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Previous Lecture : Hoeffding’s Bound
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• Hoeffding’s Inequality: P (|Pnf − Pf | > ε) ≤ 2e
− 2nε2

(b−a)2 .

• With probability at least 1− δ,

|Pnf − Pf | ≤ (b− a)

√

log 2
δ

2n
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Today: VC-dimension, SVM’s

• Continue where we left:

◦ Hoeffding’s bound for finite families
◦ Hoeffding’s bound for countable families
◦ Hoeffding’s bound for arbitrary families of functions

⊲ Growth function
⊲ VC dimension

• VC-dimension for linear classifiers

• SVM
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Obtaining Uniform Bounds

• Simple example with two functions f1 and f2.

• Define the two sets of n-uples,

C1 = {{(x1, y1), · · · , (xn, yn)} |Pf1 − Pnf1 > ε}

and
C2 = {{(x1, y1), · · · , (xn, yn)} |Pf2 − Pnf2 > ε}

• These sets are the ”bad” sets for which empirical risk is much lower than the
real risk.
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Obtaining Uniform Bounds

• For each, we have the Hoeffing’s inequalities (no absolute value), that

P (C1) ≤ δ, P (C2) ≤ δ where δ = e−2nε2.

• Note that whenever a n-uple is in C1 ∪ C2, then either

Pf1 − Pnf1 > ε or Pf1 − Pnf1 > ε.

• Of course, P (C1 ∪ C2) ≤ P (C1) + P (C2) ≤ 2δ.

• Thus, with probability smaller than 2δ at least one of f1 or f2 will be such that
Pf1 − Pnf1 > ε.
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Generalizing to N functions

• Consider f1, · · · , fN functions.

• Define the corresponding sets of n-uples, C1, · · · , CN with ε fixed.

• Of course,

P (C1 ∪ C2 ∪ · · · ∪ CN) ≤

N∑

i=1

P (Ci)

• Use now Hoeffding’s inequality

P (∃f ∈ {f1, · · · , fN} |Pf − Pnf > ε) = P

(
N⋃

i=1

Ci

)

≤
N∑

i=1

P (Ci) ≤ Nδ = Ne−2nε2
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Error bound for finite families of functions

• We thus have that for any family of N functions,

P (sup
f∈F

Pf − Pnf ≥ ε) ≤ Ne−2nε2,

• or equivalently, that if G = {g1, · · · , gN}, with probability at least 1− δ,

∀g ∈ G, R(g) ≤ Rn(g) +

√

logN + log 1
δ

2n
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Estimation bound for finite families of functions

• Recall that g⋆ is a function in G such that R(g⋆) = ming∈G R(g).

• The inequality

R(g⋆) ≤ Remp
n (g⋆) + sup

g∈G

(R(g)−Remp
n (g)) ,

• combined with Remp
n (g⋆)−Remp

n (gn) ≥ 0 by definition of gn, we get

R(gn) = R(gn)−R(g⋆)+R(g⋆) ≤ Remp
n (g⋆)−Remp

n (gn)
︸ ︷︷ ︸

≥0

+R(gn)−R(g⋆)+R(g⋆)

≤ 2 sup
g∈G

|R(g)−Remp
n (g)|+R(g⋆)

• Hence, with probability at least 1− δ,

R(gn) ≤ R(g⋆) + 2

√

logN + log 2
δ

2n
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Hoeffding’s bound for countable families of functions

• Suppose now that we have a countable family F

• Suppose that we assign a number δ(f) > 0 to each f ∈ F , which we use to set

P



|Pf − Pnf | >

√

log 2
δ(f)

2n



 ≤ δ(f),

• Using the union bound on a countable set (basic probability axiom),

P



∃f ∈ F : |Pnf − Pf | >

√

log 2
δ(f)

2n



 ≤
∑

f∈F

δ(f).

• Let us set δ(f) = ρp(f) with ρ > 0 and
∑

f∈F p(f) = 1.

• Then with probability 1− ρ,

∀f ∈ F , Pf ≤ Pnf +

√

log 1
p(f) + log 1

ρ

2n
.
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Hoeffding’s bound for general families of functions

• Two problems:

◦ Most interesting families of functions are not countable.
◦ Defining the weights p(f) is not so obvious.

• However, what really matters for a sample z1, · · · , zn is

Fz1,··· ,zn = {(f(z1), f(z2), · · · , f(zn)) , f ∈ F}

• Fz1,··· ,zn is a large set of binary vectors ⊂ {0, 1}N

• The more complex F , the larger Fz1,··· ,zn with maximum 2n possible elements.

Definition 1 (Growth Function). The growth function of F is equal to

SF(n) = sup
(z1,··· ,zn)

|Fz1,··· ,zN |
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Vapnik-Chervonenkis

Theorem 1 (Vapnik-Chervonenkis). For any δ > 0, with probability at least

1− δ,

∀g ∈ G, R(g) ≤ Rn(g) + 2

√

2
logSG(2n) + log 2

δ

n

• To prove it, we will need two lemmas,

Lemma 1 (Symmetrization). For any t > 0 such that nt2 ≥ 2, and any n′ more

independent samples of P ,

P (sup
f∈F

Pf − Pnf ≥ t) ≤ 2P (sup
f∈F

P ′
nf − Pnf ≥ t/2)

Lemma 2 (Chebyshev’s Inequality). For any t > 0,

P (|X − E[X ]| ≥ t| ≤
varX

t2
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Vapnik-Chervonenkis Entropy

• The VC bound holds for any probability distribution.

• As a result, it might be too loose. A density dependent result is given, using

Definition 2. The VC entropy is defined as

HF(n) = logE[|Fz1,··· ,zN |]

• The bound is then

Theorem 2. For any δ > 0, with probability at least 1− δ,

∀g ∈ G, R(g) ≤ Rn(g) + 2

√

2
HG(2n)+ log 2

δ

n
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Vapnik-Chervonenkis Dimension

Definition 3 (VC Dimension). The VC dimension of a class G is the largest

n such that

SG(n) = 2n.

• Since n points can have 2n configurations, the VC dimension is the largest
number of points which can be shattered (i.e.split arbitrarily) by the function
class.

• The VC dimension of linear classifiers in R
d is d+ 1.
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Vapnik-Chervonenkis

• Given the VC dimension h of a family G, we can prove

∀g ∈ G, R(g) ≤ Rn(g) + 2

√

2
h log 2en

h
+ log 2

δ

n

Lemma 3 (Vapnik and Chervonenkis, Sauer, Shelah). Let G be a class of

functions with finite VC-dimension h. Then,

∀n ∈ N, SG(n) ≤

h∑

i=0

(
n

i

)

,

∀n ≥ h, SG(n) ≤
(en

h

)h

.

• Combining with VC theorem, we obtain the result given above.

• Important thing: difference between true and empirical risks is at most of the
order of √

h log n

n
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