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Some Words on the Survey, 15 Answers

• 7 better theoretical understanding

• 6 applications

• 5 introduction

• 3 advanced

• 7/15 every day, 4/15 once in a while, 2 little, 2 very rarely.
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Some Words on the Survey, 15 Answers

• AVG < 2: VC dimension, Markov Inequality, QP, CG, Empirical Risk

• 2 < AVG < 3: Jensen, KL div, LP, Simplex, Lagrangean, Psd-ness

• AVG > 3: Eigendecomposition, Matrix Inv, CLT, Probability Space,
Expectation, Gaussian density

• For any questions on derivatives/gradient/convexity check

◦ Convex Optimization, Boyd Vandenberghe

free online. you can also check CVX the matlab optimization package.
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Last Week

• Regression: relationship between predictors and predicted variables.

• in 2D: Least-Squares Criterion L(b, a1, · · · , ap) to fit lines, polynomials.

◦ results in solving a linear system.

∂2ndorder(b, a1, · · · , ap)

∂ap

= linear in (b, a1, · · · , ap)

◦ p + 1 equations, p + 1 variables.

• in R
d, find best fit α ∈ R

n such that (αTx + α0) ≈ y

◦ The Least-Squares criterion also applies:

L(α) = ‖Y − αTX‖2 =
(
αTXXTα − 2Y XTα + ‖Y ‖2

)
.

∇αL = 0 ⇒ α⋆ = (XX
T )−1

XY
T

• This works if XXT ∈ R
d+1 is invertible.
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Last Week
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>> (X∗X’ ) \ (X∗Y’ )
ans =

−0.049332605603095 x age
0.163122792160298 x s u r f a c e

−0.004411580036614 x d i s t a n c e
2.731204399433800 + 27.300 JPY
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Today

• A few words on the statistical / probabilistic perspective on LS-regression

• A few words on polynomials in higher dimensions

• A geometric perspective

• A practical perspective

• Some solutions: advanced regression techniques

◦ Subset selection
◦ Ridge Regression
◦ Lasso... next time
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A (very few) words on the

statistical/probabilistic interpretation of LS
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The Statistical Perspective on Regression

• Assume that the values of y are stochastically linked to observations x as

y − (αTx + β) ∼ N (0, σ).

• This difference is a random variable called ε and is called a residue.

• This can be rewritten as,

y = (αTx + β) + ε, ε ∼ N (0, σ),

• We assume that the difference between y and (αTx + b) behaves like a
Gaussian (normally distributed) random variable.

• Objective: Identify good candidates for α and β.

Estimate α and β given observations.
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Identically Independently Distributed (i.i.d) Observations

• Classic statistical methodology is to compute the probability of different
observations, assuming that the parameters are α = a, β = b:

◦ For each couple (xj, yj), j = 1, · · · , N ,

P (xj, yj |α = a, β = b) =
1√
2πσ

exp

(

−‖yj − (aTxj + b)‖2

2σ2

)

◦ Since each measurement (xj, yj) has been independently sampled,

P ({(xj, yj)}j=1,··· ,N |α = a, β = b) =
N∏

j=1

1√
2πσ

exp

(

−‖yj − (aTxj + b)‖2

2σ2

)

◦ A.K.A likelihood of the dataset {(xj, yj)j=1,··· ,N} as a function of a and b,

L{(xj,yj)}(a, b) =
N∏

j=1

1√
2πσ

exp

(

−‖yj − (aTxj + b)‖2

2σ2

)
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Maximum Likelihood Estimation (MLE) of Parameters

Given the likelihood function on the dataset {(xj, yj)j=1,··· ,N}...

L(a, b) =

N∏

j=1

1√
2πσ

exp

(

−‖yj − (aTxj + b)‖2

2σ2

)

...the MLE approach selects the values of (a, b) which mazimize L(a, b)

• However, max(a,b) L(a, b) ⇔ max(a,b) logL(a, b)

log L(a, b) = C − 1

2σ2

N∑

j=1

‖yj − (aTxj + b)‖2.

