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Support Vector Machines
The linearly-separable case
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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Largest Margin Linear Classifier ?
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Support Vectors with Large Margin
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Finding the optimal hyperplane
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e Finding the optimal hyperplane is equivalent to finding (w,b) which minimize:

lwlJ?

under the constraints:
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Vi=1,...,n, y; (wix;+b) —1>0.

This is a classical quadratic program on R%+!
linear constraints - quadratic objective
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Lagrangian

e |In order to minimize: |

= 2
~wl

under the constraints:

Vi=1,...,n, yi(waier)—lzo.

e introduce one dual variable «; for each constraint,
e one constraint for each training point.

e the Lagrangian is, for @ > 0 (that is for each «; > 0)

1 n
L(w,b, ) = §||W||2 — g a; (yi (Wwhx;+b) —1).
i=1
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The Lagrange dual function

g(o) = inf {;HWH2 - ZO@; (yi (Whx; +b) — 1)}

WERd,bER 3
1=1

the saddle point conditions give us that at the minimum in w and b
mn
W = Z a;¥;X;, ( derivating w.r.t w) (%)
i=1

0= Z o;y;, (derivating w.r.t b) ()
i=1

substituting (x) in g, and using (*x) as a constraint, get the dual function g(«).
e To solve the dual problem, maximize g w.r.t. a.
e Strong duality holds : primal and dual problems have the same optimum.

o KKT gives us «;(y; (WTXZ' + b) —1) =0,
..hence, either a; = 0 ory; (whx; +b) = 1.

e «; # 0 only for points on the support hyperplanes {(x,y)|y,(w!x; +b) = 1}.
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Dual optimum

The dual problem is thus

maximize g(a) = D07, i — 51 g QiQGYYX] X;

such that ar=0,> 7"  ay; =0.

o can be computed using optimization software
(e.g. built-in matlab function)

This is a quadratic program in R", with box constraints.
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Recovering the optimal hyperplane

e With a*, we recover (w',b*) corresponding to the optimal hyperplane.

o wl is given by wl = Z?:l yz'Oéixq;Ta

e b* is given by the conditions on the support vectors o; > 0, y,(wlx; +b) =1,

1
* T . T, T,
"= 2 (WII{EXI@;O(W XZ)+Y¢=r—n1a,§i>0(W XZ)>

e the decision function is therefore:

f*(x) =wix +b*

— (i yiaix;r> X+ b*.
1=1

e Here the dual solution gives us directly the primal solution.

— Typeset by Foil TEX — 14



— Typeset by Foil TEX —

Interpretation: support vectors
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Another interpretation: Convex Hulls

go back to 2 sets of points that are linearly separable
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Another interpretation: Convex Hulls
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Linearly separable = convex hulls do not intersect
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Another interpretation: Convex Hulls
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Find two closest points, one in each convex hull
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Another interpretation: Convex Hulls

The SVM = bisection of that segment
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Another interpretation: Convex Hulls

support vectors = extreme points of the faces on which the two points lie
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The non-linearly separable case

(when convex hulls intersect)
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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Soft-margin SVM ?

e Find a trade-off between large margin and few errors.

e Mathematically:

mfin { ! + C' % errors(f)}

margin(f)

e (' is a parameter

— Typeset by Foil TEX —
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Soft-margin SVM formulation ?
e The margin of a labeled point (x,y) is
margin(x,y) =y (WTx — b)

e [he error is

o 0 if margin(x,y) > 1,
o 1 — margin(x,y) otherwise.

e The soft margin SVM solves:

: 2 1
E 1—v. |
mll?{HWH +C : max{0, Y; (W X; + b)}

e c(u,y) =max{0,1 — yu} is known as the hinge loss.

o ¢(wlx;+b,y,) associates a mistake cost to the decision w,b for example x;.
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Dual formulation of soft-margin SVM

e The soft margin SVM program
migl{HwH2 + C’Z max{0,1 —y; (w'x; +b)}
’ i=1
can be rewritten as
minimize [w|?+C > &
such that vy, (waz- + b) >1-=&

e In that case the dual function

mn n
1
g9(a) = Z%‘ 5 Z QiCsyY X; X,
1=1

i,J=1

which is finite under the constraints:

0<y<C, fori=1,...,n
D i aiy; = 0.
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Interpretation: bounded and unbounded support vectors
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0<o<C

Y
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What about the convex hull analogy?

e Remember the separable case

e Here we consider the case where the two sets are not linearly separable, i.e.
their convex hulls intersect.

