Convex Optimization & Machine Learning

Algorithms

mcuturi@i.kyoto-u.ac.jp

Most slides in this lecture are taken from

Unconstrained Convex Optimization Algorithms

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton's method
- self-concordant functions
- implementation

Unconstrained minimization

minimize f(x)

- f convex, twice continuously differentiable (hence dom f open)
- we assume optimal value $p^* = \inf_x f(x)$ is attained (and finite)

unconstrained minimization methods

• produce sequence of points $x^{(k)} \in \operatorname{\mathbf{dom}} f$, $k=0,1,\ldots$ with

$$f(x^{(k)}) \to p^{\star}$$

• can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^\star) = 0$$

Initial point and sublevel set

algorithms in this lecture require a starting point $x^{(0)}$ such that

- $x^{(0)} \in \operatorname{\mathbf{dom}} f$
- sublevel set $S = \{x \mid f(x) \le f(x^{(0)})\}$ is closed

2nd condition is hard to verify, except when *all* sublevel sets are closed:

- equivalent to condition that epi f is closed
- true if $\operatorname{\mathbf{dom}} f = \mathbf{R}^n$
- \bullet true if $f(x) \to \infty$ as $x \to \operatorname{\mathbf{d}} \operatorname{\mathbf{dom}} f$

examples of differentiable functions with closed sublevel sets:

$$f(x) = \log(\sum_{i=1}^{m} \exp(a_i^T x + b_i)), \qquad f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

Strong convexity and implications

f is strongly convex on S if there exists an m>0 such that

 $\nabla^2 f(x) \succeq mI$ for all $x \in S$

implications

• for $x, y \in S$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||x - y||_2^2$$

hence, \boldsymbol{S} is bounded

• $p^{\star} > -\infty$, and for $x \in S$,

$$f(x) - p^* \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

useful as stopping criterion (if you know m)

CO&ML

Strong convexity: Proof of $f(x) - p^* \leq \frac{1}{2m} \|\nabla f(x)\|_2^2$

- By convexity $f(y) \ge f(x) + \nabla f(x)^T (y x) + \frac{m}{2} ||x y||_2^2$
- the RHS is a quadratic form in $\mathbf{u} \stackrel{\text{def}}{=} y x ::: \frac{m}{2} \mathbf{u}^T \mathbf{u} + \nabla f(x)^T \mathbf{u} + f(x)$
- Recall that a quadratic form $Q(\mathbf{u}) = \mathbf{u}^T P \mathbf{u} + q^T \mathbf{u} + c$
 - o has gradient $\nabla Q(u) = 2Pu + p$ o is thus minimal for 2Pu = -p, that is $u = -\frac{1}{2}P^{-1}p$
- In this case, the r.h.s is thus minimal for $y x = -\frac{1}{2} \times \frac{2}{m} \nabla f(x) = -\frac{1}{m} \nabla f(x)$
- We obtain the bound

• This bound is valid for any couple of points (x, y), in particular if $f(y) = p^*$:

$$f(x) - p^* \le \frac{1}{2m} \|\nabla f(x)\|_2^2.$$

Descent methods

Descent methods

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with } f(x^{(k+1)}) < f(x^{(k)})$$

- lighter notations: $x^+ = x + t\Delta x$; $x := x + t\Delta x$ (insist on iterative process)
- Δx is the *step*, or *search direction*. Can be any vector
- *t* is the *step size*, or *step length* which scales the step.

Descent methods

A **descent** method means that $f(x^{(k+1)}) < f(x^{(k)})$

- from convexity, we have that $f(y) \ge f(x) + \nabla f(x)^T (y x)$.
- Using this inequality with $y = x + t\Delta x$, we get

$$f(y = x + t\Delta x) \ge f(x) + t\nabla f(x)^T (\Delta x)$$

• If we need $f(x + t\Delta x) < f(x)$ then **necessarily**

 $\nabla f(x)^T \Delta x < 0.$

(*i.e.*, Δx is a descent direction)

General Descent methods

given a starting point $x \in \operatorname{dom} f$.

repeat

- 1. Determine a descent direction Δx .
- 2. Line search: Choose a step size t > 0.
- 3. Update: $x := x + t\Delta x$.

until stopping criterion is satisfied.