• Hence max(a,b)L(a, b) ⇔ min(a,b)

∑N

j=1‖yj − (aTxj + b)‖2...
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Statistical Approach to Linear Regression

• Properties of the MLE estimator: convergence of ‖α − a‖ for instance?

• Confidence intervals for coefficients,

• Tests procedures to assess if model “fits” the data,
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• Bayesian approaches: instead of looking for one optimal fit (a, b) juggle with a
whole density on (a, b) to make decisions

• etc.
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Very few words on polynomials in higher

dimensions
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Very few words on polynomials in higher dimensions

• For d variables, that is for points x ∈ R
d,

◦ the space of polynomials on these variables up to degree p is generated by

{xu |u ∈ N
d, u = (u1, · · · , ud),

d∑

i=1

ui ≤ p}

where the monomial xu is defined as x
u1
1 x

u2
2 · · ·xud

d

◦ Recurrence for dimension of that space: dimp+1 = dimp +
(

p+1
d+p

)

• For d = 20 and p = 5, 1 + 20 + 210 + 1540 + 8855 + 42504 > 50.000

Problem with polynomial interpolation in high-dimensions is
the explosion of relevant variables (one for each monomial)
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Geometric Perspective
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Back to Basics

• Recall the problem:

X =







1 1 · · · 1
... ... · · · ...
x1 x2 · · · xN
... ... · · · ...






∈ R

d+1×N

and

Y =
[
y1 · · · yN

]
∈ R

N .

• We look for α such that αTX ≈ Y .
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Back to Basics

• If we transpose this expression we get XTα ≈ Y T ,











1 x1,1 · · · xd,1

1 x1,2 · · · xd,2
... ... ... ...
1 x1,k · · · xd,k
... ... ... ...
1 x1,N · · · xd,N











×





α0
...

αd



 =













y1
...
y2
...
y·
...

yN













• Using the notation Y = Y T ,X = XT and Xk for the (k + 1)th column of X,

d∑

k=0

αkXk ≈ Y

• Note how the Xk corresponds to all values taken by the kth variable.

• Problem: approximate/reconstruct Reconstructing Y ∈ R
N using

X0,X1, · · · ,Xd ∈ R
N?
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Linear System

Reconstructing Y ∈ R
N using X0,X1, · · · ,Xd vectors of R

N .

• Our ability to approximate Y depends implicitly on the space spanned by
X0,X1, · · · ,Xd

Y

Consider the observed vector in R
N of predicted values
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Linear System

Reconstructing Y ∈ R
N using X0,X1, · · · ,Xd vectors of R

N .

• Our ability to approximate Y depends implicitly on the space spanned by
X0,X1, · · · ,Xd

Y

X0

Plot the first regressor X0...
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Linear System

Reconstructing Y ∈ R
N using X0,X1, · · · ,Xd vectors of R

N .

• Our ability to approximate Y depends implicitly on the space spanned by
X0,X1, · · · ,Xd

Y

X0

X1

Assume the next regressor X1 is colinear to X0...
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Linear System

Reconstructing Y ∈ R
N using X0,X1, · · · ,Xd vectors of R

N .

• Our ability to approximate Y depends implicitly on the space spanned by
X0,X1, · · · ,Xd

Y

X0

X2

X1

and so is X2...
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Linear System

Reconstructing Y ∈ R
N using X0,X1, · · · ,Xd vectors of R

N .

• Our ability to approximate Y depends implicitly on the space spanned by
X0,X1, · · · ,Xd

Y

X0

X2

X1

Very little choices to approximate Y...
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Linear System

Reconstructing Y ∈ R
N using X0,X1, · · · ,Xd vectors of R

N .

• Our ability to approximate Y depends implicitly on the space spanned by
X0,X1, · · · ,Xd

Y

X0

X2

X1

Suppose X2 is actually not colinear to X0.
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Linear System

Reconstructing Y ∈ R
N using X0,X1, · · · ,Xd vectors of R

N .

