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Some Words on the Survey, 15 Answers

What is your main goal in taking this class?
Please check one or two boxas.

[ 1 know nothing about machine learning, so | just need an introduction

[ | know a few machine learning algorithms, but | would like to have a better theoretical
understanding

[} | know a few machine learning algorithms, but | would like to learn about more advanced ones

[ I would like to understand how to use machine learning algorithms for a particular application
{for instance, vision, bicinformatics etc..)

e 7 better theoretical understanding
e 6 applications
¢ 5 introduction

e 3 advanced

How often do you program?
O very rarely

{7 i programmed a few times, only to complete assignments for other courses
O | spend about 2-3 hours programming every month

() i spend about 2-3 hours programming every week

() i program every day

e 7/15 every day, 4/15 once in a while, 2 little, 2 very rarely.
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Some Words on the Survey, 15 Answers

How often do you program?

) very rarely

{7 i programmed a few times, only to complete assignments for other courses
O | spend about 2-3 hours programming every month

() i spend about 2-3 hours programming every week

() i program every day

e AVG < 2: VC dimension, Markov Inequality, QP, CG, Empirical Risk
e 2 < AVG < 3: Jensen, KL div, LP, Simplex, Lagrangean, Psd-ness

e AVG > 3: Eigendecomposition, Matrix Inv, CLT, Probability Space,
Expectation, Gaussian density

e For any questions on derivatives/gradient /convexity check

o Convex Optimization, Boyd Vandenberghe

free online. you can also check CVX the matlab optimization package.
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http://www.stanford.edu/~boyd/cvxbook/

Last Week

e Regression: relationship between predictors and predicted variables.
e in 2D: Least-Squares Criterion L(b,a1,--- ,a,) to fit lines, polynomials.
o results in solving a linear system.

02"order(b, a1, -+ ,ap)

Oay,

= linear in (b,a1,--- ,ap)

o p+ 1 equations, p + 1 variables.
e in RY, find best fit & € R™ such that (a’x + ag) =~ y
o The Least-Squares criterion also applies:
Lia)= Y —a'X|P = (" XXTa—2Y X a+ |[Y]?).
Vol =0 = o' =(XX")"'XxYy?*

e This works if X X7 € R4t is invertible.
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Last Week

Scatter plot of Rent vs. Surface

>> (XX )\ (XxY")

ans —
—0.049332605603095 X age
0.163122792160298 x surface
—0.004411580036614 x distance
2.731204399433800 + 27.300 JPY
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Today

e A few words on the statistical / probabilistic perspective on LS-regression
e A few words on polynomials in higher dimensions

e A geometric perspective

e A practical perspective

e Some solutions: advanced regression techniques

o Subset selection
o Ridge Regression
o Lasso... next time
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A (very few) words on the
statistical /probabilistic interpretation of LS
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The Statistical Perspective on Regression

e Assume that the values of y are stochastically linked to observations x as

y — (a'x+ B) ~ N(0,0).

e [ his difference is a random variable called € and is called a residue.

e This can be rewritten as,

y=(a'x+p8)+e, e~N(0,0),

e We assume that the difference between y and (a®'x + b) behaves like a
Gaussian (normally distributed) random variable.

e Objective: ldentify good candidates for o and 3.

Estimate a and 3 given observations.
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Identically Independently Distributed (i.i.d) Observations

e (lassic statistical methodology is to compute the probability of different
observations, assuming that the parameters are a = a, 3 = b:

o For each couple (x;,y,), 7=1,---,N,

P(Xj,yj|oz:a,ﬁ:b) = exp <—||y=7 ( J )H )

2o 202

o Since each measurement (x;,y;) has been independently sampled,

T ly; — (@"x; +b)|)?
P ({(x,9j)}j=1, n|a=0a,f=b) = exp<_ ‘7 j )
Jr93)J3=1 N ]:1_[1\/%0_ 53

o A.K.A likelihood of the dataset {(x;,¥;)j=1,....~} as a function of a and b,

N
1 ly; — (a”x; +b)||2>
Liix. un(a,b) = || exp | —
{( j?yj)}( ) et /27_‘_0_ P ( 20-2
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Maximum Likelihood Estimation (MLE) of Parameters

