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Previous Lecture : Probabilistic Setting, Loss, Risk

• We observe the outcomes of a pair of random variables (X,Y ).

• Probability P for couples (x, y) on R
d × S, with density p

p(X = x, Y = y).

• Loss l to quantify by l(y, f(x)) the accuracy of a guess f(x) for y, e.g.

S = {0, 1} : l(a, b) = δa 6=b, S = R : l(a, b) = ‖a− b‖2

• Risk(l,p): average loss for a given function

R(f) = Ep[l(Y, f(X))] =

∫

Rd×S

l(y, f(x))p(x, y)dxdy
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Previous Lecture: Bayes Risk, Bayes Classifier/Estimator

• Bayes Risk: average loss for a given function

R∗ = inf
f∈(Rd)S

R(f) = inf
f∈(Rd)S

Ep[l(Y,f(X))]

• Bayes Classifier (when S = {0, 1})

fB(x) =

{

1, if p(Y = 1|X = x) ≥ 1
2,

0 otherwise.

• Bayes Estimator (when S = R)

fB(x) = E[Y |X = x] =

∫

R

y p(Y = y,X = x)dy

The Bayes classifier (estimator) achieves the Bayes Risk
for classification with 1/0 loss (regression with squared error)

R(fB) = R∗
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Previous Lecture: Empirical Risk

• In practice, no access to P . The only thing we can use is a training set,

{(xj, yj)}i=1,··· ,n.

• Assuming the sampling is i.i.d, a counterpart to the Risk is

Remp
n (f) =

1

n

n∑

i=1

l(yi, f(xi))... compare with R(f) = Ep[l(Y, f(X))]

• What is overfitting?

◦ Choose f⋆, the best function in a class of functions F w.r.t Remp
n ,

Remp
n (f⋆) = min

f∈F
R(f),

◦ find out that, unfortunately, Remp
n (f⋆) ≪ R(f⋆).

overfitting: rely too much on Remp
n to look for a function with low R.
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Previous Lecture: Empirical Risk

• remedies for overfitting:

◦ Restrict the set of candidate functions

min
g∈G

Remp
n (g).

◦ Penalize “undesirable” functions

min
g∈G

Remp
n (g) + λ‖g‖2

◦ Penalize properly sets of functions Gd of increasing complexity

min
d∈N,g∈Gd

Remp
n (g) + λpen(d,Gd)
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Previous Lecture: Excess Risk

• For any candidate set of functions G,

• We introduce g⋆ as a function achieving the lowest risk in G,

R(g⋆) = inf
g∈F

R(g),

we decompose

R(gn)−R(fB) = [R(gn) − R(g⋆)]
︸ ︷︷ ︸

Estimation Error

+ [R(g⋆) − R(fB)]
︸ ︷︷ ︸

Approximation Error
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Bounds
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Alleviating Notations

• More convenient to see a couple (x, y) as a realization of Z, namely

zi = (xi, yi), Z = (X,Y ).

• We define the loss class

F = {f : z = (x, y) → δg(x) 6=y, g ∈ G},

• with the additional notations

Pf = E[f(X,Y )], Pnf =
1

n

n∑

i=1

f(xi, yi),

where we recover
Pnf = Remp

n (g), Pf = R(g)

Kyoto University - SML 8



Empirical Processes

For each f ∈ F , Pnf is a random variable
which depends on n random realizations of Z = (X,Y ).

• If we use Pn on all possible functions f ∈ F , we obtain

The set of random variables {Pnf}f∈F is called an
Empirical measure indexed by F .

• A branch of mathematics studies explicitly the convergence of {Pf −Pnf}f∈F ,

This branch is known as Empirical process theory .
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Hoeffding’s Inequality

• Recall that for a given g and corresponding f ,

R(g)−Remp(g) = Pf − Pnf = E[f(Z)]−
1

n

n∑

i=1

f(zi),

which is simply the difference between the expectation and the empirical
average of f(Z).

• The strong law of large numbers says that

P

(

lim
n→∞

(

E[f(Z)]−
1

n

n∑

i=1

f(zi)

)

= 0

)

= 1.
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Hoeffding’s Inequality

• A more precise result is the

Theorem 1 (Hoeffding). Let Z1, · · · , Zn be n i.i.d random variables with

f(Z) ∈ [a, b]. Then, ∀ε > 0,

P (|Pnf − Pf | > ε) ≤ 2e
− 2nε2

(b−a)2 .

