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Unconstrained minimization
minimize f(x)

e f convex, twice continuously differentiable (hence dom f open)

e we assume optimal value p* = inf, f(x) is attained (and finite)

unconstrained minimization methods

e produce sequence of points z(*) € dom f, k= 0,1, ... with

f(z®) — p*

e can be interpreted as iterative methods for solving optimality condition

Vfz*)=0
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Initial point and sublevel set

algorithms in this lecture require a starting point (%) such that
o 2(9) ¢ dom f
e sublevel set S = {z | f(z) < f(2(®)} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

e equivalent to condition that epi f is closed
e true if dom f = R"

o true if f(x) —» oo as x — ddom f

examples of differentiable functions with closed sublevel sets:

f(x) =log() exp(ajx+b),  fla)=— Z log(b; — a; )

1=1
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Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

V2f(x) = ml for all x € S

implications

o for x,y €5,

) 2 @)+ VF@)(y - 0) + Slle — yl3

hence, S is bounded

e p* > —o0, and for z € §,

1
f@) 0" < o IVF@)3

useful as stopping criterion (if you know m)
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Strong convexity: Proof of f(z) — p* < ﬁHVf(g;)H%

o By convexity f(y) > f(x) + Vf(2)" (y — @) + Fllz — y[|3
e the RHS is a quadratic form in udéfy —x Zulu+ Vi(z) v+ f(x)
e Recall that a quadratic form Q(u) = u! Pu + qlu + ¢

o has gradient VQ(u) = 2Pu +p
o is thus minimal for 2Pu = —p, that is u = ——P_lp

e In this case, the r.h.s is thus minimal for y — x = -2 x 2V f(z) = -V f(x)

e \We obtain the bound
1) 2 1@+ VI@)T (~295@)) + 75 x| = 2 VB

fl) > F@) ~ 5 IV f(2)

*

e This bound is valid for any couple of points (z,y), in particular if f(y) = p*:

f@)—p* < 5 95 @)
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Descent methods
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Descent methods

2D = o) WAL it FaD) < f(20)

e lighter notations: x* = x + tAx ; v := x + tAx (insist on iterative process)
e Aux is the step, or search direction. Can be any vector

e % is the step size, or step length which scales the step.
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Descent methods

A descent method means that f(z**tD) < f(2(*)

e from convexity, we have that f(y) > f(z) + Vf(2)! (y — z).

e Using this inequality with y = z + tAz, we get

fly=x+tAx) > f(x) +tVf(z) (Ax)

o If we need f(x + tAz)< f(x) then necessarily

Vi)' Az <0.

(i.e., Ax is a descent direction)
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General Descent methods

given a starting point x € dom f.

repeat
1. Determine a descent direction Ax.
2. Line search: Choose a step size t > 0.
3. Update: ¢z :=x +tAx.

until stopping criterion is satisfied.

CO&ML
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Line search types

e exact line search: set t with the rule

t = argmin f(r + uAx)
u>0

o each gradient step involves another optimization problem!
o only one variable, but usually too costly to solve exactly.

o In most cases, better to look for just a “good enough” step.

CO&ML
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Line search types

e backtracking line search

o two parameters: o € (0,1/2), g € (0,1)

o starting at t = 1, repeat t := [t until

flz+tAz) < f(z) + atVf(z) Az

o graphical interpretation: backtrack until ¢ < ¢

CO&ML
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Gradient descent method

general descent method with Az = —V f(z)

given a starting point r € dom f.

repeat
1. Az = =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. z := x + tAx.

until stopping criterion is satisfied.

e stopping criterion usually of the form |V f(z)|2 <€

e convergence result: for strongly convex f,

f@™) —p* < (@) - pY)

c € (0,1) depends on m, (9, line search type

e very simple, but often very slow; rarely used in practice

CO&ML
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quadratic problem in R?

flz) = (1/2)(x] + yx3) (v > 0)

with exact line search, starting at (®) = (v, 1):

k k
oG
Ly =9\ 7] > Lo = | ——
v+ 1 v+ 1

e veryslowif y>1orvy<1

e example for v = 10:

4,
g 0
— 4l
—10 0 10
X1
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nonquadratic example

f($17$2):::6

:Bl—|—3332—0.1_|_6331—3332—0.1_i_ —x1—0.1

€

backtracking line search exact line search

CO&ML
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a problem in R'"Y

10* w w w
102
109
1072
ing |.s.