• Our ability to approximate Y depends implicitly on the space spanned by
X0,X1, · · · ,Xd

Y

X0

X2

X1

This opens new ways to reconstruct Y.
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Linear System

Reconstructing Y ∈ R
N using X0,X1, · · · ,Xd vectors of R

N .

• Our ability to approximate Y depends implicitly on the space spanned by
X0,X1, · · · ,Xd

Y

X0

X2

X1

When X0,X1,X2 are linearly independent,
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Linear System

Reconstructing Y ∈ R
N using X0,X1, · · · ,Xd vectors of R

N .

• Our ability to approximate Y depends implicitly on the space spanned by
X0,X1, · · · ,Xd

Y

X0

X2

X1

Y is in their span since the space is of dimension 3
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Linear System

Reconstructing Y ∈ R
N using X0,X1, · · · ,Xd vectors of R

N .

• Our ability to approximate Y depends implicitly on the space spanned by
X0,X1, · · · ,Xd

The dimension of that space is Rank(X), the rank of X

Rank(X) ≤ min(d + 1, N).
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Linear System

Three cases depending on RankX and d,N

1. RankX < N . d + 1 column vectors do not span R
N

• For arbitrary Y , there is no solution to αTX=Y

2. RankX = N and d + 1 > N , too many variables span the whole of R
N

• infinite number of solutions to αTX=Y .

3. RankX = N and d + 1 = N , # variables = # observations

• Exact and unique solution: α = X−1Y we have αTX=Y

In most applications, d + 1 6= N so we are either in case 1 or 2
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Case 1: RankX < N

• no solution to αTX=Y (equivalently Xα = Y) in general case.

• What about the orthogonal projection of Y on the image of X

Ŷ

Y

span {X0,X1, · · · ,Xd}

• Namely the point Ŷ such that

Ŷ = argmin
u∈span X0,X1,··· ,Xd

‖Y − u‖.
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Case 1: RankX < N

Lemma 1. {X0,X1, · · · ,Xd} is a l.i. family ⇔ XTX is invertible
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Case 1: RankX < N

• Computing the projection ω̂ of a point ω on a subspace V is well understood.

• In particular, if (X0,X1, · · · ,Xd) is a basis of span{X0,X1, · · · ,Xd}...

(that is {X0,X1, · · · ,Xd} is a linearly independent family)

... then (XTX) is invertible and ...

Ŷ = X(XTX)−1XTY

• This gives us the α vector of weights we are looking for:

Ŷ = X (XTX)−1XTY
︸ ︷︷ ︸

α̂

= Xα̂ ≈ Y or α̂
TX = Y

• What can go wrong?
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Case 1: RankX < N

• If XTX is invertible,
Ŷ = X(XTX)−1XTY

• If XTX is not invertible... we have a problem.

• If XTX’s condition number
λmax(X

TX)

λmin(XTX)
,

is very large, a small change in Y can cause dramatic changes in α.

• In this case the linear system is said to be badly conditioned...

• Using the formula
Ŷ = X(XTX)−1XTY

might return garbage as can be seen in the following Matlab example.
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Case 2: RankX = N and d + 1 > N

high-dimensional low-sample setting

• Ill-posed inverse problem, the set

{α ∈ R
d | Xα = Y}

is a whole vector space. We need to choose one from many admissible
points.

• When does this happen?

◦ High-dimensional low-sample case (DNA chips, multimedia etc.)

• How to solve for this?

◦ Use something called regularization.
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A practical perspective:

Overfitting and Interpretability
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A Few High-dimensions Low sample settings

• DNA chips are very long vectors of measurements, one for each gene

• Task: regress a Cancer related variable w.r.t these genes
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A Few High-dimensions Low sample settings

• Emails represented as histograms of words emailj =





...
#{please}

...





• Task: regress a spam related variable (e.g.how many users classified this as
spam) w.r.t these variables

Source of this image

Kyoto University - SML 35

http://clg.wlv.ac.uk/resources/junk-emails/index.php


Correlated Variables

• Suppose you run a real-estate.

