Foundation of Intelligent Systems, Part I

Regression

mcuturi@i.kyoto-u.ac.jp

Before starting

• Please take this **survey** before the end of this week.

- Here are a few books which you can check beyond the slides.
 - Elements of Statistical Learning, Hastie Tibshirani Friedman
 - Pattern Recognition, Theodoridis Koutroumbras
 - Pattern Recognition & Machine Learning, Bishop
- You can also check Andrew Ng's video lectures (Stanford)

Fundamentals in Regression

- ullet Can be studied from different viewpoints: statistical, linear algebra, Al... etc.
- Linear regression is currently revived by different ideas in sparsity
 - \circ Lasso (1996 \rightarrow)
 - \circ SVM for regression (1996 \rightarrow)
 - Compressed Sensing (2002→)

One of the most standard data analysis tasks: Regression

Data: many observations of the same data type

- We have a database $\{\mathbf{x}_1, \cdots, \mathbf{x}_N\}$.
- Each datapoint \mathbf{x}_j can be encoded as a vector of features $\mathbf{x}_j = \begin{bmatrix} x_1, j \\ x_2, j \\ \vdots \\ x_{\mathbf{d}, j} \end{bmatrix}$
- Each feature $x_{i,j}$ of a given point \mathbf{x}_j $1 \le i \le d$ is a number.

This database can be seen as a $\mathbb{R}^{d \times N}$ matrix

$$\{\mathbf{x}^{1}, \cdots, \mathbf{x}^{N}\} \Longleftrightarrow \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,N} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,N} \\ x_{3,1} & x_{3,2} & \cdots & x_{3,N} \\ \vdots & \vdots & \cdots & \vdots \\ x_{d,1} & x_{d,2} & \cdots & x_{d,N} \end{bmatrix}$$

Examples

Patient
$$\mathbf{x}_j = \begin{bmatrix} & \text{height} & \\ & \text{weight} & \\ & \vdots & \\ \# \text{ minutes exercise/week} & \\ & \text{LDL cholesterol} & \\ & \text{HDL cholesterol} & \end{bmatrix}$$

$$\mathsf{Blog}\; \mathbf{x}_j = \begin{bmatrix} \mathsf{avg.}\; \mathsf{pages}\; \mathsf{view/month} \\ \#\; \mathsf{posts} \\ \vdots \\ \mathsf{avg.}\; \#\; \mathsf{comments/month} \\ \mathsf{revenue}\; \mathsf{from}\; \mathsf{ads/month} \end{bmatrix}$$

Within such variables...

- Some variables are very cheap to measure, others very expensive
- Some variables might have a strong influence on other variables

- In the regression setting, the d variables are split between...
 - k regressor (or predictor) variables
 - $\circ d k$ response (or predicted) variables

...to highlight such a difference or **guess** expensive variables from **cheap** ones.

The Regression Problem

• Given,

$$\circ \text{ A database } \{\mathbf{x}_1,\cdots,\mathbf{x}_N\} \Longleftrightarrow X = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,N} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,N} \\ x_{3,1} & x_{3,2} & \cdots & x_{3,N} \\ \vdots & \vdots & & \vdots \\ x_{d,1} & x_{d,2} & \cdots & x_{d,N} \end{bmatrix}$$

- \circ A set of k regressors variables $\text{Reg} \subset \{1, \cdots, d\}$
- \circ A set of d-k response variable Res $\subset \{1,\cdots,d\}$
- Regression = build a function $f: \mathbb{R}^k \to \mathbb{R}^{d-k}$ such that,

$$\forall \mathbf{x}, f((\mathbf{x_i})_{i \in \text{Reg}}) \approx (\mathbf{x_k})_{k \in \text{Res}}.$$

• e.g. if d=6, k=4, $\mathrm{Reg}=\{1,2,3,4\}$, $\mathrm{Res}=\{5,6\}$ we look for a function $f:\mathbb{R}^4\to\mathbb{R}^2$,

$$f(x_1, x_2, x_3, x_4) \approx (x_5, x_6)$$

Examples continued

$$\mathsf{Patient} \; \mathbf{x}_j = \begin{bmatrix} & \mathsf{height} \\ & \mathsf{weight} \\ & \vdots \\ \# \; \mathsf{minutes} \; \mathsf{exercise/week} \\ & \mathsf{LDL} \; \mathsf{cholesterol} \\ & \mathsf{HDL} \; \mathsf{cholesterol} \end{bmatrix}$$

$$\mathsf{Blog}\; \mathbf{x}_j = \begin{bmatrix} \mathsf{avg.}\; \mathsf{pages}\; \mathsf{view/month} \\ \#\; \mathsf{posts} \\ \vdots \\ \mathsf{avg.}\; \#\; \mathsf{comments/month} \\ \mathsf{revenue}\; \mathsf{from}\; \mathsf{ads/month} \end{bmatrix}$$