104 ‘ ‘
0% 50 100 150 200

k

‘linear’ convergence, i.e., a straight line on a semilog plot
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Steepest descent method

normalized steepest descent direction (at x, for norm || - ||):
ATpeq = argmin{Vf(:U)TU | ||v|| = 1}
interpretation: for small v,

flz+v) = f(z) + Vf(z)'v

direction Axysq is (unit-norm) step with most negative directional derivative

unnormalized steepest descent direction
Azsq = ||V f(2)[+Azpsa

satisfies V f(2)! Azgqa = — ||V f(2)|)?

steepest descent method
e general descent method with Ax = Az

e convergence properties similar to gradient descent

CO&ML
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examples

e Euclidean norm: Axyq = —Vf(x)
e quadratic norm ||z|p = (2T Pz)1/2 (P €S}.): Aryq =P Vf(x)
e /1-norm: Axgq = —(9f(x)/0x;)e;, where |0f(x)/0x;| = ||V f(x)| s

unit balls and normalized steepest descent directions for a quadratic norm and the
/1-norm:

—V f(z)

—Vf(x)

Ax
nsd Awnsd
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choice of norm for steepest descent

Consider again the function f(x1,zo) = e*1132270-1 4 ez1=302=0.1 4 =101

exp(x+3 y-0.1)+exp(x-3 y-0.1)+exp(~x-0.1)

e We consider two different elliptic norms to define the nsd:

2 0 8 0

Po=1y gl 2=y o

CO&ML
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choice of norm for steepest descent

e steepest descent with backtracking line search, left ||-||p,, right ||| p,,

e ellipses show {z | ||z — z®)||p = 1}

steepest descent with quadratic norm || - ||p

0

simple gradient descent with ||-||o after change of variables z = P1/2x

e shows choice of P has strong effect on speed of convergence
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Newton step (2nd Order)

Az = —V2f(z) 'V f(x)
interpretations

e r + Az, minimizes second order approximation

Fla+v) = f(@) + V£(@)T0 + 0" V(o

e x + Ax,; solves linearized optimality condition

Vi(z+v)~ Viiz+v)=Vfz)+Vif(z)v=0

/ (4 Az, (4 Azn))
(z, f(2)) e f(@)
(x + Azng, f(z + Azny)) f
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o Aux, is steepest descent direction at x in local Hessian norm

1/2
lullv2 ey = (u' VZf(x)u)

dashed lines are contour lines of f; ellipse is {z + v | vIV2f(x)v

arrow shows —V f(x)

CO&ML
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Newton decrement

_ 1/2
Az) = (Vf(2)TV2 (2) 'V ()
a measure of the proximity of x to x*
properties

*

e gives an estimate of f(xz) — p*, using quadratic approximation f

() — inf Fly) = JA ()3

e equal to the norm of the Newton step in the quadratic Hessian norm

1/2

Az) = (Azne V2 f (1) Amy)

e directional derivative in the Newton direction: V f(x)! Az, = —A(x)?

e affine invariant (unlike ||V f(z)]|2)

CO&ML
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Newton’s method

given a starting point z € dom f, tolerance € > 0.

repeat
1. Compute the Newton step and decrement.
Axy = —V2f(2) IVf(x); N :=Vf(a)!V2f(z)"1Vf(x).
2. Stopping criterion. quit if \?/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x == x + tAxyy.

affine invariant, 7.e., independent of linear changes of coordinates:

Newton iterates for f(y) = f(T'y) with starting point y(© = T2 are

Y ) = =15 (F)
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Classical convergence analysis

assumptions

e f strongly convex on S with constant m

° V2f is Lipschitz continuous on S, with constant L > 0:

IV2f(z) = V2 f(W)ll2 < Lllz — yll2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants n € (0,m?/L), v > 0 such that

o if V(@) > n, then f(a) — f(z®) < —
o if [V (2)]> < n, then

L (k+1) L BNRY
Q—WHVf(I‘ )2 < 2—mQHVf(5U )2

CO&ML
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damped Newton phase (||Vf(x)|2 > n)

e most iterations require backtracking steps
e function value decreases by at least

e if p* > —00, this phase ends after at most (f(x(9)) — p*)/~ iterations

quadratically convergent phase (||Vf(z)|2 < n)

e all iterations use step sizet =1

o |V f(x)||2 converges to zero quadratically: if |[Vf(z*)||2 < 7, then

2l—k

L L
el VI < (VA1) < (3) o zk

2l—k
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conclusion: number of iterations until f(x) — p* < € is bounded above by

f(@®) —p*

e 7, €y are constants that depend on m, L, z(°)

e second term is small (of the order of 6) and almost constant for practical
purposes

e in practice, constants m, L (hence ~, €y) are usually unknown

e provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)

CO&ML
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Examples

example in R”

e backtracking parameters aa = 0.1, 5 = 0.7
e converges in only 5 steps

e quadratic local convergence
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example in R'"Y (page 16)

10° 2
exact line search
10Y 1.5}
S
. -~
L0-F backtracking 8 .
wn
) o
exact line search %
10~ 10 0.5 acktracking
10~ 1° 0 ‘ ‘
0 2 4 6 8 10 0 2 4 §)
k k

e backtracking parameters a = 0.01, 5 = 0.5
e backtracking line search almost as fast as exact |.s. (and much simpler)

e clearly shows two phases in algorithm
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example in R (with sparse ;)

10000 100000

f(x)=— Z log(1 — %) — Z log(b; — a; )

10°

100 -

f-fst

107°F

0 5} 10 15 20
k

e backtracking parameters oo = 0.01, 5 = 0.5.

e performance similar as for small examples
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A few words on Self-concordance

shortcomings of classical convergence analysis

e depends on unknown constants (m, L, .. .)

e bound is not affinely invariant, although Newton’'s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

e does not depend on any unknown constants
e gives affine-invariant bound
e applies to special class of convex functions (‘self-concordant’ functions)

e developed to analyze polynomial-time interior-point methods for convex
optimization

e Please check Boyd & Vandenberghe book for a review!

CO&ML
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Implementation

main effort in each iteration: evaluate derivatives and solve Newton system
HAx =g

where H = V2f(z), g = -V f(x)

via Cholesky factorization
H=LL" — Axyw=L"Lg,  Xax)=|L 9|

e cost (1/3)n? flops for unstructured system

e cost < (1/3)n? if H sparse, banded

CO&ML
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example of dense Newton system with structure
f(@) = thi(w;) +o(Az+b), H=D+ ATHyA
i=1

e assume A € RP*", dense, with p < n

e D diagonal with diagonal elements ¢! (x;); Hy = V%o(Ax + b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n?)

method 2: factor Hy = LOLOT; write Newton system as
DAz + A'Low = —g, LiAAz —w =0
eliminate Ax from first equation; compute w and Ax from
I+ LEAD '"ATLo)yw = -L{AD™ g, DAz = —g— ATLyw
cost: 2p°n (dominated by computation of LI AD 1 AL)
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Convex Optimization Algorithms With
Equality Constraints

e equality constrained minimization
e Newton's method with equality constraints
e infeasible start Newton method

e implementation

CO&ML
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Equality constrained minimization

minimize  f(x)
subject to Az =1b

e f convex, twice continuously differentiable
o AcRP*" with Rank A = p

e we assume p*~ is finite and attained

optimality conditions: x* is optimal iff there exists a v* such that

Vf(x*)+ Alv* =0, Ax* =b

CO&ML
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equality constrained quadratic minimization (with P € S/)

minimize  (1/2)z' Pz +q¢ta +r
subject to Az =0b

o =LY

e coefficient matrix is called KKT matrix

optimality condition:

e KKT matrix is nonsingular if and only if

Ar =0, x#0 — ' Px > 0

e equivalent condition for nonsingularity: P+ ATA >~ 0

CO&ML
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Newton step

Newton step of f at feasible x is given by (1st block) of solution of

R I o B

interpretations

e Aux,; solves second order approximation (with variable v)