• From

P

(

lim
n→∞

(

E[f(Z)]−
1

n

n∑

i=1

f(zi)

)

= 0

)

= 1.

we get

P

(∣
∣
∣
∣
∣
E[f(Z)]−

1

n

n∑

i=1

f(zi)

∣
∣
∣
∣
∣
> ε

)

≤ 2e
− 2nε2

(b−a)2 .

• Hoeffding’s inequality is a concentration inequality.
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Hoeffding’s Inequality

• We will need to prove it using another inequality,

Theorem 2 (Markov). Let X ≥ 0 be a non-negative random variable in R,

then

P (X ≥ t) ≤
E[X ]

t
.

• Before getting to the proof, let’s check the intuition behind it.
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Height/Gender

160
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F

M
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p(Height,Gender)

 

p(X,Y)

In 3 dimensions
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Height/Gender

150 160 170 180 190 200
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0.025

p(X,Y=1)
p(X,Y=0)

Easier to see in 2 dimensions, same content.
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Height/Gender

150 160 170 180 190 200

0.005
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0.025

p(X,Y=1)
p(X,Y=0)

Assume for a minute that we known these two curves.
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Height/Gender

150 160 170 180 190 200

0.005

0.01

0.015
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0.025

p(X,Y=1)
p(X,Y=0)

For any function f : Height 7→ Gender we can compute the risk
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Height/Gender
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Risk of Heaviside Functions

R
is

k

Risk for Heaviside functions f(x) = δx>τ
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Height/Gender
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Bayes Classifier, 171.5cm

The risk is minimal for the thresholded function with τ ≈ 171.5
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Height/Gender
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η(x)

which matches our picture of the Bayes classifier and the
η(x) = P (Y = 1|X = x) function.
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Height/Gender

150 160 170 180 190 200
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p(X,Y=1)
p(X,Y=0)

Unfortunately, we do not have access to this,
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Height/Gender
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But rather this...
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Height/Gender

150 160 170 180 190 200
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0.025

or this...
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Height/Gender

150 160 170 180 190 200

0.005

0.01

0.015

0.02

0.025

or even this... we assume our samples are random.

Kyoto University - SML 23



Height/Gender

150 160 170 180 190 200
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Hoeffding’s Inequality: P (|Pnf − Pf | > ε) ≤ 2e
− 2nε2

(b−a)2 .
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Hoeffding’s Inequality
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Let’s check on Matlab what this means
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Hoeffding’s Inequality
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with n = 5 resampled 300 times
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Hoeffding’s Inequality
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with n = 10 resampled 300 times
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Hoeffding’s Inequality
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with n = 20 resampled 300 times
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Hoeffding’s Inequality
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with n = 50 resampled 300 times

Kyoto University - SML 29



Hoeffding’s Inequality
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Hoeffding’s Inequality
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Some Proofs

Theorem 3 (Hoeffding). Let Z1, · · · , Zn be n i.i.d random variables with

f(Z) ∈ [a, b]. Then, ∀ε > 0,

P (|Pnf − Pf | > ε) ≤ 2e
− 2nε2

(b−a)2 .

Theorem 4 (Markov). Let X ≥ 0 be a non-negative random variable in R, then

P (X ≥ t) ≤
E[X ]

t
.
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Inverting Hoeffding’s Inequality

• Naturally, if

P (|Pnf − Pf | > ε) ≤ 2e
− 2nε2

(b−a)2 .

• then for δ > 0,

P



|Pnf − Pf | > (b− a)

√

log 2
δ

2n



 ≤ δ.

• which is also interpreted as, with probability at least 1− δ,

|Pnf − Pf | ≤ (b− a)

√

log 2
δ

2n

Kyoto University - SML 33



Interpretation in terms of Risk

• Functions f take values between a = 0 and b = 1. b− a = 1 for all inequalities.

• For any function g, and any δ, with probability at least 1− δ,

R(g) ≤ Remp
n (g) +

√

log 2
δ

2n

• Note that the probability at least statement refers to samples of size n.

• This result, seemingly nice, is not very useful... why?