Examples continued

$$\mathsf{Credit\ card\ holder\ } \mathbf{x}_j = \begin{bmatrix} \mathsf{Income} \\ \mathsf{Age} \\ \vdots \\ \mathsf{Work\ history\ (months)} \\ \mathsf{Family} \\ \# \ \mathsf{Credit\ Incidents} \end{bmatrix}$$

$$\mathsf{Patient} \; \mathbf{x}_j = \begin{bmatrix} & \mathsf{height} \\ & \mathsf{weight} \\ & \vdots \\ \# \; \mathsf{minutes} \; \mathsf{exercise/week} \\ & \mathsf{LDL} \; \mathsf{cholesterol} \\ & \mathsf{HDL} \; \mathsf{cholesterol} \end{bmatrix}$$

$$\mathsf{Blog}\; \mathbf{x}_j = \begin{bmatrix} \mathsf{avg.}\; \mathsf{pages}\; \mathsf{view/month} \\ \#\; \mathsf{posts} \\ \vdots \\ \mathsf{avg.}\; \#\; \mathsf{comments/month} \\ \mathsf{revenue}\; \mathsf{from}\; \mathsf{ads/month} \end{bmatrix}$$

In the following slides...

We only consider tasks with **one response** variable

- All other variables are regressors.
- We rename the **response** variable **y** and reassign x_1, \dots, x_d for the **regressors**
- predicting more than one variable? heavier mathematically, but similar.

We assume that **y** takes **continuous values**.

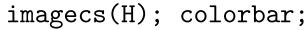
- When y takes discrete values, notably binary $\{0,1\}$ things change a bit.
- Yet... binary c real : regression techniques "work" on discrete data
- but real ⊈ binary... we'll discuss that later.

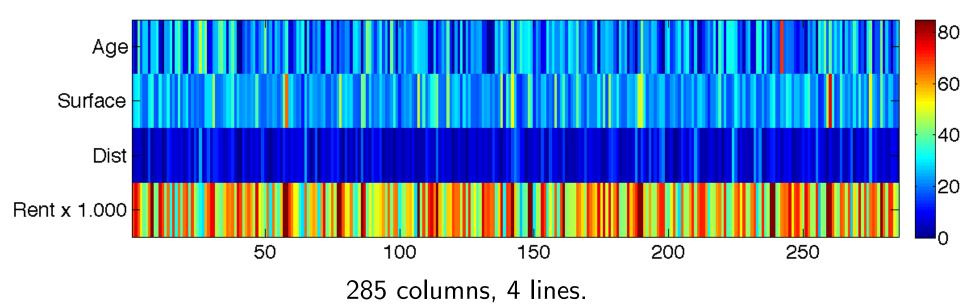
Today's Example: Your apartment

Collected information about 285 (out of 1226) apartments close to Kyoto U.

Kept 4 variables: Surface, Rent, Age of Building, Walking distance to station.

What does the matrix look like?

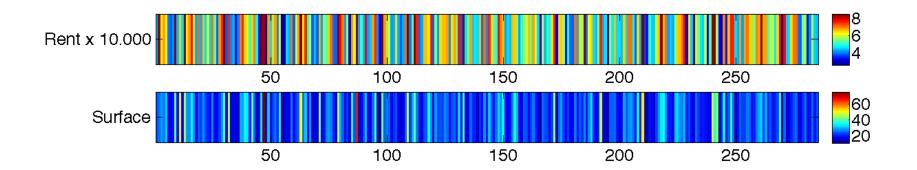


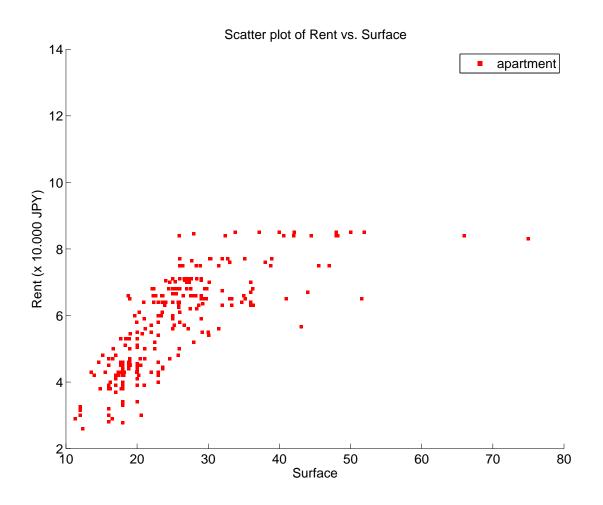


Each column represents one apartment.