• For each apartment you have compiled a few hundred variables, e.g.

◦ distances to conv. store, pharmacy, supermarket, parking lot, etc.

◦ distances to all main locations in Kansai
◦ socio-economic variables of the neighboorhood

• Some are obviously correlated (correlated= “almost” colinear)

• We will run into some issues (Matlab example)
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Overfitting

• Given d variables (including constant variable), consider the least squares
criterion

Ld (α1, · · · , αd) =

j
∑

i=1

∥
∥
∥
∥
∥
yj −

d∑

i=1

αixi,j

∥
∥
∥
∥
∥

2

• Add any variable vector xd+1,j, j = 1, · · · , N , and define

Ld+1(α1, · · · , αd,αd+1) =

j
∑

i=1

∥
∥
∥
∥
∥
yj −

d∑

i=1

αixi,j − αd+1xd+1,j

∥
∥
∥
∥
∥

2

Then min
Rd+1 Ld+1 ≤ min

Rd Ld

• Focusing exclusively on the RSS is a poor choice.. (Matlab example)
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Occam’s razor formalization of overfitting

• Occam’s razor:lex parsimoniae

• law of parsimony: principle that recommends selecting the hypothesis that
makes the fewest assumptions.
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Advanced Regression Techniques
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Quick Reminder on Vector Norms

• For a vector a ∈ R
d, the Euclidian norm is the quantity

‖a‖ = ‖a‖2 =

√
√
√
√

d∑

i=1

a2
i .

• More generally, the q-norm is for q > 0,

‖a‖q =

(
d∑

i=1

|ai|q
)1

q .

• In particular for q = 1,

‖a‖1 =
d∑

i=1

|ai|

• In the limit q → ∞ and q → 0,

‖a‖∞ = max
i=1,··· ,d

|ai|. ‖a‖0 = #{i|ai 6= 0}.
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Tikhonov Regularization ’43 - Ridge Regression ’62

• Tikhonov’s motivation : solve ill-posed inverse problems by regularization

• If minα L(α) is achieved on many points... consider

min
α

L(α) + λ‖α‖2

• We can show that this leads to selecting

α̂ = (XTX + λId+1)
−1XY

• The condition number has changed to

λmax(X
TX) + λ

λmin(XTX) + λ
.
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Subset selection : Exhaustive Search

• Following Ockham’s razor, ideally we would like to know for any value p

min
α,‖α‖0=p

L(α)

• That is, select the vector α which only considers p variables which has the best
fit.

• This is akeen to doing selecting the best combination of variables.

Practical Implementation

• For p ≤ n,
(
n

p

)
possible combinations of p variables.

• Brute force approach: generate
(
n

p

)
regression problems and select the one that

achieves the best RSS.

Impossible in practice with moderately large n and p...
(
30
5

)
= 150.000
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Subset selection : Forward Search

• In Forward search:

◦ define I1 = {0}.
◦ given a set Ik of k variables already selected in 0, · · · , d:

⊲ Compute for each variable i in 0, · · · , d \ Ik

ti = min
(αk)k∈Ik

,α

N∑

j=1

∥
∥
∥
∥
∥
∥

yj −




∑

k∈Ik

αkxk,j + αxi,j





∥
∥
∥
∥
∥
∥

2

⊲ Set Ik+1 = Ik ∪ {i⋆} for any i⋆ such that i⋆ = min ti.
⊲ k = k + 1 until desired number of variablse
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Subset selection : Backward Search

• In Backward search:

◦ define Id = {0, 1, · · · , n}.
◦ given a set Ik of k variables already selected in 0, · · · , d:

⊲ Compute for each variable i in Ik

ti = min
(αk)k∈Ik,k 6=i,α

N∑

j=1

∥
∥
∥
∥
∥
∥

yj −




∑

k∈Ik

αkxk,j + αxi,j





∥
∥
∥
∥
∥
∥

2

⊲ Set Ik−1 = Ik \ {i⋆} for any i⋆ such that i⋆ = max ti.
⊲ k = k − 1 until desired number of variables
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