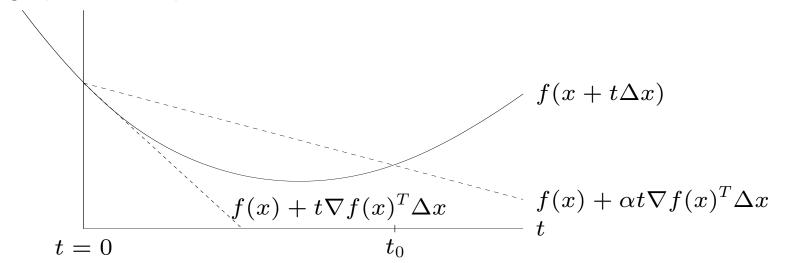
Line search types

• exact line search: set t with the rule

$$\mathbf{t} = \operatorname*{argmin}_{u>0} f(x + u \Delta x)$$

each gradient step involves another optimization problem!
only one variable, but usually too costly to solve exactly.
o in most cases, better to look for just a *"good enough"* step.

Line search types


• backtracking line search

 $\circ~{\bf two}~{\rm parameters:}~\alpha\in(0,1/2),~\beta\in(0,1)$

 \circ starting at t = 1, repeat $t := \beta t$ until

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$$

 \circ graphical interpretation: backtrack until $t \leq t_0$

Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \operatorname{dom} f$. repeat

1. $\Delta x := -\nabla f(x)$.

2. Line search. Choose step size t via exact or backtracking line search.

3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

• stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$

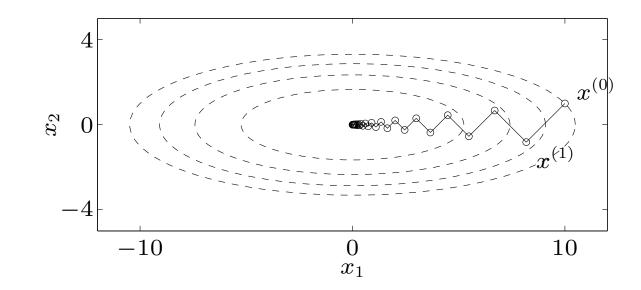
• convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on m, $x^{(0)}$, line search type

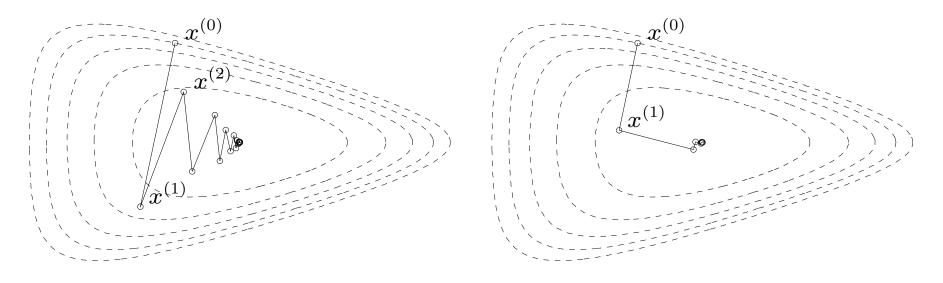
• very simple, but often very slow; rarely used in practice

quadratic problem in R^2


$$f(x) = (1/2)(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)$$

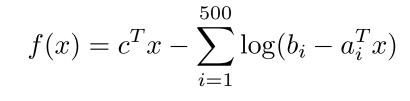
with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

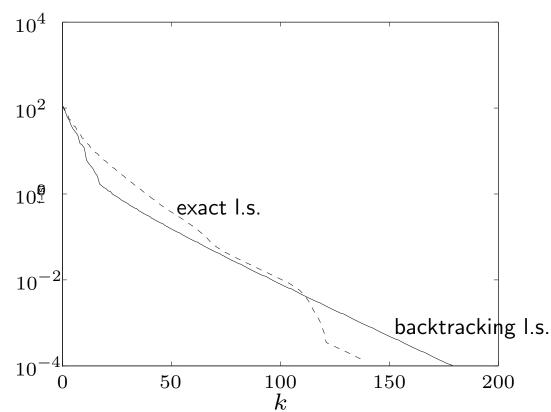
$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$