AN

minimize  f(z +v) = f(z) + Vf(2) v+ (1/2)v1 V2 f(z)v
subject to A(x +wv) =10

e equations follow from linearizing optimality conditions

Vi(x+ Azy) + ATw =0, A(x 4+ Axpt) = b
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Newton decrement

1/2

ANzx) = (A:C;Zl;VQf(:C)A:Ent) — (—Vf(:v)TAacnt) H/2
properties
e gives an estimate of f(x) — p* using quadratic approximation f

fla)~ nf fly) = ;A ()’

Ay=b

e directional derivative in Newton direction:

d _ 2
af(x + tAxpt) = —\(x)

e in general, \(z) # (Vf(g;)Tv2f(w)—1vf(w))l/2

CO&ML
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Newton’s method with equality constraints

given starting point x € dom f with Ax = b, tolerance € > 0.

repeat
1. Compute the Newton step and decrement Az, A(x).
2. Stopping criterion. quit if \?/2 < e.

3. Line search. Choose step size t by backtracking line search.

4. Update. © := x + tAxy.

e a feasible descent method: z(¥) feasible and f(:v(k+1)) < f(a:(k))

e affine invariant

CO&ML
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Newton step at infeasible points

extends to infeasible = (i.e., Ax # b)

linearizing optimality conditions at infeasible z (with x € dom f) gives

SR B

primal-dual interpretation

e write optimality condition as r(y) = 0, where
y=(z,v), r(y)=(Vf(x)+A"v, Ax - b)

e linearizing r(y) = 0 gives r(y + Ay) ~ r(y) + Dr(y)Ay = 0:

e [T

same as (1) with w = v 4+ Avy
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Infeasible start Newton method

given starting point « € dom f, v, tolerance ¢ > 0, a € (0,1/2), 5 € (0,1).
repeat
1. Compute primal and dual Newton steps Ax,i, Avpy.
2. Backtracking line search on ||r||2.
t:=1.
while ||7(x + tAxpn, v + tAvy) |2 > (1 — at)||r(z, v)
3. Update. x :=x + tAxyt, Vv :i= v + tAvy.
until Az = b and ||r(z,v)|2 < e

2, .= ﬁt.

e not a descent method: f(z**+1)) > f(2(*¥)) is possible

e directional derivative of ||7(y)]|3 in direction Ay = (Azye, Avyg) is

d

2 Ir(y + Ay)ll, = —[lr()ll2
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Solving KKT systems

solution methods

e LDLT factorization

e climination (if H nonsingular)

AH *ATw=h - AH 'y, Hv=—(g+ A'w)

e elimination with singular H: write as

H+ ATQA AT vo| g+ ATQh
A 0 w | h

with Q > 0 for which H + ATQA > 0, and apply elimination

CO&ML
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Equality constrained analytic centering
primal problem: minimize — """ | log x; subject to Ax = b

dual problem: maximize —b'v + > "  log(A'v); + n

three methods for an example with A € R'%9*°% different starting points

1. Newton method with equality constraints (requires 2(?) = 0, Az(®) = b)

10°

100

107° |

f(z®) —p*

CO&ML
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2. Newton method applied to dual problem (requires ATp0) 0)

—10 ‘ ‘ ‘ ‘
100 2 4 . 6 8 10

3. infeasible start Newton method (requires (9 > 0)