Class B Class A
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What about the convex hull analogy?
Definition 1. Given a set of n points A, and 0 < C < 1, the set of finite

combinations N N
D Aixi 1SN <Oy A=1
i=1 i=1

is the (C') reduced convex hull of A

e Using C' = 1/2, the reduced convex hulls of A and B,

Class B Class A

e Soft-SVM with C' = closest two points of C-reduced convex hulls.

— Typeset by Foil TEX —

31



— Typeset by Foil TEX —

Kernels
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Kernel trick for SVM'’s

e use a mapping ¢ from X to a feature space,

e which corresponds to the kernel k:

Vx,x' € X, k(x,x') = (¢(x),p(x'))

o Example: if ¢(x) = ¢ ([“D = [x%] then

i) ZC%

k(x,x') = (p(x), o(x) ) = (21)*(21)" + (w2)*(2)".

— Typeset by Foil TEX —
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Training a SVM in the feature space

Replace each x’x’ in the SVM algorithm by (¢(x), ¢(x") ) = k(x,x’)

e Reminder: the dual problem is to maximize
n 1 n
gla) = ZO@ 5 Z i Y Yj k(xiy %),
i=1 ij=1
under the constraints:

OSO@SC, fOF’iIl,...,n
Z?:laiYi:O'

e [ he decision function becomes:

f(x) =(w,o(z)) + 0

— Z Yok (%, x) + b*.

1=1

— Typeset by Foil TEX —
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The Kernel Trick ?

The explicit computation of ¢(x) is not necessary.
The kernel k(x,x’) is enough.

e the SVM optimization for o works implicitly in the feature space.

e the SVM is a kernel algorithm: only need to input K and y:

maximize g(a) =a’l — 1o’ (K @ yyl)a
suchthat 0<o; <C, fori=1,...,n
D i1 @Y = 0.

e K's positive definite < problem has an unique optimum

n

e the decision functionis f(:) = > ._; o; k(x;,-) + .

— Typeset by Foil TEX —
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Kernel example: polynomial kernel

o For x = (z1,22) " € R?, let ¢(x) = (2%, /22129, 22) € R3:

/ 2 12 ! ! 2 12
K (x,x") = x7x}" + 2z1207 75 + 2575

= {112} + x02h}?

— {XTXI}Z .

x1
P o
o

!j
o o
o
°
e
o
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Kernels are Trojan Horses onto Linear Models

e With kernels, complex structures can enter the realm of linear models

— Typeset by Foil TEX —
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What is a kernel

In the context of these lectures...

e A kernel k is a function

k: AxX — R
(Xay) — k(xv)’)

e which compares two objects of a space X, e.g....

o strings, texts and sequences,
o images, audio and video feeds, §J @

[
. . L
o graphs, interaction networks and 3D structures H

e whatever actually... time-series of graphs of images? graphs of texts?...

— Typeset by Foil TEX —
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Fundamental properties of a kernel

symmetric

k(x,y) = k(y,x).

positive-(semi)definite

for any finite family of points x4, --- , X, of X', the matrix
k(x1,x1)  k(xi,x2) - k(xi,x) o E(x1,%p)]
k(xa,x1) Kk(xg,%x2) -+ k(xg,%;) -+ k(x2,Xy)
k= k(x;, X1) k(x;, X2) - k(x,;, X;) - : k(xg:, Xp,) =0
_k(xn:,xl) k(xf,;XQ) - k(x;,xi) k(xne, Xn) |

is positive semidefinite (has a nonnegative spectrum).

K is often called the Gram matrix of {xy, -+ ,x,} using k

— Typeset by Foil TEX —
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What can we do with a kernel?