• very slow if
$$\gamma \gg 1$$
 or $\gamma \ll 1$

• example for $\gamma = 10$:

nonquadratic example


$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$



backtracking line search

exact line search

a problem in $\ensuremath{\mathsf{R}}^{100}$

'linear' convergence, i.e., a straight line on a semilog plot

Steepest descent method

normalized steepest descent *direction* (at x, for norm $\|\cdot\|$):

$$\Delta x_{\text{nsd}} = \operatorname{argmin}\{\nabla f(x)^T v \mid ||v|| = 1\}$$

interpretation: for small v,

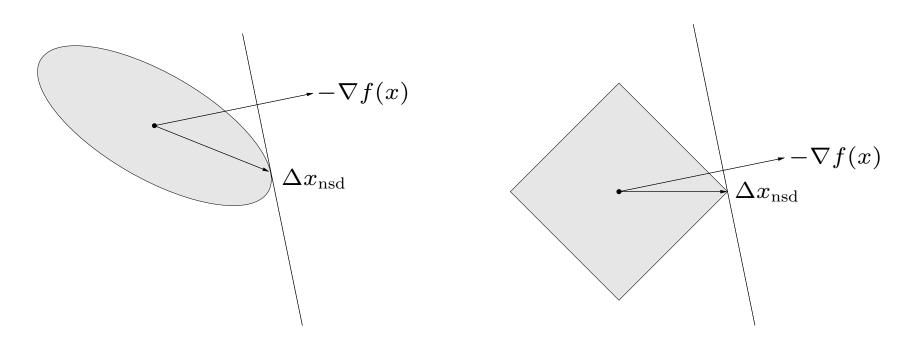
$$f(x+v)\approx f(x)+\nabla f(x)^T v$$

direction Δx_{nsd} is (unit-norm) step with **most negative** directional derivative

unnormalized steepest descent *direction*

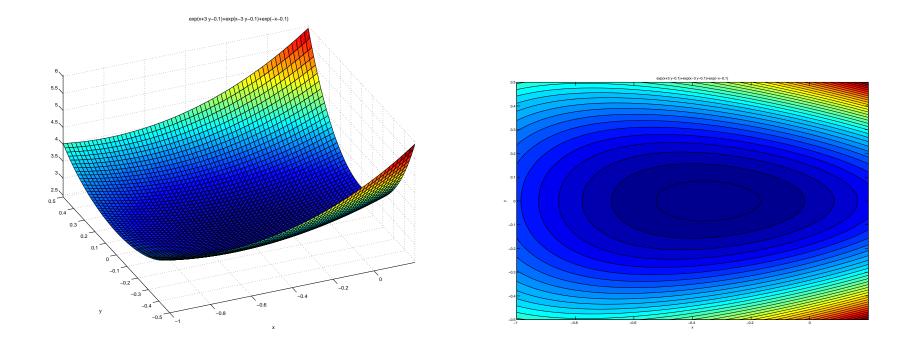
$$\Delta x_{\rm sd} = \|\nabla f(x)\|_* \Delta x_{\rm nsd}$$

satisfies $\nabla f(x)^T \Delta x_{\rm sd} = - \| \nabla f(x) \|_*^2$


steepest descent method

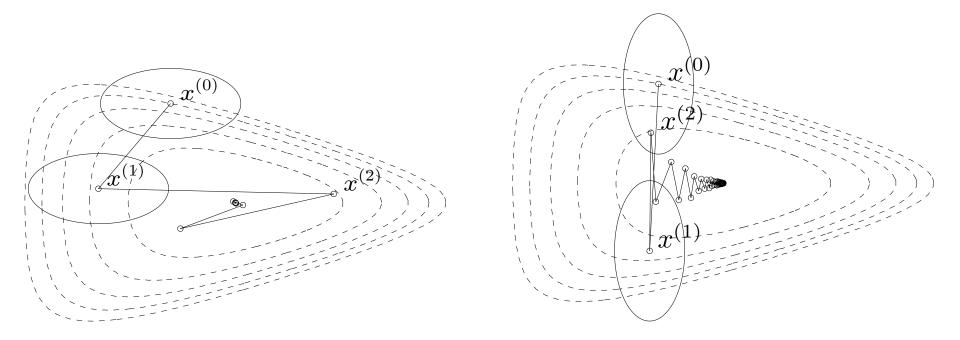
- general descent method with $\Delta x = \Delta x_{\rm sd}$
- convergence properties similar to gradient descent

examples


- Euclidean norm: $\Delta x_{\rm sd} = -\nabla f(x)$
- quadratic norm $||x||_P = (x^T P x)^{1/2}$ $(P \in \mathbf{S}_{++}^n)$: $\Delta x_{sd} = -P^{-1} \nabla f(x)$
- ℓ_1 -norm: $\Delta x_{sd} = -(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i| = \|\nabla f(x)\|_{\infty}$

unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_1 -norm:

choice of norm for steepest descent


Consider again the function $f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$

