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Last Lecture : Regression

e Mentioned the Maximum Likelihood perspective on LS-regression

log £(a,b) = C—WZH% (a’x; +b)[|7.

7

L(a,b)

e Provided a geometric perspective on LS regression through projections

Least Squares Regression

0

Projecting the vector of observed predicted variable in
span{ vectors of observed predictor variables 4+ constant vector}

e Many issues with LS regression... Hence advanced regression techniques

o Ridge Regression
o Subset selection
o Lasso

e we will talk about these in 3 lectures when discussing sparsity.
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Today

e Classification, differences with regression
e Binary classification
e Linear classification algorithms

o Logistic Regression

o ldeally, Linear Discriminant Analysis, but no time.
o Perceptron rule

o Support Vector Machine

e Once this is done, we will move on to more theory in next lecture about
statistical learning theory.
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Classification
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Starting Again With Regression

Many observations of the same data type, with label

e we still consider a database {x1,--- ,xx},
_1131,3'
e cach datapoint x; is represented as a vector of features x; = $29
ZCd,j

e To each observation is associated a label y;...

o If y; € R, we have regression
o If y; € S where § is a finite set, multiclass classification.
o If § only has two elements, binary classification.
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Examples

Multiclass Classification

e Classify images of fruits into fruit category

e Classify images of handwritten digits into digits from 0 to 9
e Classify musical tunes, books, movies into genres

e Classify proteins into functional classes

Img source
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http://fab.cba.mit.edu/classes/MIT/864.05/people/dgreensp/

Examples

Binary Classification

e Using elementary measurements, guess if someone has or not a disease that is

o difficult to detect at an early stage
o difficult to measure directly (fetus)

e Classify chemical compounds into toxic / nontoxic
e Classify a passenger as suspect/not suspect
e Classify body tumor as begign/malign to detect cancer

® cic.
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Why use a new name?

Our objective is to build a function f : R? — S
To do so, we need to evaluate the accuracy of a function,
how well f(x;) compares with the true answer y;.

In conventional regression - linear regression

e We have used consistently Zé\leﬂf(xj) — y;||? to select a good f.
e R is a metric space... 137.354 JPY — 36.000 JPY|| = 1354
o sense of closeness between possible answers

e R is a totally ordered set... 36.000 JPY <37.354 JPY

o notion of total hierarchy between possible answers

In discrete labels in classification

e No distance, no order is assumed nor available in general.
e No order for musical genres jazz > bossa-nova ?

e No distance between fruits |kiwi — bananal|?
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Digits recognition

e Use a database such as

paired with the corresponding labels,
(2,6,0,1,9,2,7,1,4,0,5,4,3,0,8,4,3,9,4,7).

to build an automated recognition system for handwritten digits.

e useful for post office, check recognition, tax office, etc..
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Labels are usually unordered and without a metric

e The set of labelsis S = {0,1,2,3,4,5,6,7,8,9}
e Yet there is no distance/order in S for this task.

e Suppose the image given to the recognition system is

v

e The answer 5 is not better than 0 because the number 5 is closer to 6 than 0.
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Sometimes discrete labels can be given with a metric

e Suppose the task is to guess the rating in stars of a movie

Ehbrty Belcriy Tt Slar Rating WPAL  Gense Aovpilabldy X E |
[[T] s andveu and fvarvena wa know SRR R trdapandent Mow Oz
[E ] maknds and melinda DRFERIITT  Pa13 Cormedy - o=
E__: Arrasted Douslopmant: Saaron 2: Dircl ORI IR WA Talguitien For Oz
[ lopey Series Dise o Telehe e o=
[6 ] amestedCovalopment: snasen 2:Dites igariesmise R Telaviion  Mow 0%
| resofvosons SRRk UR  Drama Hare Oz
] Theunted states of Laland SRFRITT R Dams Mo Oz

[ ] poanie arke: Direcors cur O W R A tndepandent Now Bz
;9_! Etarnal Sunghing of the Spatlejs Mind ol 2 & & B A Comady N Oox
[0 ]  Lostin Translation SRwRmRd B trama Mo o=z .
[17]  gubvith s paad earring Sddkkd s se1 oam Fitie o=
[27]  stageeeauty (Sh 32 & il B Romarics  How Bx
[37] osghans SdkedeR i 4 orama - oz
4] Themedvicin ORERRDT 8 Dum i (i i
16 | grazh

SRR RR A Drama Mo 0=

e User inputs are in § = {1,2,3,4,5}
e |n this case standard regression techniques may be applied because,

o the natural metric ||5 — 3|| works
o linear regression works because the order is also valid.
o the final user does not mind getting fractional predictions (e.g. 3.85)
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Binary Classification

card S = 2.

