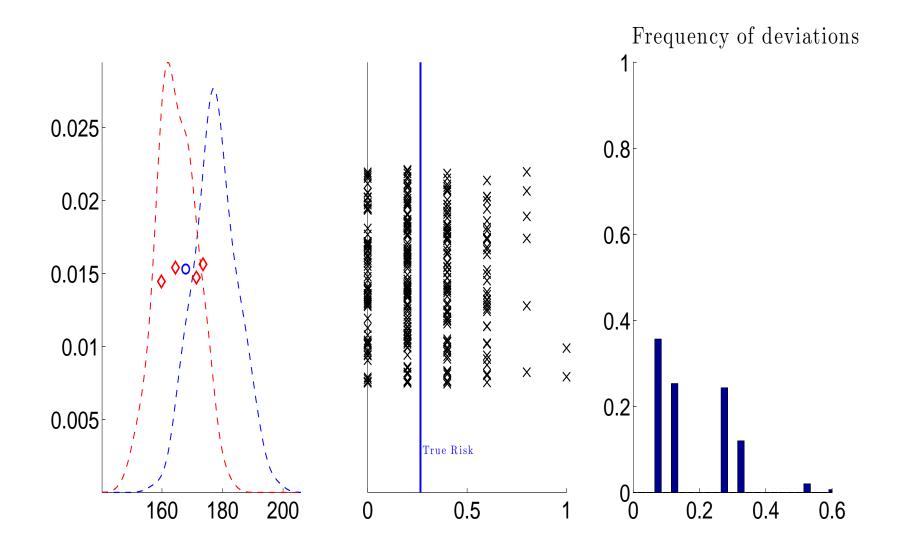
or even this... we assume our samples are random.



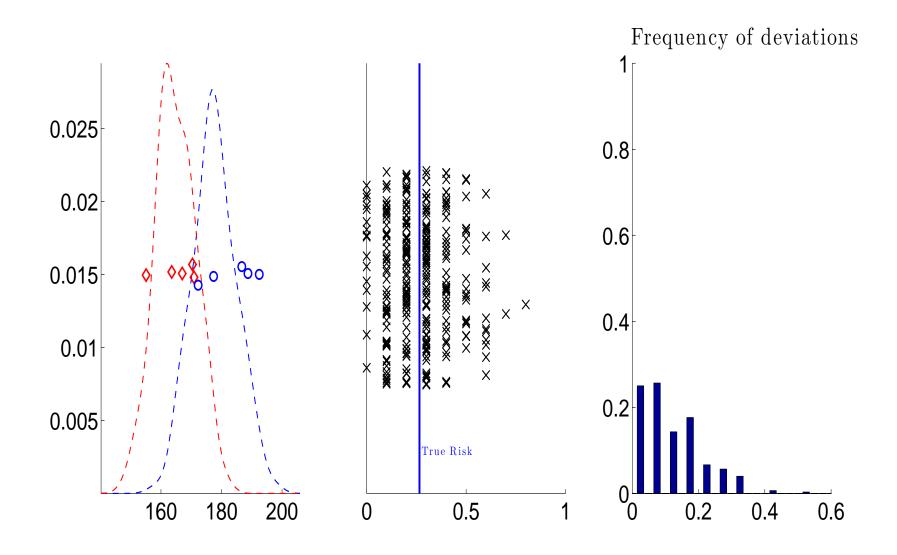
Hoeffding's Inequality: $P(|P_nf - Pf| > \varepsilon) \le 2e^{-\frac{2n\varepsilon^2}{(b-a)^2}}$.