Given the likelihood function on the dataset {(x;,¥;)j=1,.. N}

— (aTx. + b2
o (_nyg (a”x; + >||)

202

A |
:Ema

...the MLE approach selects the values of (a,b) which mazimize L(a,b)

e However, max, ;) £(a,b) < max(, ) log L(a,b)

N
1
log L(a, 2—2”% (a’x; + D)%

e Hence maxXa,p) E(a, b) - min(a,b) Zle”yﬂ — (aTXj + b)||2
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Statistical Approach to Linear Regression

e Properties of the MLE estimator: convergence of ||a — al| for instance?
e (Confidence intervals for coefficients,

e [ests procedures to assess if model “fits” the data,

Residues Histogram Relative Frequency

e Bayesian approaches: instead of looking for one optimal fit (a, b) juggle with a
whole density on (a,b) to make decisions

® clc.
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http://en.wikipedia.org/wiki/Simple_linear_regression#Confidence_intervals
http://en.wikipedia.org/wiki/Category:Regression_diagnostics
http://en.wikipedia.org/wiki/Bayesian_linear_regression

Very few words on polynomials in higher
dimensions
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Very few words on polynomials in higher dimensions

e For d variables, that is for points x € R4

o the space of polynomials on these variables up to degree p is generated by

d

u d E :
{X‘UGN7u:(u17'”7ud)a uzép}

i=1

- u ; - Uq U2 Ud

where the monomial x" is defined as z; 'z, - - - 7

o Recurrence for dimension of that space: dim,;; = dim,, —|—(Zi]1?)

e For d =20 and p =5, 1 + 20 + 210 4 1540 + 8855 4 42504 > 50.000

Problem with polynomial interpolation in high-dimensions is
the explosion of relevant variables (one for each monomial)
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Back to Basics

e Recall the problem:

1 1
X=|.
X1 X2

Y = [291

e We look for v such that af X ~ Y.

Kyoto University - SML
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Back to Basics

e If we transpose this expression we get X oo~ Y7,

- 7 Y1
I z11 - mgn :
L x12 -+ ®gp - - '
. . QQ Y2
1 =z T T
1Lk ' Tdk
. . . . | (d | Y.
I z1.n -+ ZTan
- 3 YN |

e Using the notation Y = Y1 X = X1 and X, for the (k + 1)™ column of X,
d
Z X ~Y
k=0

e Note how the X}, corresponds to all values taken by the k" variable.

e Problem: approximate/reconstruct Reconstructing Y € R¥ using
Xo, X1, -, X4 €RN?
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Linear System

Reconstructing Y € RY using Xy, X, - -+, X vectors of RY.

e Our ability to approximate Y depends implicitly on the space spanned by
X07X17°" 7Xd

Consider the observed vector in RY of predicted values

Kyoto University - SML

17



Linear System

Reconstructing Y € RY using Xy, X, - -+, X vectors of RY.

e Our ability to approximate Y depends implicitly on the space spanned by
X07X17°' ) 7Xd

Plot the first regressor Xp...

Kyoto University - SML

18



Linear System

Reconstructing Y € RY using Xy, X, - -+, X vectors of RY.

e Our ability to approximate Y depends implicitly on the space spanned by
X07X17°' ) 7Xd

Assume the next regressor Xy is colinear to Xj...

Kyoto University - SML
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Linear System

Reconstructing Y € RY using Xy, X, - -+, X vectors of RY.

e Our ability to approximate Y depends implicitly on the space spanned by
X07X17°' ) 7Xd

and so is Xs...