Usually S = {0,1} or S={-1,1} or S={—,+} or S={Y, N}
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Data

e The Data we have: a bunch of vectors x1, x5, X3, -+, Xxn.
e Ideally, to infer a “yes/no” rule, we need the correct answer for each vector.

e \We consider thus a set of pairs of vector/bit

0" .
1

.. .CUi d

“training set” =< | x;= |"?| € R y, € {0,1} >

\ | L] i=1..N /

e For illustration purposes only we will consider vectors in the plane, d = 2.
e Points are easier to represent in 2 dimensions than in 20.000...

e The ideas for d > 3 are exactly the same.
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Binary Classification Separation Surfaces for Vectors

What is a classification rule?
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Binary Classification Separation Surfaces for Vectors

Classification rule = a partition of R into two sets

Kyoto University - SML

15



Binary Classification Separation Surfaces for Vectors

This partition is usually interpreted as the level set of function on R¢
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Binary Classification Separation Surfaces for Vectors

Typically, {x € RY|f(x) > 0} and {x € R¢|f(x) < 0}
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Classification Separation Surfaces for Vectors

Can be defined by a single surface, e.g. a curved line
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Classification Separation Surfaces for Vectors

Even more simple: using straight lines and halfspaces.

Kyoto University - SML

19



Linear Classifiers

e Straight lines (hyperplanes when d > 2) are the simplest type of classifiers.
e A hyperplane H,; is a set in R? defined by

o a normal vector ¢ € R4
o a constant b € R. as

H.p,={xc R c'x = b}

o Letting b vary we can ‘“slide” the hyperplane across R?

C

Kyoto University - SML 20



Linear Classifiers

o Exactly like lines in the plane, hypersurfaces divide R into two halfspaces,

{xERd\ch<b}U{x€Rd|ch2b}:Rd

e Linear classifiers attribute the “yes” and “no” answers given arbitrary ¢ and b.

NO

YES

e Assuming we only look at halfspaces for the decision surface...
...how to choose the “best” (c*,b*) given a training sample?
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Linear Classifiers

e This specific question,

“training set” {(x; € R, y, € {0,1}) . —= “hest” c*, b*

1=
has different answers. Depends on the meaning of “best” ?:
e Linear Discriminant Analysis (or Fisher's Linear Discriminant);
e Logistic regression maximum likelihood estimation;
e Perceptron, a one-layer neural network;

e Support Vector Machine, the result of a convex program

® cic.
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Classification Separation Surfaces for Vectors

Given two sets of points...
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Classification Separation Surfaces for Vectors

It is sometimes possible to separate them perfectly
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Classification Separation Surfaces for Vectors

® O

O ® O

O ° ®
® O
O O

Each choice might look equivalently good on the training set,
but it will have obvious impact on new points
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Classification Separation Surfaces for Vectors
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Linear classifier, some degrees of freedom

Kyoto University - SML
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom

Specially close to the border of the classifier
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom

For each different technique, different results, different performance.
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A few linear classifiers:
Logistic Regression
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Regression does not work

e Consider the toy classification example:

o Points x; are taken randomly between -10 and 50.

o The label

Yj =

OifXj<7T,
1ifXj>7T.

e What happens if we feed this directly to regression?... matlab demo
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How can we adapt regression? logistic map

e Logistic map :

0.9

0.8}

0.7F

0.6

0.5

0.4}

0.3

0.2

0.1

o forany z, 0 < g(z) <1

Kyoto University - SML

e 1
9(2) =~ = =
e#+1 e *+1
1/(exp(—x)+1)
4 3 —é -1 0 1 2 é 4
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How can we adapt regression? logistic map

Basic ldea

e Rather than find the best ¢ and b such that

fx))=c'x;+b =~ y;€{0,1}

e |logistic regression considers instead the best ¢ and b such that

1
e~ (e +b) 4 1

go f(x;) = ~y; € {0,1}.

e if for a new point x,

o go f(x) > 1/2, guess that the class is 1
o go f(x) < 1/2, guess that the class is 0
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Probabilistic Interpretation of Logistic Regression

e Suppose there is a probability density p(X,Y’) on couples (x,y) € R? x {0, 1}.

e Suppose for now that we know p.

e T he ratio
p(Y =1[X =x)

") =0 =
is called the odds-ratio of a given point x.

e Obviously,

o if r(x) > 1, then it is more likely that y = 1 than y = 0.
o if 7(x) < 1, then one is tempted to guess that y = 0 than y = 1.
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Probabilistic Interpretation of Logistic Regression

e In other words...

p(Y =1|X =x) > (0 then y = 1 is the likely answer
< 0 then y = 0 is the likely answer

e Logistic regression assumes that the log-odds ratio follows a linear relationship

e This implies that the decision surface is linear.