• We consider two different elliptic norms to define the nsd:

$$P_1 = \begin{bmatrix} 2 & 0 \\ 0 & 8 \end{bmatrix}, P_2 = \begin{bmatrix} 8 & 0 \\ 0 & 2 \end{bmatrix}$$

choice of norm for steepest descent

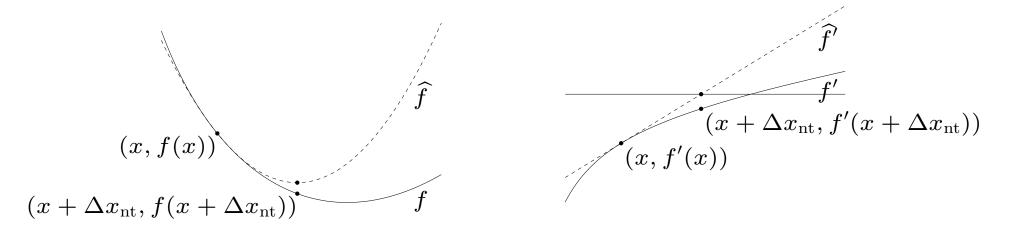
- steepest descent with backtracking line search, left $\|\cdot\|_{P_1}$, right $\|\cdot\|_{P_2}$,
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$

steepest descent with quadratic norm $\|\cdot\|_P$ $\label{eq:steepest}$ simple gradient descent with $\|\cdot\|_2$ after change of variables $\bar{x}=P^{1/2}x$

• shows choice of P has strong effect on speed of convergence

Newton step (2nd Order)

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$


interpretations

• $x + \Delta x_{nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

• $x + \Delta x_{nt}$ solves linearized optimality condition

$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

• $\Delta x_{\rm nt}$ is steepest descent direction at x in local Hessian norm

$$\|u\|_{\nabla^2 f(x)} = \left(u^T \nabla^2 f(x) u\right)^{1/2}$$

dashed lines are contour lines of f; ellipse is $\{x + v \mid v^T \nabla^2 f(x)v = 1\}$ arrow shows $-\nabla f(x)$

Newton decrement

$$\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

a measure of the proximity of x to x^\star

properties

• gives an estimate of $f(x) - p^*$, using quadratic approximation \widehat{f} :

$$f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2$$

equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = \left(\Delta x_{\rm nt} \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

- directional derivative in the Newton direction: $\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2$
- affine invariant (unlike $\|\nabla f(x)\|_2$)

CO&ML

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$. repeat

1. Compute the Newton step and decrement.

 $\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$ 2. Stopping criterion. quit if $\lambda^2/2 \le \epsilon$.

3. *Line search.* Choose step size t by backtracking line search.

4. Update.
$$x := x + t\Delta x_{nt}$$
.

affine invariant, *i.e.*, independent of linear changes of coordinates:

Newton iterates for $\tilde{f}(y)=f(Ty)$ with starting point $y^{(0)}=T^{-1}x^{(0)}$ are

$$y^{(k)} = T^{-1}x^{(k)}$$

Classical convergence analysis

assumptions

- f strongly convex on S with constant m
- $\nabla^2 f$ is Lipschitz continuous on S, with constant L > 0:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L \|x - y\|_2$$

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants $\eta \in (0,m^2/L)$, $\gamma > 0$ such that

- if $\|\nabla f(x)\|_2 \ge \eta$, then $f(x^{(k+1)}) f(x^{(k)}) \le -\gamma$
- if $\|\nabla f(x)\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