Kyoto University - SML
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Linear System

Reconstructing Y € RY using Xy, X, - -+, X vectors of RY.

e Our ability to approximate Y depends implicitly on the space spanned by
X07X17°“ 7Xd

-
y
.
.
-
L)
",
~

“a.
L)
.
-
L)
.
“,
.
",
-
LS
.
-
L)
-
~

Very little choices to approximate Y ...
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Linear System

Reconstructing Y € RY using Xy, X, - -+, X vectors of RY.

e Our ability to approximate Y depends implicitly on the space spanned by
X07X17°' ) 7Xd

Suppose X, is actually not colinear to Xj.

Kyoto University - SML
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Linear System

Reconstructing Y € RY using Xy, X, - -+, X vectors of RY.

e Our ability to approximate Y depends implicitly on the space spanned by
X07X17°' ) 7Xd

This opens new ways to reconstruct Y.

Kyoto University - SML

23



Linear System

Reconstructing Y € RY using Xy, X, - -+, X vectors of RY.

e Our ability to approximate Y depends implicitly on the space spanned by
X07X17°' ) 7Xd

When Xy, X1, X5 are linearly independent,

Kyoto University - SML
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Linear System

Reconstructing Y € RY using Xy, X, - -+, X vectors of RY.

e Our ability to approximate Y depends implicitly on the space spanned by
X07X17°" 7Xd

Y is in their span since the space is of dimension 3

Kyoto University - SML
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Linear System

Reconstructing Y € RY using Xy, X, - -+, X vectors of RY.

e Our ability to approximate Y depends implicitly on the space spanned by
X07X17°" 7Xd

The dimension of that space is Rank(X), the rank of X

Rank(X) < min(d+ 1, N).

Kyoto University - SML
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Linear System

Three cases depending on Rank X and d, N

1. Rank X < N. d + 1 column vectors do not span RY

e For arbitrary Y, there is no solution to o’ X=Y

2. RankX = N and d + 1 > N, too many variables span the whole of R"

e infinite number of solutions to o’ X=Y".

3. Rank X = N and d+ 1 = N, # variables = # observations

e Exact and unique solution: @ = X~ 'Y we have o’ X=Y

In most applications, d + 1 £ N so we are either in case 1 or 2

Kyoto University - SML
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Case 1: RankX < N

e no solution to a! X=Y (equivalently Xa =) in general case.

e What about the orthogonal projection of Y on the image of X

Y
T
~
(Y
~
s e
P / -~
P -
-
Span {X())Xla"' 7Xd}
e Namely the point Y such that
Y = argmin 1Y — u]|.

uespan Xg,Xq,:+ ,Xqg

Kyoto University - SML
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Case 1: RankX < N

Lemma 1. {X,, Xy, -, Xy} is a Li. family & X1X is invertible

Kyoto University - SML
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Case 1: RankX < N

e Computing the projection w of a point w on a subspace V' is well understood.

e In particular, if (Xg, X1, ,Xy) is a basis of span{Xg, X1, -+, X4}...
(that is {Xg, X1, -+, Xg4} is a linearly independent family)
... then (X*'X) is invertible and ...
Y = X(XTX)"1XTy

e This gives us the a vector of weights we are looking for:

V=XX'X)"' X'y =XarYora'X=Y

X
x

e What can go wrong?
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http://en.wikipedia.org/wiki/Projection_(linear_algebra)

Case 1: RankX < N

e If XTX is invertible, )
Y = X(XTX)"'XTY

o If X*X is not invertible... we have a problem.

e If XTX's lcondition number
)\maX(XTX)

Amin (XTX)’
is very large, a small change in Y can cause dramatic changes in «.

e |n this case the linear system is said to be badly conditioned...

e Using the formula )
Y = X(X'X)"'X'Y

might return garbage as can be seen in the following Matlab example.

Kyoto University - SML

31


http://en.wikipedia.org/wiki/Condition_number

Case 2: RankX =Nandd+1> N

high-dimensional low-sample setting

e lll-posed inverse problem, the set
{aceR? | Xa=Y}
is a whole vector space. We need to choose one from many admissible
points.
e When does this happen?
o High-dimensional low-sample case (DNA chips, multimedia etc.)

e How to solve for this?

o Use something called regularization.