Note that Logistic Regression
assumes a model only for the log-odds ratio,
not for the whole probability p
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Probabilistic Interpretation of Logistic Regression
e Since p(Y =0|X =x) =1—p(Y = 1|X = x), we hence have

p(Y =1]X =x)
1 —p(Y =1|X =x)

log =clx+b

e which in turn implies

1
e~ (cTx+b) +1

p(Y =1|X =x) = = g(c'x +b).

Predictor variables contribute linearly
to the increase/decrease of the probability that y = 1.

Kyoto University - SML
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Estimation of ¢ and b through Maximum Likelihood

e Flip coin, setting p(y = 1) = p and p(y = 0) = 1 — p for binary random
variable y,

o Likelihood of a draw y knowing that probability is p,
pY(1—p)t~Y
e |n the context of logistic regresion, p depends on c,b and x; for each point,

N
L(e,b) =[] o(e™x; +b)¥(1 — g(e”x; + b)) 7%
j=1
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Estimation of ¢ and b through Maximum Likelihood

e Using again the log transformation,

log L(c,b) Zyj log g(cx; +b) + (1 — y;) log g(1 — (c'x; + b)).
7=1

e Maximizing this log-likelihood is equivalent to

maéx log L(c,b) < ma;s(z:y7 cl x; +b) —log(1l + eCij+b).

e No closed form solution for this unfortunately... need efficient optimization.

e For datasets of reasonable size, Newton method for instance.

Kyoto University - SML

40



Estimation of ¢ and b through Maximum Likelihood

Compare...

.5 (1+sign(x-m))

I I I I I )
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X

...with

1/(exp(=(8.9576 x+(-28.1031)))+1)
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A few linear classifiers:
Perceptron Rule
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Estimation of c and b through iterative updates

lterative algorithm that considers each point successively.
Here we consider § = {—1,1}

Start from any arbitrary estimate w = [§].

Loop over j until w does not change for a while...

o Consider a point [x; | and his label y;.
o Do u; = sign(w? | |) and y; match?
o it not, set w «— w + p(y; — u;) [xlj]

Not much more to add, better see in practice.

Data points and separation surface

_—2 -15 -1 -0.5 0 0.5 1 15 2
X

Kyoto University - SML
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A few linear classifiers:
Support Vector Machine
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A criterion to select a linear classifier: the margin ?

Kyoto University - SML
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?

Kyoto University - SML

47



A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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Largest Margin Linear Classifier ?
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Support Vectors with Large Margin
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In equations

e We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w,b) € R? x R such that:

WTXi—l—b>O ifyz-:1,
WTXi—l—b<O ifyz-:—l.

e Next, we give a formula to compute the margin as a function of w.

e Obviously, for any t € R,
Hw,b — Htw,tb

e Thus w and b are defined up to a multiplicative constant.

e \We need to take care of this in the definition of the margin

Kyoto University - SML
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How to find the largest separating hyperplane?

For the linear classifier f(x) = w?

X + b,

consider the interstice defined by the hyperplanes:

x)=wlix+b=+1

/N

W.X+b=+1

O w.x

\
\

\
\
+b=-1 /V\\ \

/

e Consider x; and x5 such that x9 — xy is parallel to w.

Kyoto University - SML
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The margin is 2/||w/||

e Margin = 2/||w||: the points x; and x5 satisfy:

WTX1—|—b:O,
WTX2—|—b: 1.

e By subtracting we get w! (xo — x;) = 1, and therefore:

where v is by definition the margin.

Kyoto University - SML
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All training points should be on the appropriate side

e For positive examples (y; = 1) this means:

WTX@—I—[)Zl

e For negative examples (y; = —1) this means:

WTXZ'—I—b < —1

e in both cases:
Vi=1,...,n, yi(WTxH—b)Zl

Kyoto University - SML
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Finding the optimal hyperplane

e Find (w,b) which minimize:

w]J?

under the constraints:

Kyoto University - SML

Vi=1,....,n, y,(W'x;+b)—1>0.