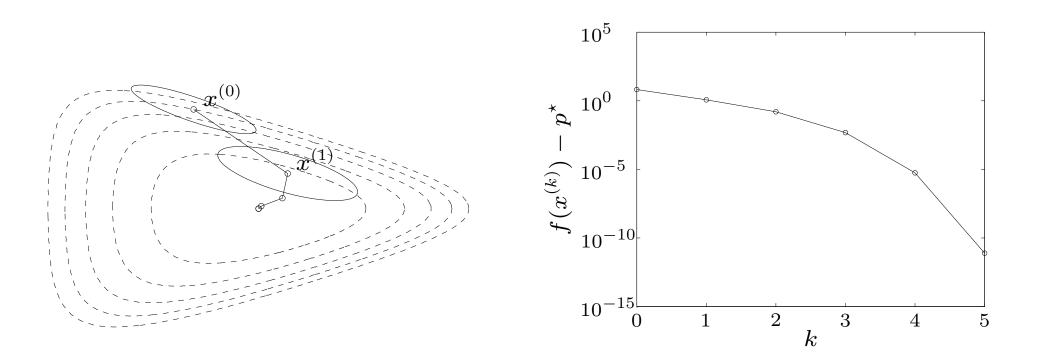
damped Newton phase ($\|\nabla f(x)\|_2 \ge \eta$)

- most iterations require backtracking steps
- function value decreases by at least γ
- if $p^* > -\infty$, this phase ends after at most $(f(x^{(0)}) p^*)/\gamma$ iterations

quadratically convergent phase $(\|\nabla f(x)\|_2 < \eta)$

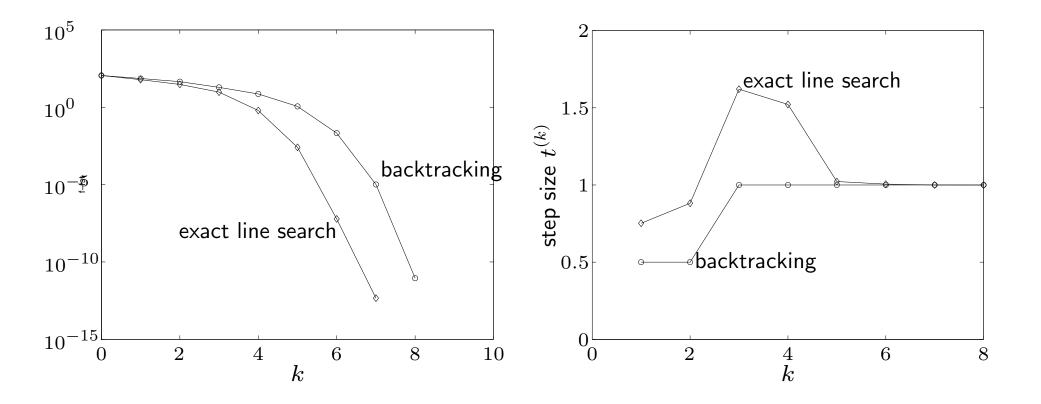
- all iterations use step size t = 1
- $\|\nabla f(x)\|_2$ converges to zero quadratically: if $\|\nabla f(x^{(k)})\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^l)\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^k)\|_2\right)^{2^{l-k}} \le \left(\frac{1}{2}\right)^{2^{l-k}}, \qquad l \ge k$$


conclusion: number of iterations until $f(x) - p^* \leq \epsilon$ is bounded above by

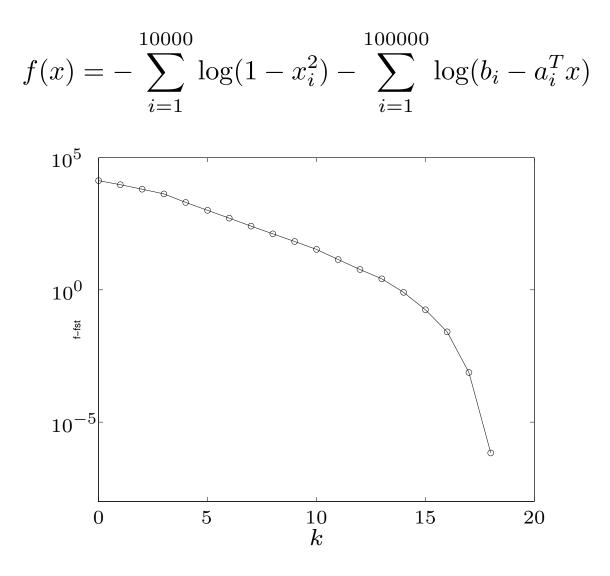
$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ , ϵ_0 are constants that depend on m, L, $x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- in practice, constants m, L (hence γ , ϵ_0) are usually unknown
- provides qualitative insight in convergence properties (*i.e.*, explains two algorithm phases)