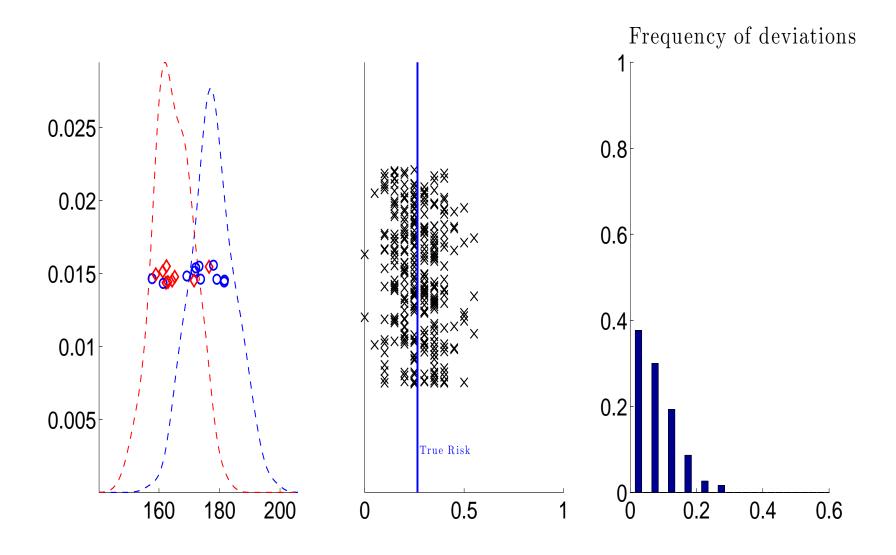
Let's check on Matlab what this means



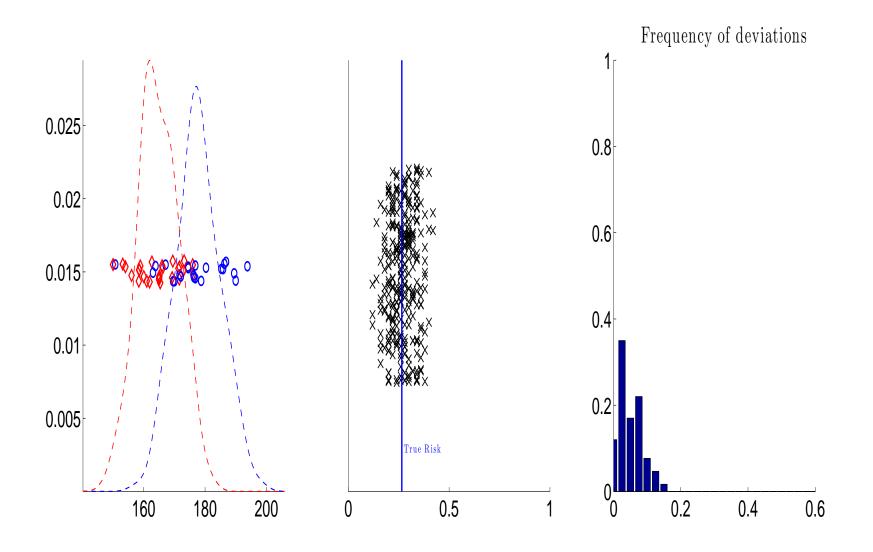
with n = 5 resampled 300 times



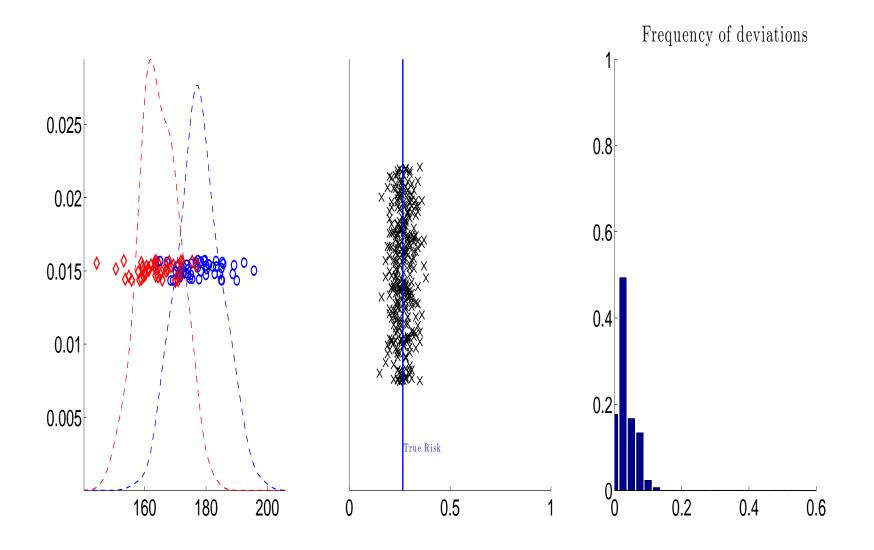
with n = 10 resampled 300 times



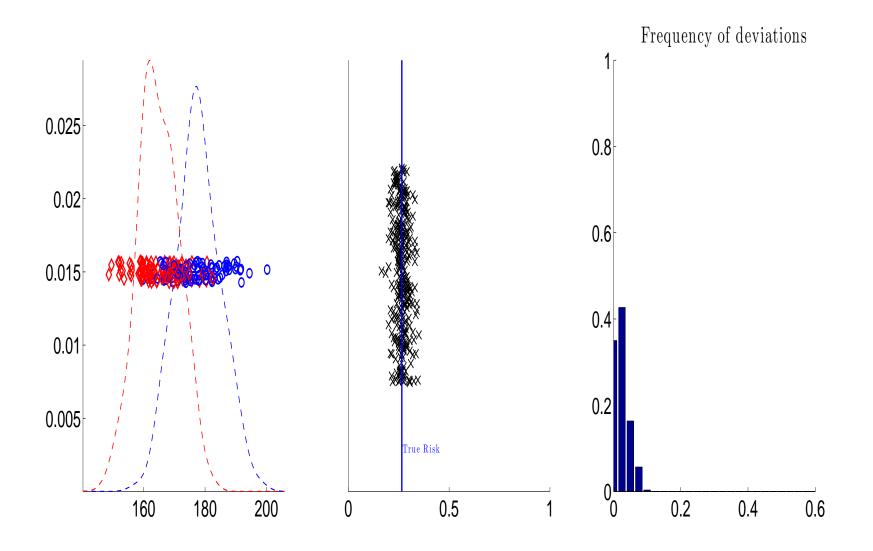
with n = 20 resampled 300 times



with n = 50 resampled 300 times



with n = 100 resampled 300 times



with n = 200 resampled 300 times

Some Proofs

Theorem 2 (Hoeffding). Let Z_1, \dots, Z_n be *n* i.i.d random variables with $f(Z) \in [a, b]$. Then, $\forall \varepsilon > 0$,

$$P\left(|P_n f - Pf| > \varepsilon\right) \le 2e^{-\frac{2n\varepsilon^2}{(b-a)^2}}.$$

Theorem 3 (Markov). Let $X \ge 0$ be a non-negative random variable in \mathbb{R} , then

$$P(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$$

Inverting Hoeffding's Inequality

• Naturally, if

$$P\left(|P_n f - Pf| > \varepsilon\right) \le 2e^{-\frac{2n\varepsilon^2}{(b-a)^2}}.$$

• then for $\delta > 0$,

$$P\left(|P_nf - Pf| > (b-a)\sqrt{\frac{\log\frac{2}{\delta}}{2n}}\right) \le \delta.$$

• which is also interpreted as, with probability at least $1-\delta$,

$$|P_n f - Pf| \le (b-a)\sqrt{\frac{\log\frac{2}{\delta}}{2n}}$$

Interpretation in terms of Risk

- Functions f take values between a = 0 and b = 1. b a = 1 for all inequalities.
- For any function g, and any δ , with probability at least 1δ ,

$$R(g) \le R_n^{\mathrm{emp}}(g) + \sqrt{\frac{\log \frac{2}{\delta}}{2n}}$$

- Note that the **probability** at **least** statement refers to **samples of size** n.
- This result, seemingly nice, is not very useful... why?
 - Get data first, estimate g_n ... gap between $R(g_n)$ and $R_n(g_n)$?
 - Define \hat{g} as $\hat{g}(\mathbf{x}_i) = y_i$ and $\hat{g} = 0$ everywhere else. Of course, $R(\hat{g}) \gg R_n^{\text{emp}}(\hat{g}) \stackrel{\text{def}}{=} 0.$