This is a classical quadratic program on R4t}
linear constraints - quadratic objective
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Lagrangian

e |In order to minimize: |

= 2
~wl

under the constraints:

Vi=1,...,n, yz-(waier)—lzo.

e introduce one dual variable «; for each constraint,
e one constraint for each training point.

e the Lagrangian is, for a > 0 (that is for each «; > 0)

1 n
L(w,b, ) = §||W||2 — g a; (yi (Wwhx;+b) —1).
i=1
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The Lagrange dual function

gla)= _inf {%nwntzaz-(yi(waﬁM—1)}

wER bER ;
=1

is only defined when
W = Z a;¥,;X;, ( derivating w.r.t w) (x)
i=1
0= Z o;y,;, (derivating w.r.t b) ()
i=1

substituting (x) in g, and using (x%) as a constraint, get the dual function g(«).
e To solve the dual problem, maximize g w.r.t. a.

e Strong duality holds. KKT gives us «;(y; (waZ- -+ b) —1) =0,
...hence, either a; = 0 ory; (whx; +b) = 1.

e «; # 0 only for points on the support hyperplanes {(x,y)|y,(w!x; +b) = 1}.
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Dual optimum

The dual problem is thus

maximize g(a) = D07, i — 51 g QiQGYYX] X;

such that ar=0,>7"  ay; =0.

This is a quadratic program in R", with box constraints.

o can be computed using optimization software
(e.g. built-in matlab function)

Kyoto University -

SML
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Recovering the optimal hyperplane

e With a*, we recover (w',b*) corresponding to the optimal hyperplane.

o wl isgiven by wl' =31 yaux;,

e b* is given by the conditions on the support vectors a; > 0, y,(wlx; +b) =1,

1
x = . T, T,
=3 (y;{fz:>o<w X))+ _max (W "”)

e the decision function is therefore:
ff(x) = w'x+0b"

n
— Z YyiouX: X 4 b*.
i=1

e Here the dual solution gives us directly the primal solution.
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Interpretation: support vectors
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Another interpretation: Convex Hulls ?

go back to 2 sets of points that are linearly separable

Kyoto University - SML
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Another interpretation: Convex Hulls
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Linearly separable = convex hulls do not intersect
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Another interpretation: Convex Hulls
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Find two closest points, one in each convex hull
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Another interpretation: Convex Hulls

The SVM = bisection of that segment
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Another interpretation: Convex Hulls

support vectors = extreme points of the faces on which the two points lie

Kyoto University - SML
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Minimum Distance

e Suppose that

o all the points of the blue set are in a matrix A € R¥*"-1,
o all the points of the red set are in a matrix B € R4*X™

A= |z -+ xz, | ER¥*"1 B |z ... 2/ | e R>™M,

e Finding the two points in question, and the minimal distance, is given by
minimize  ||Au — Bv||?

- T - 1T vy —
subjectto 1, u=1; v=1
O0<ueR'1veR™

e Possible to prove that the primal SVM program, slightly modified, has this dual.

e A bit tedious unfortunately.
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A brief hint through duality

e Remember that the dual of the SVM formulation is
maximize g(a)=>._, a; — %szzl QY Y XT X,
such that a > 0,>" , ayy; = 0.

e Suppose that the n_; first points x; have —1 label and ny have 1 label.

u]. The dual becomes:

® rewrite o = [v

.. 1 T T AT —u
maximize 1, u+1,v—3 [—u ,V } [A, B]
such that 15_1u = 1£1v,
uv>20

which is equivalent to

minimize  [[Au— Bv||* —2(1} u+1] v)
such that u,v > 0,

_ 1T
n_ U= 1n1v
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The non-linearly separable case

(when convex hulls intersect)

Kyoto University - SML
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What happens when the data is not linearly separable?

Kyoto University - SML
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?

Kyoto University - SML
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Soft-margin SVM ?

e Find a trade-off between large margin and few errors.

e Mathematically:

mfin { ! + C' X errors(f)}

margin(f)

e (' is a parameter

Kyoto University - SML
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Soft-margin SVM formulation ?
e The margin of a labeled point (x,y) is
margin(x,y) =y (WTX — b)

e [he error is

o 0 if margin(x,y) > 1,
o 1 — margin(x,y) otherwise.

e The soft margin SVM solves:

: 2 1
E 1—v. |
mll?{HWH +C : max{0, Y; (W X; + b)}

e c(u,y) =max{0,1 — yu} is known as the hinge loss.

o ¢(wlx;+b,y,) associates a mistake cost to the decision w,b for example x;.

Kyoto University - SML
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Dual formulation of soft-margin SVM

e The soft margin SVM program
migl{HwH2 + C’Z max{0,1 —y; (w'x; +b)}
’ i=1
can be rewritten as
minimize [w|?+C > &
such that vy, (waz- + b) >1-=¢&

e In that case the dual function

mn n
1
g9(a) = Z%‘ 5 Z QiCsYY X; X,
1=1

i,J=1

which is finite under the constraints:

0<y<C, fori=1,...,n
D i aiy; = 0.
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Interpretation: bounded and unbounded support vectors
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0<o<C
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