25
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complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

diag(z)* A" ] [ Aa ] B [ diag(z) 144 ]

reduces to solving A diag(z)?ATw =b
2. solve Newton system Adiag(ATv)2ATAv = —b+ Adiag(ATv) Mg
3. use block elimination to solve KKT system

diag(z)™2 AT Az | | diag(z) ‘144
A 0 Av | Ax — b

reduces to solving Adiag(x)?ATw = 2Ax — b

conclusion: in each case, solve ADA"w = h with D positive diagonal
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Network flow optimization

minimize > " . ¢i(x;)
subject to Az =0b
e directed graph with n arcs, p + 1 nodes

e x;: flow through arc i; ¢;: cost flow function for arc i (with ¢/ (x) > 0)

e node-incidence matrix A € R(PHDX" defined as

1 arc j leaves node 1
A;; =< —1 arcj enters node ¢
0 otherwise

e reduced node-incidence matrix A € RP*™ is A with last row removed
e b € RPis (reduced) source vector

e Rank A = p if graph is connected

CO&ML
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KKT system

5 e =10

e H =diag(¢7(x1),...,¢"(xy)), positive diagonal

e solve via elimination:
AH *ATw=h - AH 'y, Hv=—(g+ A'w)
sparsity pattern of coefficient matrix is given by graph connectivity

(AHT'A");; #0 <= (AA");; #0

<= nodes ¢ and j are connected by an arc

CO&ML
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The real deal: General Convex Problems

e inequality constrained minimization

e logarithmic barrier function and central path
e barrier method

e feasibility and phase | methods

e complexity analysis via self-concordance

e generalized inequalities

CO&ML
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Inequality constrained minimization

minimize  fo(x)
subject to fz( ) <0, i=1,....m
Az =0

e f, convex, twice continuously differentiable
o Ac R with Rank A =p
e we assume p* is finite and attained

e we assume problem is strictly feasible: there exists x with
x € dom fo, f1(£)<0, 1=1,...,m,

hence, strong duality holds and dual optimum is attained

CO&ML
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Examples

e LP, QP, QCQP, GP
e entropy maximization with linear inequality constraints
minimize Y., x;logx;
subject to Fx <Xg
Ax =10
with dom f, = R} |

e differentiability may require reformulating the problem, e.q., piecewise-linear
minimization or {,.,-norm approximation via LP

CO&ML
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Logarithmic barrier

reformulation of ({I)) via indicator function:

minimize  fo(z) + 32,2, I-(fi(2))

subject to Az =0b

where I_(u) =0 if u <0, I_(u) = oo otherwise (indicator function of R_)

approximation via logarithmic barrier

minimize  fo(x) — (1/£) X0", log(— fi(x))

subject to Ax =1b

e an equality constrained problem

o fort >0, —(1/t)log(—wu) is a smooth
approximation of 1_

e approximation improves as t — o0

23 —2 1 0

CO&ML
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logarithmic barrier function

p(x) ==Y log(—fi(x)), dom¢={z| fi(z) <0,..., fm(z) <0}
i=1
e convex (follows from composition rules)
e twice continuously differentiable, with derivatives
— 1
\% = Vfi
b(x) ; ) V@)
— 1 — 1
v? V fi(z)V fi(z)" V2
0@) = D gpVA@VAET + 3 VA

CO&ML
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Central path

e for t > 0, define z*(¢) as the solution of

minimize  tfo(z) + ¢(x)
subject to Az =0b

(for now, assume x*(t) exists and is unique for each t > 0)

e central path is {z*(¢) | t > 0}

example: central path for an LP

minimize ¢z

subject to alx <b;, i=1,...,6

hyperplane ¢!z = c¢t'z*(t) is tangent to level

curve of ¢ through z*(t)

CO&ML
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Dual points on central path

x = x*(t) if there exists a w such that

Vfi(x)+ Atw =0, Ax =0

tV fo(z) + Z — fj(x)

e therefore, x*(¢) minimizes the Lagrangian
Lz, A (1), v (1) = fo(x) + ) N(0) f(x) + v* ()T (Az — b)
i=1

where we define \¥(¢) = 1/(—tf;(z*(t)) and v*(t) = w/t

e this confirms the intuitive idea that fy(z*(t)) — p* if t — oo:

p* > g\ (1), v*(t))
= L(z*(t), \*(t), v*(t))