Interpretation in terms of Risk

• This is why we focus now on **uniform** deviations on the function class,

$$\sup_{f\in\mathcal{F}} Pf - P_n f,$$

since we know that whatever the function g_n we choose with the sample,

$$R(g) - R_n(g_n) \le \sup_{g \in \mathcal{G}} R(g) - R_n(g) = \sup_{f \in \mathcal{F}} Pf - P_nf,$$

Obtaining Uniform Bounds

- Simple example with two functions f_1 and f_2 .
- Define the two sets of *n*-uples,

$$C_{1} = \{\{(\mathbf{x}_{1}, y_{1}), \cdots, (\mathbf{x}_{n}, y_{n})\} \mid Pf_{1} - P_{n}f_{1} > \varepsilon\}$$

 and

$$C_{2} = \{\{(\mathbf{x}_{1}, y_{1}), \cdots, (\mathbf{x}_{n}, y_{n})\} \mid Pf_{2} - P_{n}f_{2} > \varepsilon\}$$

• These sets are the "bad" sets for which empirical risk is much lower than the real risk.

Obtaining Uniform Bounds

• For each, we have the Hoeffing's inequalities (no absolute value), that

$$P(C_1) \leq \delta, P(C_2) \leq \delta$$
 where $\delta = e^{-2n\varepsilon^2}$.

• Note that whenever a n-uple is in $C_1 \cup C_2$, then either

$$Pf_1 - P_nf_1 > \varepsilon$$
 or $Pf_1 - P_nf_1 > \varepsilon$.

- Of course, $P(C_1 \cup C_2) \le P(C_1) + P(C_2) \le 2\delta$.
- Thus, with probability smaller than 2δ at least one of f_1 or f_2 will be such that $Pf_1 P_nf_1 > \varepsilon$.

Generalizing to \boldsymbol{N} functions

- Consider f_1, \cdots, f_N functions.
- Define the corresponding sets of *n*-uples, C_1, \cdots, C_N with ε fixed.
- Of course,

$$P(C_1 \cup C_2 \cup \cdots \cup C_N) \le \sum_{i=1}^N P(C_i)$$

• Use now Hoeffding's inequality

$$P(\exists f \in \{f_1, \cdots, f_N\} | Pf - P_n f > \varepsilon) = P\left(\bigcup_{i=1}^N C_i\right)$$
$$\leq \sum_{i=1}^N P(C_i) \leq N\delta = Ne^{-2n\varepsilon^2}$$

Error bound for finite families of functions

• We thus have that for **any** family of N functions,

$$P(\sup_{f\in\mathcal{F}} Pf - P_n f \ge \varepsilon) \le N e^{-2n\varepsilon^2},$$

• or equivalently, that if $\mathcal{G}=\{g_1,\cdots,g_N\}$, with probability at least $1-\delta$,

$$\forall g \in \mathcal{G}, \quad R(g) \le R_n(g) + \sqrt{\frac{\log N + \log \frac{1}{\delta}}{2n}}$$

Estimation bound for finite families of functions

- Recall that g^* is a function in \mathcal{G} such that $R(g^*) = \min_{g \in \mathcal{G}} R(g)$.
- The inequality

$$R(g^{\star}) \le R_n^{\operatorname{emp}}(g^{\star}) + \sup_{g \in \mathcal{G}} \left(R(g) - R_n^{\operatorname{emp}}(g) \right),$$

• combined with $R_n^{emp}(g^{\star}) - R_n^{emp}(g_n) \ge 0$ by definition of g_n , we get

$$R(g_n) = R(g_n) - R(g^*) + R(g^*) \leq \underbrace{R_n^{emp}(g^*) - R_n^{emp}(g_n)}_{\geq 0} + R(g_n) - R(g^*) + R(g^*)$$
$$\leq 2 \sup_{g \in \mathcal{G}} |R(g) - R_n^{emp}(g)| + R(g^*)$$

