Foundation of Intelligent Systems, Part |

Statistical Learning Theory

mcuturi@i.kyoto-u.ac.jp

Kyoto University - SML



Previous Lecture : Classification

e Classification: mapping objects onto S where |S| < cc.
e Binary classification: answers to yes/no questions
e Linear classification algorithms

o Logistic Regression
o Perceptron rule
o brief introduction to Support Vector Machine
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Today

e Some theory about the steps in green below:
e Usual steps when using ML algorithms for classification/regression

o Gather data

o Choose representation

o Choose algorithm

o Choose parameters

o Run algorithm, collect results

o Have second thoughts on overfitting, generalization

e These steps are arguably the most challenging. some interesting practical advice

e To understand better all of this, some theory is useful.

Kyoto University - SML


http://www.stanford.edu/class/cs229/materials/ML-advice.pdf

Statistical Learning Theory
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General Framework

e Couples of observations, (x,y) appear in nature.

e [ hese observations are
xeRY yeS8

e S CR, thatis S could be R, R4, {1,2,3,...,L}, {0,1}

e Sometimes only x is visible. We want to guess the most likely y for that x.

e Example 1 x: Height € R, y: Gender € {M, F'}
e Example 2 x: Height € R, y: Weight € R.
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Example

e To provide a guess <> estimate a function f : R? — & such that

f(x) =y,

for most couples (x,y) we have observed and ideally will observe
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Probabilistic Framework

e \We assume that each observations (x,y) arise as an

o independent,
o identically distributed,

random sample (from the same probability law).

e This probability P on R? x S has a density,

p(X =x,Y =y).

e \We assume that such a probability exists but,

in practice, we will never know p.

e For illustration purposes, let's study what would happen if we knew it.
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Example 1: S = {M, F'}, Height vs Gender

p(Height,Gender)
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Example 2: S = R™, Height vs Weight

p(Height,Weight)
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Building Blocks: Loss (1)

e A loss is a function & x R — R, designed to quantify mistakes,

how good is the prediction f(x) given that the true answer is y?

0

How small is I(y, f(x))?

Examples
e S$=1{0,1}
1ifaz#b
O].l :l 7b :50, p—

o S=R

o Squared euclidian distance i(a,b) = (a — b)?
o norm l(a,b) = |la — b4, 0 < g < o0
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Building Blocks: Risk (2)

e The Risk of a predictor f with respect to loss [ is

Ri(f) = Epi(Y, £(X))] = / Iy, £(x)) p(x, ) dxdy

Rdx S

e Risk = average loss of f on all possible couples (x,y),

weighted by the probability density.

Risk(f) measures the performance of f w.r.t. [ and p.

e Remark: a function f with low risk might could very well make very big
mistakes for some x as long as the probability of x is small.
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A lower bound on the Risk? Bayes Risk

e Sincel >0, R(f) > 0.
e Consider all possible functions RY — S, usually written (R%)S.

e The Bayes risk is the quantity

R*= inf R(f)= inf E,[(Y,f(X))]
fERDHS fe®RE)S

e |deal classifier would have Bayes risk.

Kyoto University - SML

12



Bayes Classifier : S = {0,1}, [ is the 0/1 loss.

e Define the following rule:

0 otherwise.

fol) {1, if (%) > 3,

where
n(x) =p(Y =1|X = x).

The Bayes classifier achieves the Bayes Risk.

Theorem 1. R(fp) = R*.
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Bayes Classifier : S = {0,1}, [ is the 0/1 loss.

e Chain rule of conditional probability p(A, B) = p(B)p(A|B)

e Bayes rule
p(B|A)p(A4)

p(A|B) = o(B)

e A simple way to compute 7:

7WQ=MY=HX:4%:MY:LXZW)

p(X = x)
_p(X =x[Y =Dp(Y =1)
p(X = x)

p(X = x|V = p(Y = 1)

T (X =x]Y = 1)p(Y = 1) + p(X =x]Y = 0)p(Y = 0)’
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Bayes Classifier : S = {0,1}, [ is the 0/1 loss.

— Male: p(X|y=1)
0.057 —Female: p(X]y=0)
0.04¢
0.03¢
0.02r
0.01¢

150 160 170 180 190 200

in addition, p(Y = 1) = 0.4871. As a consequence
p(Y =0)=1—0.4871 = 0.5129
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Bayes Classifier : S = {0,1}, [ is the 0/1 loss.

—nX
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Bayes Estimator : S = R, [ is the 2-norm

e Consider the following rule:

f5(x) = E[Y]X = x] = / yp(Y =y, X = x)dy

Here again, the Bayes estimator achieves the Bayes Risk.

Theorem 2. R(fp) = R*.
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Bayes Estimator : S = R, [ is the 2-norm

e Using Bayes rule again,

*(x) = E[Y|X = ] = / yp(Y = y|X = x)dy

B p(X =xY =y)p(Y =y)
/y p(X = x) &

X =x|Y =y)p(Y =y)
Q/ & _AY_u)W'ume

Kyoto University - SML

18



Kyoto University - SML

In practice
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What can we do?

e |f we had access to the real probability, Bayes estimator would be fine.

e |n practice, the only thing we can use is a training set,
{(Xj,yj)}izl,---,n'

e For instance, a set of Heights, gender

163.0000 0
170.0000 0
175.3000 1
184.0000 1
175.0000 1
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Approximating Risk
e For any function, instead of considering R, we introduce
the empirical Risk R2™P,

defined as

1 mn
RE™(f) =~ > U(yi, F (i
) = 5 2 o £ )
e The law of large numbers tells us that for any given f

RE™(f) = R(f).

e Convergence can be characterized with strong or weak versions of the law.

