Introduction to Information Sciences Introduction to the Course

M. Cuturi, X. Liang

Introduction to Information Sciences: NLP

Summary of the Course

- Provide a wide overview of
 - natural language processing & linguistics
 - $\circ~$ information theory
 - computer science
 - o artificial intelligence
 - $\circ\,$ pattern recognition, speech processing etc.
- This course is designed to introduce the activities of the *Intelligence Science* and *Technology* department to the rest of the university.

Grading

- Two lecturers \rightarrow overall grade split into two respective parts
- each part is equally weighted.

- Attendance is important.
 - $\circ~$ Total of 13 classes.
 - \circ You should attend at least ≥ 10 classes. you have 3 jokers.
 - $\circ\,$ Below that, -10% per missed class.
 - \circ Below \leq 7, no credit.
- Grading will be based on reports. 2 reports in my course.

Before we proceed...

Questions?···

Question 1

Consider the following algorithm

- $x \leftarrow 0;$
- For $i = 1, \cdots, 3$
 - $\circ x \leftarrow x + i;$
- endFor

What is the value of x once this algorithm has been executed?

1. 3 **2.** 0 **3.** 6 **4.** 1 **5.** 12

Question 1

Consider the following algorithm

- $x \leftarrow 0;$
- For $i = 1, \cdots, 3$
 - $\circ x \leftarrow x + i;$
- endFor

What is the value of x once this algorithm has been executed?

1. 3 **2.** 0 **3.** 6 **4.** 1 **5.** 12

Question 2

Consider the following algorithm

- $x \leftarrow 2;$
- For $i = 1, \cdots, 3$
 - \circ If $i \leq x$,
 - $\triangleright x \leftarrow x i;$
 - Else
 - $\triangleright x \leftarrow x + i;$
 - \circ endlf
- endFor

What is the value of x once this algorithm has been executed?

Question 2

Consider the following algorithm

- $x \leftarrow 2;$
- For $i = 1, \cdots, 3$
 - \circ If $i \leq x$,
 - $\triangleright x \leftarrow x i;$
 - Else
 - $\triangleright x \leftarrow x + i;$
 - \circ endlf
- endFor

What is the value of x once this algorithm has been executed?

Introduction to Information Sciences Natural Language Processing Formal Languages

mcuturi@i.kyoto-u.ac.jp

Introduction to Information Sciences: NLP

Summary

- Illustrate the difficulties tackled by computational linguistics
 - $\circ~$ Define a few of the problems commonly studied
- Introduce formal language theory & Automata
 - formal languages
 - \circ formal grammars
 - Chomsky hierarchy

Sources for these slides: A. McCallum's (UMass) online lectures, Wikipedia, Jurafsky/Martin

We start with an example: HAL

• An example taken from a famous movie and book:

• Let's check a few scenes:

2001 was shot in 1968

A few years after 2001, what sounds familiar, if not outdated about HAL?

• Graphic capabilities?.. We have much better. The future rather looks like this...

• Chess? 2006, Deep Fritz and before, late 90's, Deep Blue

2001 was shot in 1968

• What still sounds difficult to achieve is HAL's articulated syntax...

David Bowman: **Open the pod bay doors, Hal.** HAL: **I'm sorry, Dave, Im afraid I cant do that.** David Bowman: **What are you talking about, Hal?** ...HAL: **I know that you and Frank were planning to disconnect me, and I'm afraid that's something I cannot allow to happen.**

- The machine is also displaying intelligence. See Turing's test.
- Yet, why does language seem more difficult to reach than chess?

Recent Progress

THIS WINE.WOOT MEMBER WILL SOON BE ABLE TO AFFORD MORE EXPENSIVE WINE

http://www.says-it.com/jeopardy

Layers of Computational Linguistics

Complex and multilayered system, each layer a different study field

- Phonetics
- Phonology
- Morphology
- Syntax
- Semantics
- Pragmatics
- Discourse

Phonetics

Study of language sounds, physical aspects.