• Hence, with probability at least $1 - \delta$,

$$R(g_n) \le R(g^\star) + 2\sqrt{\frac{\log N + \log \frac{2}{\delta}}{2n}}$$

Hoeffding's bound for countable families of functions

- $\bullet\,$ Suppose now that we have a countable family ${\cal F}$
- Suppose that we assign a number $\delta(f) > 0$ to each $f \in \mathcal{F}$, which we use to set

$$P\left(|Pf - P_n f| > \sqrt{\frac{\log \frac{2}{\delta(f)}}{2n}}\right) \le \delta(f),$$

• Using the union bound on a **countable set** (basic probability axiom),

$$P\left(\exists f \in \mathcal{F} : |P_n f - Pf| > \sqrt{\frac{\log \frac{2}{\delta(f)}}{2n}}\right) \le \sum_{f \in \mathcal{F}} \delta(f).$$

- Let us set $\delta(f) = \rho p(f)$ with $\rho > 0$ and $\sum_{f \in \mathcal{F}} p(f) = 1$.
- Then with probability 1ρ ,

$$\forall f \in \mathcal{F}, Pf \leq P_n f + \sqrt{\frac{\log \frac{1}{p(f)} + \log \frac{1}{\rho}}{2n}}.$$

Hoeffding's bound for general families of functions

• Two problems:

• Most interesting families of functions are not countable.

- Defining the weights p(f) is not so obvious.
- However, what really matters for a sample $\mathbf{z}_1, \cdots, \mathbf{z}_n$ is

$$\mathcal{F}_{\mathbf{z}_1,\cdots,\mathbf{z}_n} = \{ (f(\mathbf{z}_1), f(\mathbf{z}_2), \cdots, f(\mathbf{z}_n)), f \in \mathcal{F} \}$$

- $\mathcal{F}_{\mathbf{z}_1,\cdots,\mathbf{z}_n}$ is a large set of binary vectors $\subset \{0,1\}^N$
- The more complex \$\mathcal{F}\$, the larger \$\mathcal{F}_{z_1, \dots, z_n}\$ with maximum \$2^n\$ possible elements.
 Definition 1 (Growth Function). The growth function of \$\mathcal{F}\$ is equal to

$$S_{\mathcal{F}}(n) = \sup_{(\mathbf{z}_1, \cdots, \mathbf{z}_n)} |\mathcal{F}_{\mathbf{z}_1, \cdots, \mathbf{z}_N}|$$

Vapnik-Chervonenkis

Theorem 4 (Vapnik-Chervonenkis). For any $\delta > 0$, with probability at least $1 - \delta$,

$$\forall g \in \mathcal{G}, R(g) \le R_n(g) + 2\sqrt{2\frac{\log S_{\mathcal{G}}(2n) + \log \frac{2}{\delta}}{n}}$$

Definition 2 (VC Dimension). The VC dimension of a class \mathcal{G} is the largest n such that

$$S_{\mathcal{G}}(n) = 2^n.$$

Vapnik-Chervonenkis

• The VC dimension of linear classifiers in \mathbb{R}^d is d+1.

Vapnik-Chervonenkis

• Given the VC dimension h of a family \mathcal{G} , we can prove

$$\forall g \in \mathcal{G}, R(g) \le R_n(g) + 2\sqrt{2\frac{h\log\frac{2en}{h} + \log\frac{2}{\delta}}{n}}$$

Lemma 1 (Vapnik and Chervonenkis, Sauer, Shelah). Let \mathcal{G} be a class of functions with finite VC-dimension h. Then,

$$\forall n \in \mathbb{N}, S_{\mathcal{G}}(n) \leq \sum_{i=0}^{h} \binom{n}{i},$$

$$\forall n \ge h, S_{\mathcal{G}}(n) \le \left(\frac{en}{h}\right)^h$$

- Combining with VC theorem, we obtain the result given above.
- Important thing: difference between true and empirical risks is at most of the order of

$$\sqrt{\frac{h\log n}{n}}$$