= Jo(z*(t)) —m/t

CO&ML

54



Interpretation via KKT conditions

x=z*(t), A = \*(t), v = v*(t) satisfy

1. primal constraints: f;(x) <0,7=1,...,m, Az =b

2. dual constraints: A >~ 0

3. approximate complementary slackness: —\; fi(x) =1/t,i=1,...
4. gradient of Lagrangian with respect to x vanishes:

difference with KKT is that condition 3 replaces \; f;(z) = 0

CO&ML
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Force field interpretation

centering problem (for problem with no equality constraints)

minimize tfo(x) — >~ log(—fi(z))

force field interpretation

e tfo(x) is potential of force field Fy(z) = —tV fo(x)
e —log(—fi(x)) is potential of force field F;(z) = (1/f;(x))V fi(x)

the forces balance at x*(¢):

CO&ML
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example
T

minimize c'x
subject to asz <b;,, 1=1,...,m
e objective force field is constant: Fy(z) = —tc

e constraint force field decays as inverse distance to constraint hyperplane:

i IO P—
T 2 = dist(z, H;)

)

- Y
b; —a; x

where H; = {z | al'z = b;}

—3c

CO&ML
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Barrier method

given strictly feasible z, t := ¢(®) > 0, x> 1, tolerance € > 0.
repeat

1. Centering step. Compute z*(t) by minimizing t fo + ¢, subject to Az = b.

2. Update. x := x*(t).
3. Stopping criterion. quit if m/t < e.
4. Increaset. t := ut.

e terminates with fy(z) — p* < € (stopping criterion follows from
fo(z*(t)) — p* < m/t)

e centering usually done using Newton's method, starting at current x

e choice of i involves a trade-off: large 1 means fewer outer iterations, more
inner (Newton) iterations; typical values: u = 10-20

e several heuristics for choice of t(0)

CO&ML
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Convergence analysis

number of outer (centering) iterations: exactly

Pog(m/ (etm))w

log p

plus the initial centering step (to compute x*(t(o)))

centering problem
minimize tfy(x) + ¢(x)

see convergence analysis of Newton's method

e tfy+ ¢ must have closed sublevel sets for t > £(0)
e classical analysis requires strong convexity, Lipschitz condition

e analysis via self-concordance requires self-concordance of ¢ fy + ¢

CO&ML
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Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

102 140¢
v 1207
10° S
= ‘5 1007
> 5
21072 = 80
ey c
o 60f :
S 194 E
£ 401 '
10760  pu=50 u=150 p=2 20/ f
I I I I O I I I I I I I I I
0 20 40 60 80 0 40 80 120 160 200
Newton iterations w

e starts with = on central path (¢{?) = 1, duality gap 100)
e terminates when ¢t = 10°% (gap 107°)
e centering uses Newton’'s method with backtracking

e total number of Newton iterations not very sensitive for 1 > 10

CO&ML
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geometric program (m = 100 inequalities and n = 50 variables)

minimize log 22:1 eXp(CLOTkZC + bOk:))

subject to log 22:1 exp(a;,x + bzk)) <0, i=1,..

duality gap

0 20 40 60 &0 100 120
Newton iterations

CO&ML
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family of standard LPs (A € R™**™)

minimize ¢!z

subjectto Axr=0b, x>0

m = 10, ...,1000; for each m, solve 100 randomly generated instances

35

wn

[

.0

=

©

=

[

@)

+

=

()

=
154 ‘ ‘

10t 102 103

m

number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase | methods

feasibility problem: find x such that
filz) <0, i=1,...,m, Az =D (2)

phase |: computes strictly feasible starting point for barrier method

basic phase | method

minimize (over x, s) s
subject to file)<s, i=1,...,m (3)
Ax =10

e if z, s feasible, with s < 0, then z is strictly feasible for (12))
e if optimal value p* of (3) is positive, then problem (12)) is infeasible

e if p* = 0 and attained, then problem (2) is feasible (but not strictly);
if p* = 0 and not attained, then problem ([2)) is infeasible
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sum of infeasibilities phase | method
minimize ]lg’ds
subjectto s >0, fi(x)<s;, i=1,...,m
Ax =D

for infeasible problems, produces a solution that satisfies many more inequalities
than basic phase | method

example (infeasible set of 100 linear inequalities in 50 variables)