CONSONAN	TS (F	PULN	10NIC)											
	Bila	abial	Labiodental	Dental	Alveolar	Postalveolar	Retr	oflex	Palatal	Velar	Uvular	Pharyngeal	Glo	ttal
Plosive	р	b			t d		t	d	сĵ	k g	qg		?	
Nasal		m	ŋ		n			η	ŋ	ŋ	N			
Trill		В			r						R			
Tap or Flap					ſ			r						
Fricative	ф	β	f v	θð	s z	∫ 3	ş	Z,	çj	хy	Хк	ħΥ	h	ĥ
Lateral fricative					4 片									
Approximant			υ		r			ન	j	щ				
Lateral approximant					1			l	у	L				

THE INTERNATIONAL PHONETIC ALPHABET (revised to 1993)

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)	SUPRASEGMENTALS				
Clicks Voiced implosives Ejectives	Primary stress formattalan				
O Bilabial b Bilabial as in:	Secondary stress				
l Dental d Dental/alveolar p'Bilabial	Long et é 1 High ê V Falling				
! (Post)alveolar ∫ Palatal t' Dental/alveolar	$\vec{e} = \mathbf{I}_{\text{Mel}} \vec{e} = \mathbf{I}_{\text{Hel}}$				
f Palatoalveolar d Velar k Velar	Extra-short e				
Alveolar lateral \tilde{G} Uvular S' Alveolar fricative	e Syllable break 11.22Kt C I Low C I Low rising				
VOWELS	Minor (toot) group $e \ J_{low} e \ Rising-falling etc.$				
Front Central Back	Linking (absence of a break)				
$\frac{1}{10} V - \frac{1}{10} V + \frac{1}{10} U$	Upstep 🖌 Global fall				
	DIACRITICS Diacritics may be placed above a symbol with a descender, e.g. $\mathring{ extsf{J}}$				
	o Voiceless n d Breathy voiced b a _ Dental t d				
	voiced s t creaky voiced b a Apical t d				
Open-mid $\mathcal{E} \circ \mathcal{C} - 3 \circ \mathcal{C} - \Lambda \circ \mathcal{I}$	^h Aspirated $t^h d^h$ ~ Linguolabial $t d$. Laminal $t d$				
æ	, More rounded \hat{q} ^w Labialized $t^w d^w$ [~] Nasalized \tilde{e}				
Open $a \bullet c = a \bullet p$, Less rounded p j Palatalized $t^j d^j$ n Nasal release d^n				
Where symbols appear in pairs, the one to the right represents a rounded vowel	, Advanced u Y Velarized $t^y d^y$ Lateral release d^1				
OTHER SYMBOLS	_ Retracted \underline{i} \hat{v} Pharyngealized $t^{\hat{v}} d^{\hat{v}}$ No audible release $d^{\hat{v}}$				
M Voiceless labial-velar fricative 6 2 Alveolo-palatal fricatives W Voiced labial-velar approximant J Alveolar lateral flap	"Centralized $\ddot{e} \sim$ Velarized or pharyngealized $\frac{1}{2}$				
\mathbf{U} Voiced labial-palatal approximant $\mathbf{f}_{\mathbf{J}}$ Simulataneous \mathbf{J} and \mathbf{X}	× Mid-centralized $\stackrel{\times}{e}$ Raised $\stackrel{\bullet}{e}$ ($\stackrel{\downarrow}{\downarrow}$ = voiced alveolar fricative)				
H Voiceless epiglottal fricative Affricates and double articula-	Syllabic μ Lowered e (β = voiced bilabial approximant)				
Voiced epiglottal fricative 2 Epiglottal plosive if necessary	Non-syllabic e Advanced Tongue Root e				
kp fs	• Rhoticity ∂^{*} Retracted Tongue Root e				

Phonology

Study of sound **structure** of language.