Kyoto University - SML

21


http://en.wikipedia.org/wiki/Law_of_large_numbers

A flawed intuition

As sample size grows, the empirical behaves like the real risk

e |t may thus seem like a good idea to minimize directly the empirical risk.

e [he intuition is that

o since a function f such that R(f) is low is desirable,
o since RS™P(f) converges to R(f) as n — oo,

why not look directly for any function f such that RS™P(f) is low?

e Typically, in the context of classification with 0/1 loss, find a function such that

e1m 1 -
RIPP(f) == Oytsix
1=1
...I1s low.
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A flawed intuition

e Focusing only on RS™P is not viable:
e Consider the function defined as

¢ .
yl, If X = X1,

Ya, If X = Xao,

Yn, If X = X,

\O otherwise..

o Since, RE™P(h) = 23" 1 6 2n(x) = = D iy Oysty; = 0, b minimizes RE™P.
e However, h always answers 0, except for a few points.

e In practice, we can expect R(h) to be much higher, equal to P(Y = 1) in fact.
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Here is what this function would predict on the
Height/Gender Problem

fSO 160 170 180 190 200

Overfitting is probably the most frequent mistake made by ML practitioners.

Kyoto University - SML

24



Ideas to Avoid Overfitting

e Our criterion RS™P(g) only considers a finite set of points.

e A function g defined on R? is defined on an infinite set of points.

A few approaches to control overfitting

e Restrict the set of candidates

min RSP (qg).
min f2, (9)

e Penalize “undesirable” functions

min REP(g) + Al|g||?
min RS (g) + Allg|

e Penalize properly sets of functions G, of increasing complexity

in  RemP Apen(d
i R, (g) + Apen(d, Gq)
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Overfitting lllustration

k-NN Classification
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http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html
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Flow of a learning process in Machine Learning

Assumption 1. existence of a probability density p for X,Y .

Assumption 2. points are observed i.i.d. following this probability density.

typical flow would be

Get a random training sample {(x;,y;) }i=1,... n is random.
Choose a function g,, within a class G using any algorithm.

We are very likely to have selected g,, such that RS™P(g,,) is low.

In the end, the important question we hope to have a clue about...

How good would be f,, if we knew p? namely what about R(g,)?
Also interesting: how big is R(g,) — R(fB)
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Excess Risk

e By constraining our search in G, we want to

o avoid overfitting
o obtain a function that has suitable properties

e Of course, there is no reason that fp € G.

e Hence, by introducing ¢g* as a function achieving the lowest risk in G,

R(g") = inf R(g),

gegyg

we decompose

R(gn) — R(fB) = [R(9n) — R(g")] + [R(9") — R(fB)]
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Excess Risk Decomposed

By constraining our search in G, we want to

o avoid overfitting
o obtain a function that has suitable properties

Of course, there is no reason that fg € G.

Hence, by introducing ¢g* as a function achieving the lowest risk in G,

R(g™) = inf R(g),

geF

we decompose

Rign) ~ R(f5) = [R(gn) = R(g")]+[R(g") — R(f)]

Estimation Error Approximation Error

Estimation error is random, Approximation error is fixed.

In the following we focus on the estimation error.
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Types of Bounds of Interest

Error Bounds

R(gn) < R, (gn) + C(n, G).
Error Bounds Relative to Best in Class
R(gn) < R(g9") + C(n,G).

Error Bounds Relative to the Bayes Risk

R(gn) < R(fB) +C(n,G).
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Error Bounds / Generalization Bounds

R(gn) — R (gn)
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What is Overfitting?

e Overfitting is the idea that,

o given n points sampled randomly,
o given a function g,, estimated from these points,

R(gn) > R (gn)-

e Question of interest:
P[R(gn) — R,"(gn) > €] =7

e From now on, we consider the classification case, namely G : R4 — {0,1}.
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Alleviating Notations

e More convenient to see a couple (x

,y) as a realization of Z, namely

Z; — (xiayi)az — (X7 Y)

e \We define the foss class

F={fiz=(x

e with the additional notations

Pf=E[f(X,Y)],

where we recover

Y) = Ogx)£y> 9 € GY,

}:fmw

P.f = R;™(g9), Pf=R(9)]
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Empirical Processes

For each f € F, P,f is a random variable which depends on n realizations of Z.

e |f we consider all possible functions f € F, we obtain

The set of random variables {P,, f} e+ is called an
Empirical measure indexed by F.

e A branch of mathematics studies explicitly the convergence of {Pf — P,,f} rer,

This branch is known as Empirical process theory |.
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http://en.wikipedia.org/wiki/Empirical_measure
http://en.wikipedia.org/wiki/Empirical_process

Hoeffding’s Inequality

e Recall that for a given g and corresponding f,

R(g) - R*™(g) = Pf — Pof =E[f(2)] — =3 f(z).

n <

which is simply the difference between the expectation and the empirical
average of f(Z).

e The strong law of large numbers says that

P (nlggo]E[f(Z)] - %Zf(zi) = 0) = 1.
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http://en.wikipedia.org/wiki/Law_of_large_numbers#Strong_law

Hoeffding’s Inequality

e A more detailed result is

Theorem 3 (Hoeffding). Let Zy,--- , Z, be n i.i.d random variables with
f(Z) € la,b]. Then, Ve,

2n€2

P[|P,f — Pf| >¢] <2 G-a7?,
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