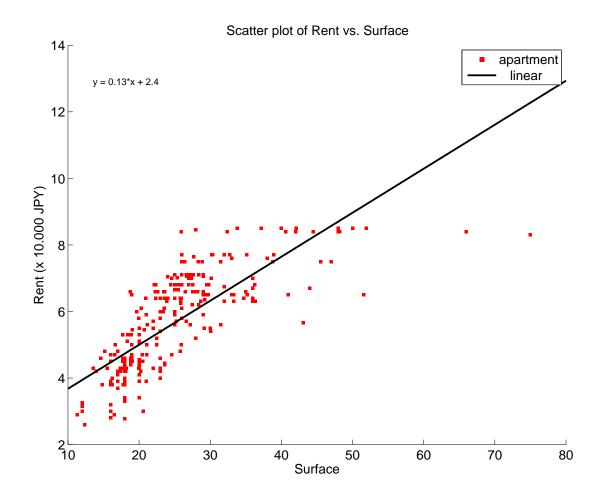
In these slides, we will regress the rent using age, surface and distance

Regression: one variable vs. another





Note that the dataset has been censored above 85.000 JPY



Using the linear tool in curve fitting, we obtain the approximation $\mathbf{y} = 0.13x + 2.4$



We can use higher order polynomials... yet look at the results.

Behind the curve tool

Matlab selects these curves using the least-squares criterion e.g.

$$\min_{\boldsymbol{f}\in\mathcal{F}} \sum_{j=1}^{N} (y_j - \boldsymbol{f}(x_j))^2$$

where \mathcal{F} is a class of functions

Matlab considers a few function classes. Among them..

$$\circ$$
 Linear $\min_{b,a_1\in\mathbb{R}} \sum_{j=1}^N \left(y_j - (\pmb{b} + \pmb{a_1x_j})\right)^2$

$$\circ$$
 Quadratic $\min_{b,a_1,a_2\in\mathbb{R}} \sum_{j=1}^N \left(y_j - (m{b} + m{a_1}m{x_j} + m{a_2}m{x_j^2})\right)^2$

$$\circ \ \, \mathsf{Quadratic} \, \min_{b,a_1,a_2 \in \mathbb{R}} \, \sum_{j=1}^N \left(y_j - (\boldsymbol{b} + \boldsymbol{a_1} \boldsymbol{x_j} + \boldsymbol{a_2} \boldsymbol{x_j^2}) \right)^2 \\ \circ \ \, \mathsf{Cubic} \, \min_{b,a_1,a_2,a_3 \in \mathbb{R}} \, \sum_{j=1}^N \left(y_j - (\boldsymbol{b} + \boldsymbol{a_1} \boldsymbol{x_j} + \boldsymbol{a_2} \boldsymbol{x_j^2} + \boldsymbol{a_3} \boldsymbol{x_j^3}) \right)^2$$

 \circ etc.

How can we solve this? The linear case

Let's take a look at the function

$$(a,b) \mapsto \sum_{j=1}^{N} (y_j - (\mathbf{b} + \mathbf{a}x_j))^2.$$

Using the notations

Rent
$$Y = \begin{bmatrix} y_1 & y_2 & \cdots & y_N \end{bmatrix}$$

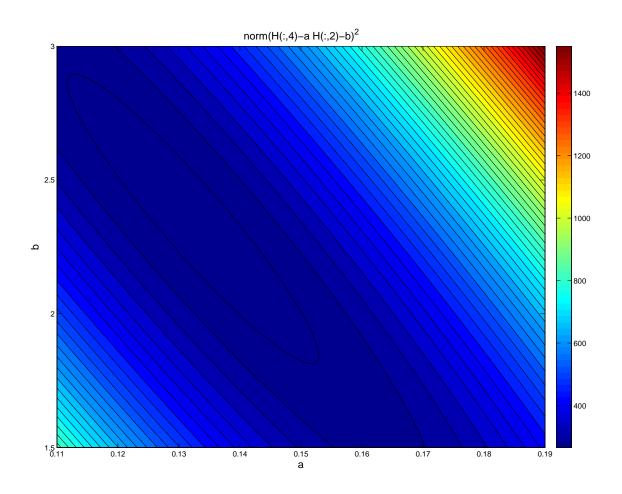
Surface $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \end{bmatrix}$
Constant $\mathbf{1}_N = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$

