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Summary of Today’s Lecture

• Reminders on last lecture

• Codes and uniquely decodable codes

• Shannon source code theorem

• Coding algorithms based on probabilities

◦ Shannon-Fano codes
◦ Huffman codes

• Heuristic approaches

◦ Lempel-Ziv
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Information and Entropy

• For a random variable X taking values in a finite set X with probability p, we
call the entropy of X ,

H(X) = −
∑

x∈X

p(x) log2 p(x)

N i.i.d. random variables each with entropy H(X)
can be compressed into more than NH(X) bits with negligible risk

of information loss, as N tends to infinity

Conversely, if they are compressed into fewer than NH(X) bits
it is virtually certain that information will be lost.
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Entropy for binary random variables

• Two outcomes for a random variable X , 0 or 1.

• Two probabilities, p0 = p(X = 0) and p1 = p(X = 1).

• Moreover, p0 = p1 − 1, hence H(X) = −p1 log p1 − (1 − p1) log(1 − p1).

• This is the curve represented below. H(X) = 1
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• When p1 = 1
2, the entropy is at its maximum...

...which is why we cannot do better, on average, than actually send

1, 000, 000 bits if we want to communicate 1, 000, 000 bits...
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Information and Entropy

Whatever the method used to design the signal,
if the word is made up of N observations

of i.i.d random variables distributed like X ,
the signal cannot be shorter on average than NH(X).
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Information and Entropy

• Shannon’s source code theorem gives a lower bound.

• The reference length becomes NH(X),

• The main question of coding and compression theory:

how to define compression mechanisms (codes)
to transform messages into shorter signals

so as to get as close as possible to Shannon’s bound
without necessarily knowing p?
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Codes
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Code: Definition

Code: rule to convert a piece of information
(e.g., a letter, word, phrase, gesture)

into another form, not necessarily of the same type.

• For these lectures: Σ1,Σ2, two finite alphabets.

• A code: a partial function from Σ∗
1 to Σ∗

2

C : U ⊂ Σ∗
1 → V ⊂ Σ∗

2
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Types of Code

• Error Correcting Code: code strings in Σ⋆
1 as strings in Σ⋆

2.

◦ Of which Block Codes: Σk
1 → Σn

2

• Variable Length Code: only source symbols of Σ1 are mapped to Σ⋆
2.
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Types of Code

• Variable Length Code: source symbols of Σ1 mapped to Σ⋆
2.

◦ Non-singular codes: coding mechanism C : Σ1 → Σ⋆
2 is injective.

◦ Uniquely decodable codes: extension of C to Σ⋆
1 is non-singular.

◦ Prefix Codes: C(x) = m and C(x′) = m′ → m cannot be a prefix of m′.

Prefix Codes ⊂ Uniquely decodable codes ⊂ Non-singular codes ⊂Var. Length
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Variable Length Codes - Quizz

For each code below,

M1 = { a 7→ 0, b 7→ 0, c 7→ 1 }

M2 = { a 7→ 0, b 7→ 10, c 7→ 110, d 7→ 111 }

M3 = { a 7→ 1, b 7→ 011, c 7→ 01110, d 7→ 1110, e 7→ 10011 }

M4 = { a 7→ 0, b 7→ 01, c 7→ 011 }

specify if the code is

1. Variable Length 2. Non-singular 3. Uniquely decodable 4. Prefix
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Source Code Theorem
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Shannon’s Source Code Theorem

• Suppose that X is a r.v. taking values in Σ1.

• Let f be a uniquely decodable code from Σ1 to Σ∗
2 where |Σ2| = a.

• Let S denote the random variable given by the wordlength f(X).

If f is optimal (with minimal expected wordlength) for X , then

H(X)
log2 a

≤ ES < H(X)
log2 a

+ 1

(Shannon 1948)

ref: Wikipedia article
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Proof of Shannon’s Source Code Theorem

• Let si be the wordlength of each possible wordcode

yi ∈ Σ⋆

2

coding for the ith symbol of Σ1, i.e. yi = f(xi).

• Define
qi = a−si/C,

where C is chosen so that
∑

qi = 1.
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Two tools to prove it : Gibbs (KL)

Gibb’s Inequality

• Kullback-Leibler divergence between p = (p1, · · · , pn) and q = (q1, · · · , qn)

DKL(P‖Q) =

n
∑

i=1

pi log2

pi

qi

≥ 0.

• equivalently,

−
n

∑

i=1

pi log2 pi ≤ −
n

∑

i=1

pi log2 qi
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Two tools to prove it: Kraft

Kraft’s Inequality

• Let each source symbol from the alphabet

S = { s1, s2, . . . , sn }

be encoded into a uniquely decodable code over an alphabet of size r with
codeword lengths

ℓ1, ℓ2, . . . , ℓn.

• Then
∑n

i=1

(

1
r

)ℓi ≤ 1.

• Conversely,
∀ℓ1, ℓ2, . . . , ℓn ∈ N

satisfying the inequality, ∃ a uniquely decodable code over an alphabet of size
r with those codeword lengths.
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Proof of Shannon’s Source Code Theorem

• Using the chain of inequalities,

H(X) = −

n
∑

i=1

pi log2 pi ≤ −

n
∑

i=1

pi log2 qi

= −

n
∑

i=1

pi log2 a−si +

n
∑

i=1

pi log2 C

= −
n

∑

i=1

pi log2 a−si + log2 C ≤ −
n

∑

i=1

−sipi log2 a ≤ ES log2 a

• the second line follows from Gibbs’ inequality.

• the fifth line follows from Kraft’s inequality.
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Proof of Shannon’s Source Code Theorem

• For the second inequality we set

si = ⌈− loga pi⌉

so that

− loga pi ≤ si < − loga pi + 1

and so

a−si ≤ pi

and

∑

a−si ≤
∑

pi = 1.
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Proof of Shannon’s Source Code Theorem

• By Kraft’s inequality there exists a prefix-free code having those wordlengths.

• Thus the minimal S satisfies

ES =
∑

pisi

<
∑

pi (− loga pi + 1)

=
∑

−pi

log2 pi

log2 a
+ 1

=
H(X)

log2 a
+ 1.
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Shannon-Fano Code
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Huffman Code
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Lempel-Ziv

Lempel Ziv Animation
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