— Typeset by Foil TEX —
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The setting

e Pretty simple setting: a set of objects x,--- ,x, of X
e Sometimes additional information on these objects

o labelsy, € {—1,1} or {1,--- , #(classes)},
o scalar values y, € R,
o associated object y, € YV

e A kernel k: X x X — R.

— Typeset by Foil TEX —
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A few intuitions on the possibilities of kernel methods

Important concepts and perspectives

e The functional perspective: represent points as functions.
e Nonlinearity : linear combination of kernel evaluations.

e Summary of a sample through its kernel matrix.
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Represent any point in X' as a function

For every x, the map
x — k(x,-)
associates to x a function k(x, -) from X" to R.

e Suppose we have a kernel k£ on bird images

e Suppose for instance
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Represent any point in X' as a function

e \We examine one image in particular: ’

e With kernels, we get a representation of that bird as a real-valued function,
defined on the space of birds, represented here as R? for simplicity.

schematic plot of & ( )

— Typeset by Foil TEX —
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Represent any point in X' as a function

e |If the bird example was confusing...
/ / 2

k(51 [7]) = (=1 [7] +3)

e From a point in R? to a function defined over R?.

(@ x+15y) +.35

7777
',,,,I""',

7775 4

L7

L7

77777~

2,51

77
2L 77

(L LT
LT 7

1.5-

25

e We assume implicitly that the functional representation will be more useful

than the original representation.

45
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Decision functions as linear combination of kernel evaluations

e Linear decisions functions are a major tool in statistics, that is functions

f(x) = B"x+ Bo.
e Implicitly, a point x is processed depending on its characteristics x;,
d
f(x) = Z,Biﬂ% + Bo.
i=1

the free parameters are scalars Bg, 31, , B4.

e Kernel methods yield candidate decision functions
Fx) =) ajk(x;,x) + ao.
j=1

the free parameters are scalars o, v, + , (y,.
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Decision functions as linear combination of kernel evaluations

database {x;,7 = 1,

1 87 Xza

kernel definition

f(x) =

weights o estimated
with a kernel machine

e f is any predictive function of interest of a new point x.

e Weights «v are optimized with a kernel machine (e.g. support vector machine)

intuitively, kernel methods provide decisions based on how similar a
point x is to each instance of the training set
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The Gram matrix perspective

e Imagine a little task: you have read 100 novels so far.

e You would like to know whether you will enjoy reading a new novel.

e A few options:

o read the book...
o have friends read it for you, read reviews.
o try to guess, based on the novels you read, if you will like it

— Typeset by Foil TEX —
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The Gram matrix perspective

Two distinct approaches

e Define what features can characterize a book.

o Map each book in the library onto vectors
L1

N 12 B .
B

typically the x;'s can describe...

> 7 pages, language, year 1st published, country,
> coordinates of the main action, keyword counts,
> author’s prizes, popularity, booksellers ranking

e Challenge: find a decision function using 100 ratings and features.

— Typeset by Foil TEX —
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The Gram matrix perspective

e Define what makes two novels similar,

o Define a kernel & which quantifies novel similarities.
o Map the library onto a Gram matrix

k(bi,b1) k(bi,ba) -+ k(b1,bio0)
_ | k(b2 01)  k(b2,b2) --+ K(b2, b1oo)
| E(bn,b1)  k(bn,b2) -+ K(b1oo, b1o0)

e Challenge: find a decision function that takes this 100 x 100 matrix as an input.
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The Gram matrix perspective

Given a new novel,

e with the features approach, the prediction can be rephrased as what are the
features of this new book? what features have | found in the past that were
good indicators of my taste?

e with the kernel approach, the prediction is rephrased as which novels this
book is similar or dissimilar to? what pool of books did | find the most
influentials to define my tastes accurately?

kernel methods only use kernel similarities, do not consider features.

Features can help define similarities, but never considered elsewhere.
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The Gram matrix perspective

in kernel methods, clear separation between the kernel...

dataset X3
L BNy
X
X9 .
X
x 5 K55, kernel matrix o

N

convex optimization

and Convex optimization (thanks to psdness of K, more later) to output the a's.
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Mathematical Considerations on Kernels

different definitions and properties of the same mathematical object

— Typeset by Foil TEX —
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space of functions

In the next slides we focus on

reproducing kernel Hilbert spaces (RKHS)

This term is ubiquitous in the kernel methods literature.