we have that

$$\sum_{j=1}^{N} (y_j - (\mathbf{a}x_j + \mathbf{b}))^2 = ||Y - aX - b\mathbf{1}_N||^2$$

Contour plot of $(a,b) \rightarrow ||Y - aX - b\mathbf{1}_N||^2$

• Since we only handle 2 parameters, we can make a contour plot



• This validates the equation y = 0.13x + 2.4. How to get there?

Some linear algebra

We define the function L as

$$L: (a,b) \mapsto \sum_{j=1}^{N} (y_j - (\mathbf{b} + \mathbf{a}x_j))^2$$

• The partial derivatives of L can be computed.

$$\frac{\partial L}{\partial a} = -2\sum_{j=1}^{N} (y_j - (\mathbf{b} + \mathbf{a}x_j)) x_j$$

$$\frac{\partial L}{\partial b} = -2\sum_{j=1}^{N} y_j - (\mathbf{b} + \mathbf{a}x_j)$$

• Any minimum (a^*, b^*) of L must be a saddle point.

Some linear algebra

• Namely, the partial derivatives of L at (a^*, b^*) must be zero

$$\frac{\partial L}{\partial a} = 2\left(\mathbf{a}\sum_{j} x_{j}^{2} + \mathbf{b}\sum_{j} x_{j} - \sum_{j} y_{j} x_{j}\right)$$

$$\frac{\partial L}{\partial b} = 2\left(N\mathbf{b} - \sum_{j} y_{j} + \mathbf{a}\sum_{j} x_{j}\right)$$

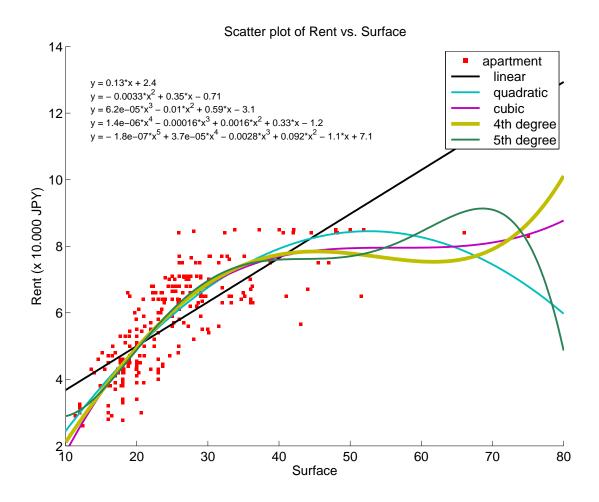
• Hence (a^*, b^*) must satisfy the linear system

$$0 = a^* \sum x_j^2 + b^* \sum x_j - \sum y_j x_j$$
$$0 = Nb^* - \sum y_j + a^* \sum x_j$$

Namely,

$$\begin{bmatrix} a^{\star} \\ b^{\star} \end{bmatrix} = \begin{bmatrix} \sum x_j^2 & \sum x_j \\ \sum x_j & N \end{bmatrix}^{-1} \begin{bmatrix} \sum y_j x_j \\ \sum y_j \end{bmatrix}$$

• ans = 0.132248772789152 2.354203561671262



We understood how to get the linear curve. What about the quadratic?

What about the quadratic case?

Quadratic
$$\min_{b,a_1,a_2\in\mathbb{R}} \sum_{j=1}^N \left(y_j - (\boldsymbol{b} + \boldsymbol{a_1}\boldsymbol{x_j} + \boldsymbol{a_2}\boldsymbol{x_j^2})\right)$$

same idea... define

$$L: (a_1, a_2, b) \mapsto \sum_{j=1}^{N} (y_j - (\mathbf{b} + \mathbf{a_1} x_j + \mathbf{a_2} x_j^2))^2$$

look at the objective's derivatives...

$$\frac{\partial L}{\partial a_2} = -2\sum_{j=1}^{N} (y_j - (\mathbf{b} + \mathbf{a_1} x_j + \mathbf{a_2} x_j^2)) x_j^2$$

$$\frac{\partial L}{\partial a_1} = -2\sum_{j=1}^{N} (y_j - (\mathbf{b} + \mathbf{a_1} x_j + \mathbf{a_2} x_j^2)) x_j$$

$$\frac{\partial L}{\partial b} = -2\sum_{j=1}^{N} (y_j - (\mathbf{b} + \mathbf{a_1} x_j + \mathbf{a_2} x_j^2))$$

What about the quadratic case?