Examples

example in \mathbf{R}^2

- backtracking parameters $\alpha=0.1,~\beta=0.7$
- converges in only 5 steps
- quadratic local convergence


example in \mathbf{R}^{100} (page 16)

• backtracking parameters $\alpha = 0.01$, $\beta = 0.5$

- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm

example in \mathbf{R}^{10000} (with sparse a_i)

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$.
- performance similar as for small examples

A few words on Self-concordance

shortcomings of classical convergence analysis

- depends on unknown constants (m, L, ...)
- bound is not affinely invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions ('self-concordant' functions)
- developed to analyze polynomial-time interior-point methods for convex optimization
- Please check Boyd & Vandenberghe book for a review!

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

 $H\Delta x = g$

where $H = \nabla^2 f(x)$, $g = -\nabla f(x)$

via Cholesky factorization

$$H = LL^T$$
, $\Delta x_{\rm nt} = L^{-T}L^{-1}g$, $\lambda(x) = ||L^{-1}g||_2$

- $\bullet~ {\rm cost}~(1/3)n^3$ flops for unstructured system
- $\cos t \ll (1/3)n^3$ if H sparse, banded

example of dense Newton system with structure

$$f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \qquad H = D + A^T H_0 A$$

• assume $A \in \mathbf{R}^{p \times n}$, dense, with $p \ll n$

• D diagonal with diagonal elements $\psi_i''(x_i)$; $H_0 = \nabla^2 \psi_0(Ax + b)$

method 1: form H, solve via dense Cholesky factorization: (cost $(1/3)n^3$) **method 2**: factor $H_0 = L_0 L_0^T$; write Newton system as

$$D\Delta x + A^T L_0 w = -g, \qquad L_0^T A\Delta x - w = 0$$

eliminate Δx from first equation; compute w and Δx from

$$(I + L_0^T A D^{-1} A^T L_0)w = -L_0^T A D^{-1} g, \qquad D\Delta x = -g - A^T L_0 w$$

cost: $2p^2n$ (dominated by computation of $L_0^T A D^{-1} A L_0$)

CO&ML

Convex Optimization Algorithms With Equality Constraints

- equality constrained minimization
- Newton's method with equality constraints
- infeasible start Newton method
- implementation

Equality constrained minimization

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$

- f convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{\mathbf{Rank}} A = p$
- $\bullet\,$ we assume p^{\star} is finite and attained

optimality conditions: x^* is optimal iff there exists a ν^* such that

$$\nabla f(x^{\star}) + A^T \nu^{\star} = 0, \qquad Ax^{\star} = b$$

equality constrained quadratic minimization (with $P \in S^n_+$)

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Ax = b$

optimality condition:

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \nu^* \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

- coefficient matrix is called KKT matrix
- KKT matrix is nonsingular if and only if

$$Ax = 0, \quad x \neq 0 \qquad \Longrightarrow \qquad x^T P x > 0$$

• equivalent condition for nonsingularity: $P + A^T A \succ 0$

Newton step

Newton step of f at feasible x is given by (1st block) of solution of

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

interpretations

• $\Delta x_{\rm nt}$ solves second order approximation (with variable v)

$$\begin{array}{ll} \mbox{minimize} & \widehat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2) v^T \nabla^2 f(x) v \\ \mbox{subject to} & A(x+v) = b \end{array}$$

• equations follow from linearizing optimality conditions

$$\nabla f(x + \Delta x_{\rm nt}) + A^T w = 0, \qquad A(x + \Delta x_{\rm nt}) = b$$

Newton decrement

$$\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2} = \left(-\nabla f(x)^T \Delta x_{\rm nt}\right)^{1/2}$$

properties

• gives an estimate of $f(x) - p^{\star}$ using quadratic approximation \widehat{f} :

$$f(x) - \inf_{Ay=b} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2$$

• directional derivative in Newton direction:

$$\left. \frac{d}{dt} f(x + t\Delta x_{\rm nt}) \right|_{t=0} = -\lambda(x)^2$$

• in general,
$$\lambda(x) \neq \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

Newton's method with equality constraints

given starting point $x \in \operatorname{dom} f$ with Ax = b, tolerance $\epsilon > 0$.

repeat

- 1. Compute the Newton step and decrement Δx_{nt} , $\lambda(x)$.
- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{nt}$.