- Identify units of sounds, in **different** human languages.
 - phonemes,
 - syllables,
- Phonemes are a major difference between animal language and human language.
- Useful for instance in animations. Phonemes in english:

Morphology

Study of morphemes, the minimal units of linguistic form and meaning

• Important for compounded languages *e.g.* Turkish:

uygarlastiramadiklarimizdanmissinizcasina

uygar las tir ama dik lar imiz dan mis siniz casina

(behaving) as if you are among those whom we could not civilize

• In chinese, chinese characters = morphems = basic semantic unit

Syntax

• From words to sentences:

I know that you and Frank were planning to disconnect me.

• Of course, the structure (the syntax) of the following sentence is also correct

You know me–Frank and I were planning to disconnect that.

Semantics

Study of meaning, the minimal units of linguistic form and meaning

• The meaning of

I know that you and Frank were planning to disconnect me.

can be summarized as

- an action, disconnect,
 performed by an actor, you and Franck,
 on an object, me
- In computer science, different syntaxes for the same operation: x += y (C, Java, Perl, Python, Ruby, etc.)
 x := x + y (Pascal)
 LET X = X + Y (early BASIC)
 x = x + y (MATLAB, most BASIC dialects, Fortran)
 (incf x y) (Common Lisp)

Pragmatics

The study of how language is used to accomplish goals within a given **context**

• What is the practical outcome of a sentence as

Im sorry, Dave, Im afraid I cant do that.

given the contex?

- The sentence "You have a green light" can have different meanings:
 - $\circ\,$ It could mean you are holding a green light bulb.
 - $\circ\,$ Or that you have a green light to drive your car.
 - Or it could be indicating that you can go ahead with the project.
 - Or that your body has a green glow

Discourse

Study of linguistic units which are larger than single **utterances**

• Capture the different turns, threads, changes in the conversation

David Bowman: Open the pod bay doors, Hal. HAL: Im sorry, Dave, Im afraid I cant do that. David Bowman: What are you talking about, Hal? ...HAL: I know that you and Frank were planning to disconnect me,

and I'm afraid that's something I cannot allow to happen.

Languages contain all possible utterances

- Here are sentences in the english language,
 - $\circ~$ The man took the book.
 - This sentence is not true.
 - $\circ\,$ The horse was galloping in the prairie
- Here are sentences which are **not** part of it
 - $\circ~$ The true the eat lot looks bird.
 - $\circ\,$ sense any make not does sentence this
 - o dfdlkfh lkjer leREQ ARlkjdf
- A few different kinds of language:
 - Natural languages language that arises in an **unpremeditated** manner as the product of the human innate facility to communicate. Can be spoken, signed, written etc..
 - Constructed languages constructed languages as auxiliary languages such as esperanto or artistic languages (*e.g.* in fiction)
 - Formal languages: languages that computers can parse and understand.
- The latter is the family of languages we will study the most in these 2 lectures.

Seen from a computer, a language is a set

• We start with the formal idea of alphabets, a set of tokens

$$\begin{split} \Sigma &= \{a,b,c,d,e,f,g,\cdots,z,,\cdots\} \text{ or,} \\ \Sigma &= \{0,1\} \text{ or,} \\ \Sigma &= \{0,1,2,3,4,5,6,7,8,9,+,-,*,/,\ln,\exp,\cdots\} \,. \end{split}$$

• and use the Kleene operator as a shortcut for

$$\Sigma^{\star} = \{ x \in \Sigma^n, n \in \mathbf{N} \}.$$

• A formal language L is a **subset** of Σ^* .