“Old” mathematics [MerQ09], [Aro50]. Survey in [BTAO3].

Reminder: a Hilbert space is a

o vector space, possibly infinite dimensional,
o equipped with a dot-product, i.e.
> a bilinear symmetric application
> which satisfies (x,x) > 0, equal to 0 only with x = 0.

o complete (all Cauchy sequences converge inside the space).

reproducing kernel... a new term.

— Typeset by Foil TEX —
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reproducing kernels

e Let H be a Hilbert space of real-valued functions on X'.

Definition 2 (RKHS). H is said to be a reproducing kernel Hilbert space if

every linear map of the form Ly : f — f(x) from H to R is continuous for
any x in X.

Where is the reproducing kernel in this definition?
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reproducing kernels

e By the Riesz representation theorem
o Any continuous linear functional L(-) on H can be written uniquely (u, )y

we hence have that:

Vx e X, Ilkket | f(x)=([, kgn, VfEH

ky is called the point-evaluation functional at the point x.

e Since H is a space of functions, ky is itself a function. £k : X x X — R is
defined by

k(x7Y) — kx(y)'

e k is the reproducing kernel of H and it is determined entirely by ‘H through
the Riesz representation theorem which guarantees the unicity of k, for each x.
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positive definite kernels

Definition 3 (Real-valued Positive Definite Kernels). A symmetric function
k:X xX — R is a positive definite (p.d.) kernel on X if

Z Cz'Cjk(ZCZ',ZCj) Z O,
ij=1
holds for anyn € Nyxq1,..., 2, € X and cy...,c, € R.

With this definition, the set of p.d. kernels P(X) is a closed, convex pointed cone:

e VA >0,k p.d.kernel = Ak is p.d.

e Y\ >0,kq, ko p.d.kernel, \ky + (1 — A\)ko p.d. kernel.
e k p.d. kernel, —k p.d. kernel = k£ = 0.

o if k, € P(X) and lim, k,, = k then k € P(X).
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kernels: two definitions

e |s there an ambiguity here?

reproducing kernels (functional analysis, topology)
?

£

positive definite kernels (positivity and linear algebra)

e |uckily, no screw up: the two notions are equivalent.

— Typeset by Foil TEX —
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Moore-Aronszajn (1950) theorem

Theorem 1. Let X be any set. An application X X X — R s a reproducing
kernel iff it is a positive definite kernel

e A first proof was given by Mercer (1909) when X" is compact.

e Hence the Mercer kernel term sometimes used.

e In many applications compacity is never really mentioned...

e ... hence positive definite or reproducing are more accurate terms.

e In the general case the result was proved by Moore & Aronszajn in 1950
(separately).

— Typeset by Foil TEX —
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Moore-Aronszajn (1950) theorem, proof outline

o If kisark, k(xa Y) — <k(x7 ')7k(Y7 )> - <k(y7 ')7k(x7 )> - k(va)a

n 2
E cicik (X, X;) E k(x;, ) >0
1,7=1 H

o if kisa p.d. kernel,

o Define the vector space H = span{k(x,-)}.
o Define (-,- )z for f =310 aik(x;,-) and g = Y77 Bjk(y;,-) as

= Z a; Bk (%i, ¥ 5)-

1,7=1

o even if {k(x,-)}xex is not a l.i. family (i.e. no unicity of o or 3) we have

— Zaig(xi) = Zﬁif(yz')-
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o (-, )4 is bilinear symmetric and p.d. through the p.d. of k.
o Cauchy-Schwartz is verified thanks to p.d. of the Gram matrix on all x;,y,.