60 ‘ ‘ ‘ ‘ 60
5 40" S 40"
0 0
S £
> S
c 20 < 20r
0 fﬂ_ﬂ—mm mmmmm O 0 e O HH e ene 0
-1 —0.5 0 TO.5 1 1.5 —1 —-0.5 0 TO.5 1 1.5
bz’ — A; Tmax bz — 4; Tsum

left: basic phase | solution; satisfies 39 inequalities
right: sum of infeasibilities phase | solution; satisfies 79 solutions
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example: family of linear inequalities Ax < b+ vAb
e data chosen to be strictly feasible for v > 0, infeasible for v < 0

e use basic phase I, terminate when s < 0 or dual objective is positive

v 100-
g |
= 80 Infeasible Feasible
) i
.-l:l @
-
o
*g |
o 20r !
= |
O . | .
=1 —0.5 0 0.5 1
Y
0 n 100}
[ [
o o
] ‘B 80
o o
p= 2 60/
o S 40
S S
o 207 o 207
= =
03 =2 —4 6 0% —4 ) 0
—10 —10" ~ —10 —10 10 10 ~ 10 10

number of iterations roughly proportional to log(1/|v|)
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Complexity analysis via self-concordance

same assumptions as on page 49| plus:

e sublevel sets (of fj, on the feasible set) are bounded

e 1fo+ ¢ is self-concordant with closed sublevel sets

second condition

e holds for LP, QP, QCQP

e may require reformulating the problem, e.g.,

minimize Y.  x;logz; —  minimize >  x;logx;
subjectto Fxr <Xg subjectto Fx <Xg, x>0

e needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply
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Newton iterations per centering step: from self-concordance theory

put fo(z) + ¢(x) — pt fo(x™) — ¢(a™)

#Newton iterations < +c
Y

e bound on effort of computing x+ = x2*(ut) starting at = = 2*(¢)
e -, c are constants (depend only on Newton algorithm parameters)

e from duality (with A\ = A\*(¢), v = v*(¢)):
ptfo(z) + ¢(x) — ptfo(z™) — ¢(a™)

= ptfo(x) — ptfo(x +Zlog —ptXifi(x™)) — mlog

< ptfo(z) — ptfola utZA fi(a™) —m —mlogu

< ptfo(z) — ptg(Av) —m — mlogu
= m(p—1—logu)
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total number of Newton iterations (excluding first centering step)

#Newton iterations < N = [

log(ql/g(io)ﬁ))w (m(ﬂ - 17_ log ) c)

510%

4104
figure shows N for typical values of v, ¢,

310%|

o m = 100,

1104

1 1.1 1.2
U

e confirms trade-off in choice of u

e in practice, #iterations is in the tens; not very sensitive for y > 10
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polynomial-time complexity of barrier method

o foru=1+1/\/m:

o (24°)

€

e number of Newton iterations for fixed gap reduction is O(y/m)

e multiply with cost of one Newton iteration (a polynomial function of problem
dimensions), to get bound on number of flops

this choice of 1 optimizes worst-case complexity; in practice we choose i fixed
(n=10,...,20)
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Barrier method

given strictly feasible x, t := t0) > 0 (> 1, tolerance € > 0.

repeat

1. Centering step. Compute z*(t) by minimizing t fo + ¢, subject to Az = b.
2. Update. x := x*(t).

3. Stopping criterion. quit if (D>_.0;)/t <e.

4. Increaset. t := ut.

e only difference is duality gap m/t on central path is replaced by > . 0;/t

e number of outer iterations:

log (3=, 0:)/(et'?))
log p
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