We consider the equations that a saddle point must verify:

$$0 = \sum_{j=1}^{N} (y_j - (b^* + a_1^* x_j + a_2^* x_j^2)) x_j^2$$

$$0 = \sum_{j=1}^{N} (y_j - (b^* + a_1^* x_j + a_2^* x_j^2)) x_j$$

$$0 = \sum_{j=1}^{N} (y_j - (b^* + a_1^* x_j + a_2^* x_j^2))$$

$$\begin{bmatrix} a_2^{\star} \\ a_1^{\star} \\ b^{\star} \end{bmatrix} = \begin{bmatrix} \sum x_j^4 & \sum x_j^3 & \sum x_j^2 \\ \sum x_j^3 & \sum x_j^2 & \sum x_j \\ \sum x_j^2 & \sum x_j & N \end{bmatrix}^{-1} \begin{bmatrix} \sum y_j x_j^2 \\ \sum y_j x_j \\ \sum y_j \end{bmatrix}$$

• ans = -0.003306463076068 0.347969105896777 -0.705157514974559

Higher order polynomials

- Intuitively, for polynomial up to degree p we would have to
 - Build the corresponding Toeplitz Matrix
 - \circ Build the corresponding vector with y and x combined at different exponents
 - Solve the linear system
- Surprisingly

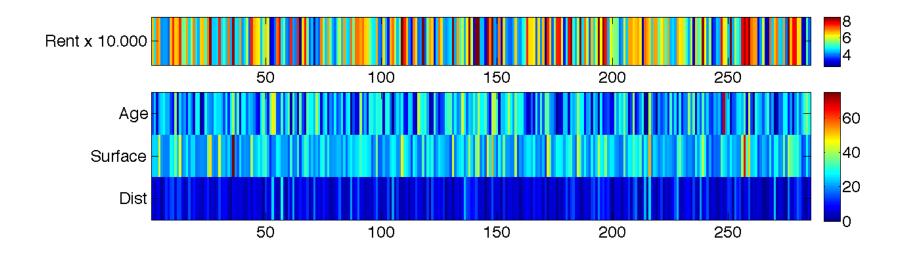
Finding the best $p^{\rm th}$ order polynomial with least-squares \updownarrow Solving a p dimensional linear system

- Not so surprising after all:
 - Least-squares: objective of degree 2 in coefficients
 - \circ Minimum \Leftrightarrow saddle point \Leftrightarrow system of degree 1..
 - Least-squares has been chosen because it yields a linear system...

The general case: one vs. all rest

What about using all other variables?

Rent
$$Y = \begin{bmatrix} y_1 & y_2 & \cdots & y_N \end{bmatrix}$$
 All other variables $X = \begin{bmatrix} \vdots & \vdots & \cdots & \vdots \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N \\ \vdots & \vdots & \cdots & \vdots \end{bmatrix}$



The general case

- We assume that we have d regressor variables, 1 response variable.
- ullet Consider again the **linear** approach. We look for a function f of the form

$$f(\mathbf{x}) = \alpha_0 + \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_d x_d.$$

- We want to determine d + 1 weights,
 - \circ a constant α_0
 - \circ 1 $\leq i \leq d, \alpha_i$ weights for each variable.
- Least squares:

$$L(\alpha_0, \alpha_1, \alpha_2, \cdots, \alpha_d) = \sum_{j=1}^{N} (y_j - (\boldsymbol{\alpha_0} + \boldsymbol{\alpha_1} x_{1,j} + \boldsymbol{\alpha_2} x_{2,j} + \cdots + \boldsymbol{\alpha_d} x_{d,j})^2$$

The general case

Notice that

$$L(\alpha_0, \alpha_1, \alpha_2, \cdots, \alpha_d) \to \sum_{i=1}^{N} \left(y_i - \left(\alpha_0 + \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_d \end{bmatrix}^T \mathbf{x}_i \right) \right)^2 = \| \begin{bmatrix} \alpha_0 \\ \vdots \\ \alpha_d \end{bmatrix}^T X - Y \|^2,$$

where

$$X = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \cdots & \vdots \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N \\ \vdots & \vdots & \cdots & \vdots \end{bmatrix} \in \mathbb{R}^{d+1 \times N}$$

and

$$Y = \begin{bmatrix} y_1 & \cdots & y_N \end{bmatrix} \in \mathbb{R}^N.$$

• We write α for the d+1 dimensional vector $\begin{bmatrix} \alpha_0 \\ \vdots \\ \alpha_d \end{bmatrix}$.