[CYT 05] [Kx Kx,y] [OZ Om] B [aTKx(X OZTKx,yB 0
0, BT||[Kxy Ky[[0n 8] [FEga BTES] -

hence
IF1Pllgll* = (o Kxa) (8" Ky) > (o' KxyB)* = (f,9)".
o Hence ||f|| =0 = f = 0 since

Wx € X, [F(x)] = (£, k(%)) < [[F]v/EG6x) = 0.
o H is a pre-Hilbertian. For any Cauchy sequence f,, in H, and x € X
‘fm(x) o fn(x)‘ — <fn _ fma k(X, )> S an o me V k(X, X) — 07

fn(x) is thus Cauchy in R and has thus a limit. f,, has thus a limit.
o We add all such limits to complete H into H.
o still a few steps more (show the r.k. of H is still k).
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Another alternative definition

Definition 4 (Reproducing Kernel). A real-valued function k: X x X — R is a
reproducing kernel of a Hilbert space H of real-valued functions on X if and
only if

o Vte X, k(-,t) € H;
o Vie X VfEH, (fh(-t) = f(b)

e straightforward to prove equivalence with the first characterization.
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A more intuitive perspective: Feature maps

Theorem 2. A function k on X X X 1s a positive definite kernel if and only if
there exists a set T and a mapping ¢ from X to I*(T), the set of real
sequences {us,t € T} such that Y, o |u]* < oo, where

V(x,y) € X X X, k(x,y) =) ¢(x) = (9(x), 8(¥))i2(1)

teT

e A very popular perspective in the machine learning world.

e Equivalent to previous definitions, less stressed in the RHKS literature.

x— 6(x) = [6();

L der
where the ¢; are a set of possibly infinite but countable features.
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positive definite kernels and distances

e Kernels are often called similarities.
e the higher k(x,y), the more similar x and vy.

e With distances, the lower d(x,y), the closer x and y.

e Many distances exist in the literature. Can they be used to define kernels?

what is the link between kernels and distances?

-
high similarity = small distance

. 2 2
o At least true for the Gaussian kernel k(x,y) = e~ Ix=ylI*/207

e Important theorems taken from [BCR84].
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Distances

Definition 5 (Distances, or metrics). A nonnegative-valued function d on
X x X is a distance if it satisfies, Vx,y,z € X:

e d(x,y) >0, and d(x,y) = 0 if and only if x =y (non-degeneracy)
* d(x,y)

d(y,x) (symmetry),
e d(x,z) < d(x,y)+ d(y,z) (triangle inequality)

e Very simple example: if X' is a Hilbert space, ||[x —y|| is a distance. It is usually
called a... Hilbertian distance.

e By extension, any distance d(x,y) which can be written as ||¢(x) — ¢(y)]|
where ¢ maps X to any Hilbert space is called a Hilbertian metric.

e Useful. To build Gaussian kernel, Laplace kernels k(x,y) = e~ tI*=¥ll .

e Yet this concept is a bit too restrictive and does not contain all interesting
distances.
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the missing link: negative definite kernels

Definition 6 (Negative Definite Kernels). A symmetric function ¢ : X x X — R
is a negative definite (n.d.) kernel on X if

n

> cicit (zi,5) <0 (1)

ij=1
holds for any n € Nyxq1,..., 2, € X and cy...,¢c, € R such that Z?Ilcz- = 0.
o Example ¢(x,y) = [x — y|*

o prove by decomposing into ||x;||* + ||xj||2 — 2(x;, X )

e NV(X) is also a closed convex cone.

important example: k is p.d. = —Fk is n.d.
Converse completely false.
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negative definite kernels & positive definite kernels

A first link between these two kernels:

Proposition 3. Let xg € X and let ¢ : X x X — R be a symmetric kernel. Let

0(%, ¥) = P(x, 20) + Yy, x0) — (%, y) — P(x0, 20)-

Then k 1is positive definite < 1) 1s negative definite.

e Example: [|x — xo||? + ||y — z0||* — ||x — y||? is a p.d. kernel.
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Proof.

e = For xq,---

e — For xq,---

mn
,Xp, and c1,--- ,cp 5t Y .16 =0,
n n
E CZ'ngO(XZ',Xj) = — E Cz'Cjw(Xi,Xj) > 0.
i,j=1 i,7=1
,Xp and ¢1,- -+ ,cp, let co=—>"" . Set xog = xg. Then

0> Z ;e (X, X;5)

©,J=0

n

= D ciegthlxinx;) + D cicor(xi, mo) + D cocio(o, X;) + it (wo, zo).