Example of a language

Rules can describe a formal language L

- Consider the language L defined as
 - \circ The alphabet = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, =:
 - $\circ~$ Every nonempty string that does not contain +~ or =~ and does not start with 0 is in L.
 - $\circ~$ The string 0 is in L.
 - $\circ\,$ A string containing = is in L if and only if there is exactly one =, and it separates two valid strings in L.
 - $\circ\,$ A string containing + but not = is in L if and only if every + in the string separates two valid strings in L.
 - $\circ~$ No string is in L other than those implied by the previous rules.
- With such rules,
 - ∘ "23+4=555" is in L,
 - \circ "d433+2e2" is not,
 - "=234=+" is not.
- no meaning yet though. Only notion of belonging or not to a language.

Formal languages = typology of such rules

- Other ways to define a language from an alphabet:
- For instance, a language can be given as
 - all strings generated by a **formal grammar**;
 - all strings accepted by some automaton, in the example the automaton can generate the language of all words containing at least "*aba*" once

all strings described or matched by a particular regular expression;
 all strings for which some decision procedure (an algorithm that asks a sequence of related YES/NO questions) produces the answer YES.

Typical questions asked about such formalisms

- What is their expressive power? (Can formalism X describe every language that formalism Y can describe? Can it describe other languages?)
- What is their recognizability? (How difficult is it to decide whether a given word belongs to a language described by formalism X?)
- What is their comparability? (How difficult is it to decide whether two languages, one described in formalism X and one in formalism Y, or in X again, are actually the same language?).

Formal grammar

A formal grammar is a set of rules which generate formal languages, defined by:

- a finite set of terminal symbols,
- a finite set of nonterminal symbols,
- a start symbol which is a nonterminal symbol,
- a finite set of production rules:

Rule : $\cdots \rightarrow \cdots$

where the dots are arbitrary symbols.

Formal grammar

• How?

- Start with the start symbol.
- Apply any rule by replacing an occurrence of the symbols on the left-hand side of the rule with those that appear on the right-hand side.
- A sequence of rule applications is called a derivation.

Such a grammar defines the formal language: all words consisting solely of terminal symbols which can be reached by a derivation from the start symbol.

- Usually, NONTERMINALS are represented by uppercase letters,
- terminals by lowercase letters,
- the start symbol by S.

Formal grammar Example

- For example, the grammar with
 - \circ terminals $\{a, b\}$,
 - $\circ\,$ nonterminals $\{S,A,B\}$, starting S ,
 - $\circ\,$ production rules
 - $S \rightarrow ABS$ $S \rightarrow \varepsilon \text{ (where } \varepsilon \text{ is the empty string)}$ $BA \rightarrow AB$ $BS \rightarrow b$ $Bb \rightarrow bb$ $Ab \rightarrow ab$ $Aa \rightarrow aa$

defines the language of all words of the form $a^n b^n$.

• simpler grammar that defines the same language:

$$\circ$$
 Terminals $\{a, b\}$,

 $\circ\,$ Nonterminals $\{S\}$, Start symbol S, Production rules

$$\triangleright \ S \to aSb$$

 $\triangleright S\varepsilon$

Chomsky Hierarchy of Formal Languages

- Type-0 : all grammars.
- Type-1: $\alpha A\beta \rightarrow \alpha \gamma \beta$ where γ cannot be empty. $S \rightarrow \varepsilon$ is allowed iff S does not appear on the right side of a rule.
- Type-2 $A \rightarrow \gamma$ where γ a string of terminals and nonterminals.
- Type-3: Nonterminals can only appear on one side, $S \to \varepsilon$ is allowed iff S does not appear on the right side of a rule.

Grammar	Languages	Automaton	Production rules (constraints)		
Type-0	Recursively enumerable	Turing machine	lpha ightarrow eta(no restrictions)		
Type-1	Context-sensitive	Linear-bounded non-deterministic Turing machine	$lpha Aeta o lpha \gamma eta$		
Type-2	Context-free	Non-deterministic pushdown automaton	$A ightarrow \gamma$		
Type-3	Regular	Finite state automaton	A ightarrow a and $A ightarrow aB$		

- Most programming languages are generated by Type-2 rules.
- Trade-off between size of language & capacity to parse it.