Kyoto University - SML
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A practical perspective:
Overfitting and Interpretability

Kyoto University - SML
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A Few High-dimensions Low sample settings

e DNA chips are very long vectors of measurements, one for each gene
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e Task: regress a Cancer related variable w.r.t these genes
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A Few High-dimensions Low sample settings

e Emails represented as histograms of words email; = | #{please}

Q
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e Task: regress a spam related variable (e.g.how many users classified this as
spam) w.r.t these variables

Sourcel of this image
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http://clg.wlv.ac.uk/resources/junk-emails/index.php

Correlated Variables

e Suppose you run a real-estate.
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e For each apartment you have compiled a few hundred variables, e.g.

o distances to conv. store, pharmacy, supermarket, parking lot, etc.
o distances to all main locations in Kansai
o socio-economic variables of the neighboorhood

e Some are obviously correlated (correlated= “almost” colinear)

e We will run into some issues (Matlab example)
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Overfitting

e Given d variables (including constant variable), consider the least squares

criterion
j d 2
Lg(aq, - ,aq) = E Yj — E :aiﬂ?i,j
i=1 i=1
e Add any variable vector £441,,7 = 1,--- , N, and define
j d 2
Logii(ar, -+ ,a4,0q41) = E | Yj — E :047:55’7:,3‘ — Xd+1Ld+41,5
i=1 i=1

Then minga+1 Lg+1 < minga Lg

e Focusing exclusively on the RSS is a poor choice.. (Matlab example)

Kyoto University - SML
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Occam'’s razor formalization of overfitting

e Occam’s razor:lex parsimoniae

e law of parsimony: principle that recommends selecting the hypothesis that
makes the fewest assumptions.

Kyoto University - SML
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Advanced Regression Techniques

Kyoto University - SML
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Quick Reminder on Vector Norms

e For a vector a € R? the Euclidian norm is the quantity

lall = [lall2 = \ > a.

e More generally, the g-norm is for ¢ > 0,

1
d q-

jall, = (zw)
=1

e |n particular for ¢ =1,

d
lalli =) lail
i=1

e In the limit ¢ — o0 and ¢ — 0,

Kyoto University - SML
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fl::]_’... ,

Jail-lallo = #{dla; # 0}.
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Tikhonov Regularization '43 - Ridge Regression '62

e [ikhonov's motivation :

solve ill-posed inverse problems by regularization

e If min, L(«) is achieved on many points... consider

min L(a) + A|a||?

e We can show that this leads to selecting

&= (XTX +Algq) XY

e The condition number has changed to

Kyoto University - SML
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Subset selection : Exhaustive Search

e Following Ockham's razor, ideally we would like to know for any value p

min  L(«)
o llallo=p

e That is, select the vector a which only considers p variables which has the best
fit.

e This is akeen to doing selecting the best combination of variables.

Practical Implementation

e For p <n, (Z) possible combinations of p variables.

e Brute force approach: generate (Z) regression problems and select the one that
achieves the best RSS.

Impossible in practice with moderately large n and p...(350) = 150.000
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Subset selection : Forward Search

e In Forward search:

o define I; = {0}.

o given a set Iy of k variables already selected in O, --- ,d:
> Compute for each variable ¢ in 0,--- ,d\ I,

t; = min

(ap)ker, o :

=1

yi = | D anrr, + aw
kel

> Set I, 1 = I U {i*} for any ¢* such that ¢* = min ;.
>~ k = k + 1 until desired number of variablse

Kyoto University - SML
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Subset selection : Backward Search

e In Backward search:

o define I; ={0,1,--- ,n}.
o given a set I of k variables already selected in O, --- ,d:
> Compute for each variable 7 in I,

N

t; = min E Y; — E QLT + QT;

o e
(ak)kery, kti F hel,

> Set I_1 = I} \ {i*} for any i* such that i* = maxt;.
> k =k — 1 until desired number of variables
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