1,j=1

n

n

— Z [ (x4, To) + Y(x5,%0) — V(X Y;) — Y(wo, T0)] = Z cicip(Xi, X;).

Zajzl
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negative definite kernels & positive definite kernels

Proposition 4. For a p.d. kernel k > 0 on X x X, the following conditions are
equivalent

e —logk e N(X),

o k' is positive definite for all t > 0.

If k satisfies either, k is said to be infinitely divisible,

Proof.

e —logk =Ilim, ,,on(l— k%) which is the limit of a series of n.d. kernels if (i)
is true, hence (ii) = (7).

e conversely, if —logk € N(X) we use Proposition 3. Writing ¢y = —log k and
choosing o € X we have

kt — e_tw(an) — etw(l’o,l’o)etSO(X,Y)e—t¢(xaw0)e—t¢(y,w0) = P(X)
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negative definite kernels: (Hilbertian distance)? + ...
Proposition 5. Let ¢ : X X X be a n.d. kernel. Then there is a Hilbert space
H and a mapping ¢ from X to H such that

Y(xy) = 6(x) — o(N)|1* + f(x) + f(¥), (2)

where f: X — R. IfY(x,x) =0 for all x € X then f can be chosen as zero. If
the set {(x,y)| ¥ (x,y) = 0} is exactly {(x,x),x € X} then /1 is a Hilbertian
distance.

Proof. Fix xg and define

def 1

p(x,y) = 5 [¥(x, z0) + (Y, @0) — ¥(x,y) — ¥(20, z0)]

By Proposition 3 ¢ is p.d. hence there is a RKHS and mapping ¢ such that
p(x,y) = (6(x), d(y) ). Hence

lo(x) — d(Y)|I* = @(x,%x) + (Y, y) — 20(x, y)

— pixy) — p(x,X) —2F Yy y)
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distances & negative definite kernels

e whenever a n.d. kernel

o vanishes on the diagonal, i.e. on {(x,x),xz € X'},
o is 0 only on the diagonal, to ensure non-degeneracy,

— /1 is a Hilbertian distance for X.

e More generally, for a n.d. kernel 1,

\/w(x, y) — ¢(); x) _ ¢();, y) is a (pseudo)metric for X .

e On the contrary, to each distance does not always correspond a n.d. kernel
(Monge-Kantorovich distance, edit-distance etc..)
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In summary...

pseudo—hilbertian
metrics

infinitely
divisible kernels

d(z,y) = \/i(w, y) — Lroivlns

e Set of distances on X is D(X), Negative definite kernels N'(X'), positive and
infinitely divisible positive kernels P(X) and P, (X) respectively.
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Some final remarks on N (X) and P(X)

e N(X) is a cone. Additionally,

o if p e N(X),VeeR, p+ce N(X).
o if p(xz,x) >0 forallz e X, p* € N(X) for 0 < a < 1 since

o v Oo—a—l =ty
" _F(l—a)/o (—o=1(] e gy

and log(1 + v) € N (X) since

t

log(1+ 1) = /000(1 — e_w)%dt.

o if ¢ > 0, then log(v)) € N (X) since

1
log(v) = lim log (1& — —) = lim log (1 + cyp) — logc
c— 00 C

CcC— 00
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Some final remarks on D(X), N(X),P(X)

e P(X) is a cone. Additionally,

o The pointwise product kiks of two p.d. kernels if a p.d. kernel
o k™ € P(X) for n € N. (k+¢)" too...as well as exp(k) € P(X):

ookt

> exp(k) = Zizoﬁ' a limit of p.d. kernels.
> exp(k) = exp(—(—k)) where —k € N (X).

e The sum of two infinitely divisible kernels is not necessarily infinitely divisible.

o —log ki, and —log ko might be in N(X), but —log(ki + k2)?...
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Intuitively an important issue...