Linear least squares

Expanding this expression,

$$L(\alpha) = (\alpha^T X X^T \alpha - 2Y X^T \alpha + ||Y||^2)$$

Consider the gradient of that function

$$\nabla L = 2XX^T\alpha - 2XY^T$$

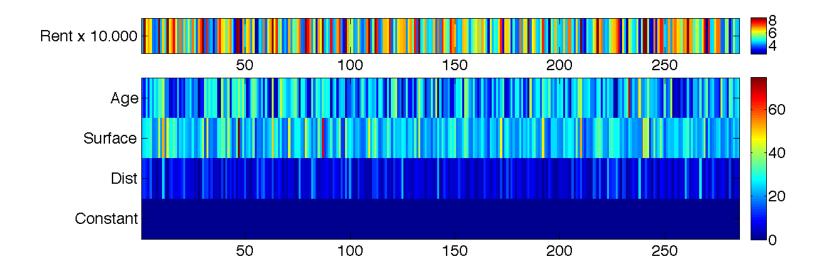
Hence this gradient is zero for

$$\alpha^* = (XX^T)^{-1}XY^T$$

- $XX^T \in \mathbf{S}^n_+$, that is XX^T is a positive (semi)definite matrix.
- This works if $XX^T \in \mathbb{R}^{d+1}$ is **invertible**, that is $XX^T \in \mathbf{S}_{++}^n$.

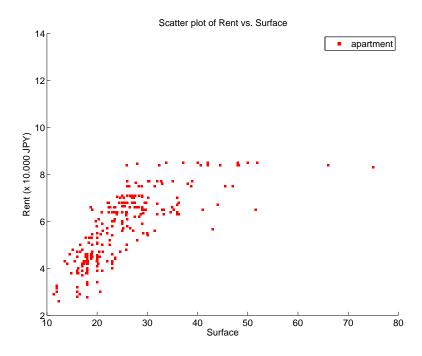
Considering again rents vs the rest

• Getting the data again, adding a line of $\mathbf{1}'s$



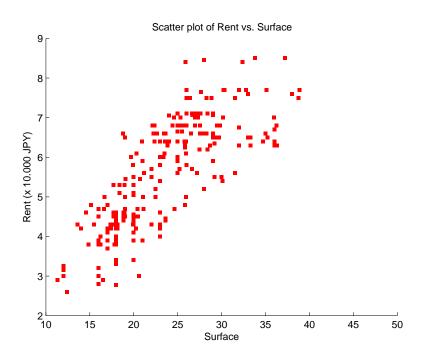
5.611128285287092

What went wrong?



 $\mathsf{rent} \! = 0.00014 \; \mathsf{age} \; + \; 0.00422 \; \mathsf{surf} \; \text{-} 0.0125 \; \mathsf{dist} \; + \; 56.110 \; \mathsf{JPY}$

What happens if we remove outliers? (surf> 40)



Moral of the story: easy to draw wrong conclusions even with simple tools

What else can go wrong? Next time...

- What happens when $d \gg n$? (XX^T) is **no longer invertible**...
 - o high-dimensional data in genomics,
 - images analysis (lots of features)

- What happens when (XX^T) is badly conditioned $(\frac{\lambda_{\min}(XX^T)}{\lambda_{\max}(XX^T)} \approx 0)$?
 - \circ if $\lambda_{\min}(XX^T) = 1e 10$, $\lambda_{\max}((XX^T)^{-1}) = 1e10!!$
 - Very bad numerical stability of the solution...

- When $d \gg n$, we might want to do variable selection,
 - \circ *i.e.* pick a subset d' of the d variables which is relevant to predict **y**.
 - \circ *i.e.* favor vectors β such that $\|\beta\|_0 = \operatorname{card} \beta_i \neq 0$ is small.