◦ Get data first, estimate gn... gap between R(gn) and Rn(gn)?
◦ Define ĝ as ĝ(xi) = yi and ĝ = 0 everywhere else. Of course,

R(ĝ) ≫ Remp
n (ĝ)

def
= 0.
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Interpretation in terms of Risk

• This is why we focus now on uniform deviations on the function class,

sup
f∈F

Pf − Pnf,

since we know that whatever the function gn we choose with the sample,

R(g)−Rn(gn) ≤ sup
g∈G

R(g)−Rn(g) = sup
f∈F

Pf − Pnf,
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Obtaining Uniform Bounds

• Simple example with two functions f1 and f2.

• Define the two sets of n-uples,

C1 = {{(x1, y1), · · · , (xn, yn)} |Pf1 − Pnf1 > ε}

and
C2 = {{(x1, y1), · · · , (xn, yn)} |Pf2 − Pnf2 > ε}

• These sets are the ”bad” sets for which empirical risk is much lower than the
real risk.
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Obtaining Uniform Bounds

• For each, we have following Hoeffing’s inequality (no absolute value), that

P (C1) ≤ δ, P (C2) ≤ δ where δ = e−2nε2.

• Note that whenever a n-uple is in C1 ∪ C2, then either

Pf1 − Pnf1 > ε or Pf1 − Pnf1 > ε.

• Of course, P (C1 ∪ C2) ≤ P (C1) + P (C2) ≤ 2δ.

• Thus, with probability smaller than 2δ at least one of f1 or f2 will be such that
Pf1 − Pnf1 > ε.
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Generalizing to N functions

• Consider f1, · · · , fN functions.

• Define the corresponding sets of n-uples, C1, · · · , CN with ε fixed.

• Of course,

P (C1 ∪ C2 ∪ · · · ∪ CN) ≤

N∑

i=1

P (Ci)

• Use now Hoeffding’s inequality

P (∃f ∈ {f1, · · · , fN} |Pf − Pnf > ε) = P

(
N⋃

i=1

Ci

)

≤
N∑

i=1

P (Ci) ≤ Nδ = Ne−2nε2
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Hoeffding’s bound for finite families of functions

• We thus have that for any family of N functions,

P ( sup
Pf−Pnf

≥ ε) ≤ Ne−2nε2,

• or equivalently, that if G = {g1, · · · , gN}, with probability at least 1− δ,

∀g ∈ G, R(g) ≤ Rn(g) +

√

logN + log 1
δ

2n
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Hoeffding’s bound for countable families of functions

• Suppose now that we have a countable family F

• Suppose that we assign a number δ(f) > 0 to each f ∈ F , which we use to set

P



|Pf − Pnf | >

√

log 2
δ(f)

2n



 ≤ δ(f),

• Using the union bound on a countable set (basic probability axiom),

P



∃f ∈ F : |Pnf − Pf | >

√

log 2
δ(f)

2n



 ≤
∑

f∈F

δ(f).

• Let us set δ(f) = ρp(f) with ρ > 0 and
∑

f∈F p(f) = 1.

• Then with probability 1− δ,

∀f ∈ F , Pf ≤ Pnf +

√

log 1
p(f) + log 1

ρ

2n
.
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Hoeffding’s bound for general families of functions

• Two problems:

◦ Most interesting families of functions are not countable.
◦ Defining the weights p(f) is not so obvious.

• However, what really matters for a sample z1, · · · , zn is

Fz1,··· ,zn = {(f(z1), f(z2), · · · , f(zn)) , f ∈ F}

• Fz1,··· ,zn is a large set of binary vectors ⊂ {0, 1}N

• The more complex F , the larger Fz1,··· ,zn with maximum 2n possible elements.

Definition 1 (Growth Function). The growth function of F is equal to

SF(n) = sup
(z1,··· ,zn)

|Fz1,··· ,zN |
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Vapnik-Chervonenkis

Theorem 5 (Vapnik-Chervonenkis). For any δ > 0, with probability at least

1− δ,

∀g ∈ G, R(g) ≤ Rn(g) + 2

√

2
logSG(2n) + log 2

δ

n

Definition 2 (VC Dimension). The VC dimension of a class G is the largest n

such that

SG(n) = 2n.

• The VC dimension of linear classifiers in R
d is d+ 1.

• Given the VC dimension h of a family G, we can prove

∀g ∈ G, R(g) ≤ Rn(g) + 2

√

2
h log 2en

h
+ log 2

δ

n
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