Remember that kernel methods drop all previous information

dataset X3
T X4N
X
X9 .
X
x 5 K55, kernel matrix o

N

convex optimization

to proceed exclusively with K.

if the kernel K is poorly informative, the optimization cannot be very useful...
it is therefore crucial that the kernel quantifies noteworthy similarities.
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Kernels on vectors

(relatively) easy case: we are only given feature vectors,
with no access to the original data.

e Reminder (copy paste of previous slide!): for a family of kernels k1, - - -

o The sum > " | Ak, is p.d., given A1,..., A, >0
o The product ki'--- k% is p.d., given ay,...,a, € N
o lim, , ks is p.d. (if the limit exists!).

e Using these properties we can prove the p.d. of
o the polynomial kernel k,(z,y) = ((x,y) +b)¢, b>0,d €N,

Cley® .
o the Gaussian kernel k,(z,y) = e 202 which can be rewritten as

L2 = (x,y )
ko(z,y) = |e 20%e 27 - ; ;!
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Kernels on vectors

o the Laplace kernels, using some n.d. kernel weaponry,
kx(xz,y) = e AT g< N 0<a<?

o the all-subset Gaussian kernel in R¢,

d
k(a,y) =[] (1 X ae—b(xi—ym) - ¥ oD g=blxr—y|*

i=1 Ic{1,.,d}

o A variation on the Gaussian kernel: Mahalanobis kernel,

ks(z,y) = e ¥ 5 (),

idea: correct for discrepancies between the magnitudes and correlations of
different variables.

o Usually X is the empirical covariance matrix of a sample of points.
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Kernels on vectors

e These kernels can be seen as meta-kernels which can use any feature
representation.

e Example: Gaussian kernel of Gaussian kernel feature maps,

=2 qy—)? Lo e 202
kGQ(X, y) == kG (& 202 , € 202 — e 2)\2

e Not sure this is very useful though!

e Indeed, the real challenge is not to define funky kernels,

the challenge is to tune the parameters b, d, o, X..
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Kernels on structured objects

e Structured objects?

o texts, webpages, documents

o sounds, speech, music,

o images, video segments, movies,

o 3d structures, sequences, trees, graphs

e Structured objects means

o objects with a tricky structure,

o which cannot be simply embedded in a vector space of small dimensionality,
o without obvious algebraic properties,

structured object = that which cannot be represented in a (small) Euclidian space
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Vectors in R’} and Histograms

e A powerful and popular feature representation for structured objects:
histograms of smaller building-blocks of the object:

& Color Inspector 3D (¥2.0) /images/baboon400.jpg
File Options Help

Color Space: Display: = Humber of Color Cells ©

160000 Pixels, 271 Colors Position ®: 210w 222  Color: RGB(248, 68, 38) Frequency: 3868 {2.4%)

“lle
[Red [Green [Blue [Frequency |%
38 128 148 3 000z

38 128 188 3 0002
148 a8 e 28 0016
158 98 38 132 0.083
168 ek} [at=} 160 0100
188 48 a8 T8 0174
158 98 128 54 0034
g a8 a bil} 0035

1] 1] 1R niny

Brightness { +0) Contrast (x 1.0} Saturation (x1.0) Color Rotation (0°) Perspective Srale

e histograms are simple instances of probability measures,

o nonnegative coordinates, sum up to 1.
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Standard metrics for Histograms

Information geometry, introduced yesterday, studies distances between densities.

e Reference : [ANO1]

e An abridged bestiary of negative definite distances on the probability
simplex:

Yip(0,0") =h (
x2\Y, — i 01‘|‘07{ ) TV

¢H299 Zl\/7 \/7|2 ¢H1(979):Z|\/97i_\/97|'

0+ 0\ h()+ h(0)
2 >_ 2

Y

e Recover kernels through

k(0,0 =e ™, t>0
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Information Diffusion Kernel [LL05,ZLCO05]

e Solve the heat equation on the multinomial manifold, using the Fisher metric

e Approximate the solution with

ks, (0,0") = o1 arcc;OSQ(\/g.\/y)’

e arccos? is the squared geodesic distance between 6 and ¢’ as elements from

the unit sphere (6; — 1/0,).
e In [ZLCO5]: the use of

kZd(e,H/) _ 6—%arccos(\/§-\/@))

Is advocated.

2

e the geodesic distance is a n.d. kernel on the whole sphere (arccos” is not).
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Statistical Modeling and Kernels

Histograms cannot always summarize efficiently the structures of X

e Statistical models of complex objects provide richer explanations:

o Hidden Markov Models for sequences and time-series,
o VAR, VARMA, ARIMA etc. models for time-series,

o Branching processes for trees and graphs
o Random Markov Fields for images etc.

e {xy,---,X,} are interpreted as i.i.d realizations of one or many densities on X

e These densities belong to a model {py, 0 € © C R}

Can we use generative (statistical) models
in
discriminative (kernel and metric based) methods?
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Fisher Kernel

e The Fisher kernel [JH99] between two elements x,y of X is

) TJT1 8lnp9(y)
2 2 By

ka(x,y) = (6ln§09(x)

o 6 has been selected using sample data (e.g. MLE),
o ng is the Fisher information matrix computed in 6.

)

e The statistical model {pg, 0 € O} provides:

o finite dimensional features through the score vectors,

o A Mahalanobis metric associated with these vectors through Jj;.

e Alternative formulation:

k(2 y) = 6—0—12(% In pp(x)— V4 lnPO(Y))TJé_l(Vé In pg(x)—V 5 1n py(y) )
o\t d) = ,

with the meta-kernel idea.
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Fisher Kernel Extended [TKR+02,5SG02]

e Minor extensions, useful for binary classification:
e Estimate él and ég for each class respectively,

e consider the score vector of the likelihood ratio

H1n P (x)

Po, (X)

oY I=(61,05)

Y

¢é1’é2 X =

where ¥ = (01, 0) is in ©2,

e Use this logratio’s score vector to propose instead the kernel

(x,y) = B9, 5,() Dy, 4.(¥)-
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Mutual Information Kernel: densities as feature extractors

e More bayesian flavor — drops maximum-likelihood estimation of 6. [See(02]
e Instead, use prior knowledge on {pg, 0 € O} through a density w on ©

e Mutual information kernel k,:

ko, y) = /@ po(x)ps(y) w(d6).

e The feature maps 0 < py(x) <1 and 0 < py(y) < 1.

k., is big whenever many common densities py
score high probabilities for both x and y

e Explicit computations sometimes possible, namely conjugate priors.

e Example: context-tree kernel for strings.
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Mutual Information Kernel & Fisher Kernels

The Fisher kernel is a maximum a posterior: approximation of the MI kernel.

e What? How? by setting the prior w to the multivariate Gaussian density

an approximation known as Laplace’s method,

e Writing 511 po ()
n pg(x
P(x) = Vylnps(z) = ;999 ‘é

we get

A

log po() ~ log py() + (x)(0 — ).
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Mutual Information Kernel & Fisher Kernels

e Using N (0, Jé_l) for w yields

k(z,y) = /@ po(x)poly) w(db),

~C / log p;(2)+0 ()T (0-0) Jlog ps(y)+@(y) " (6-6) —(6—0)"J;(0-0) 49
©

Tin A N 7.00_p
=Cpé(:c)pé(y)/ e(P(@)+2())" (6-0)+(0-0)"J5(6-0) 49
S

_ C/pé(x)pé(y)e%<¢<x>+q><y>>Tng<<I><x>+c1><y>>

e the kernel
k(x,y)

k(z,y) =
VE(z, 2)k(y,y)
is equal to the Fisher kernel in exponential form.
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Marginalized kernels - Graphs and Sequences

e Similar ideas: leverage latent variable models. [TKA02,KTI03]

e For location or time-based data,

o the probability of emission of a token x; is conditioned by

o an unobserved latent variable s; € §, where § is a finite space of possible

states.

e for observed sequences x = (z1, -+ ,x,),y = (Y1, ,Yn), Sum over all
possible state sequences the weighted product of these probabilities:

Kry) =) > p(sle) p(s'|y) & (2, 5) , (y,5))

seS s’'eS

e closed form computations exist for graphs & sequences.
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Kernels on MLE parameters

e Use model directly to extract a single representation from observed points:

A A

T 0z, Y0y,

through MLE for instance.

e compare x and y through a kernel kg on O,

k(z,y) = ke (fy, by).
e Bhattacharrya affinities:

ka(x,y) = /X P4, (2)7pg (2)"dz

for 5 > 0.
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