- a feasible descent method: $x^{(k)}$ feasible and $f(x^{(k+1)}) < f(x^{(k)})$
- affine invariant

Newton step at infeasible points

extends to infeasible x (*i.e.*, $Ax \neq b$)

linearizing optimality conditions at infeasible x (with $x \in \mathbf{dom} f$) gives

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ w \end{bmatrix} = -\begin{bmatrix} \nabla f(x) \\ Ax - b \end{bmatrix}$$
(1)

primal-dual interpretation

• write optimality condition as r(y) = 0, where

$$y = (x, \nu),$$
 $r(y) = (\nabla f(x) + A^T \nu, Ax - b)$

• linearizing r(y) = 0 gives $r(y + \Delta y) \approx r(y) + Dr(y)\Delta y = 0$:

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ \Delta \nu_{\rm nt} \end{bmatrix} = -\begin{bmatrix} \nabla f(x) + A^T \nu \\ Ax - b \end{bmatrix}$$

same as (1) with $w =
u + \Delta
u_{
m nt}$

Infeasible start Newton method

given starting point $x \in \text{dom } f$, ν , tolerance $\epsilon > 0$, $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$. repeat

1. Compute primal and dual Newton steps $\Delta x_{
m nt}$, $\Delta
u_{
m nt}$.

2. Backtracking line search on
$$||r||_2$$
.
 $t := 1$.
while $||r(x + t\Delta x_{nt}, \nu + t\Delta \nu_{nt})||_2 > (1 - \alpha t)||r(x, \nu)||_2$, $t := \beta t$.
3. Update. $x := x + t\Delta x_{nt}$, $\nu := \nu + t\Delta \nu_{nt}$.
until $Ax = b$ and $||r(x, \nu)||_2 \le \epsilon$.

- not a descent method: $f(x^{(k+1)}) > f(x^{(k)})$ is possible
- directional derivative of $||r(y)||_2^2$ in direction $\Delta y = (\Delta x_{\rm nt}, \Delta \nu_{\rm nt})$ is

$$\frac{d}{dt} \|r(y + \Delta y)\|_2 \Big|_{t=0} = -\|r(y)\|_2$$

Solving KKT systems

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = -\begin{bmatrix} g \\ h \end{bmatrix}$$

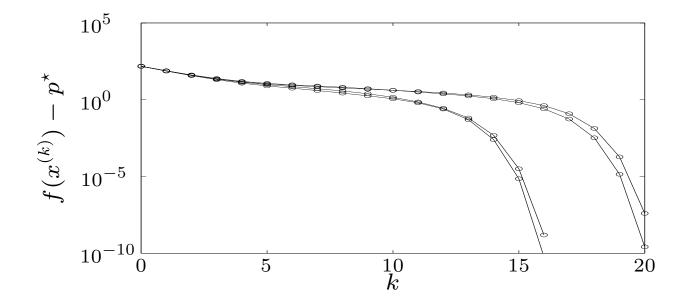
solution methods

- $\mathsf{L}\mathsf{D}\mathsf{L}^\mathsf{T}$ factorization
- elimination (if *H* nonsingular)

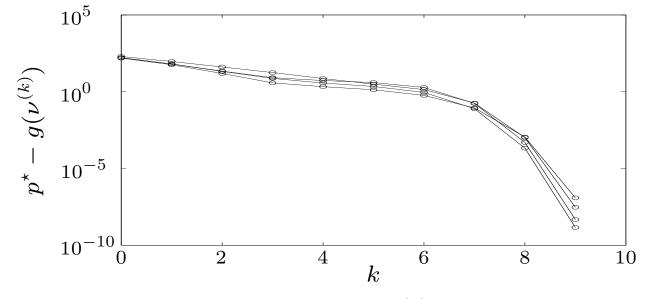
$$AH^{-1}A^Tw = h - AH^{-1}g, \qquad Hv = -(g + A^Tw)$$

• elimination with singular H: write as

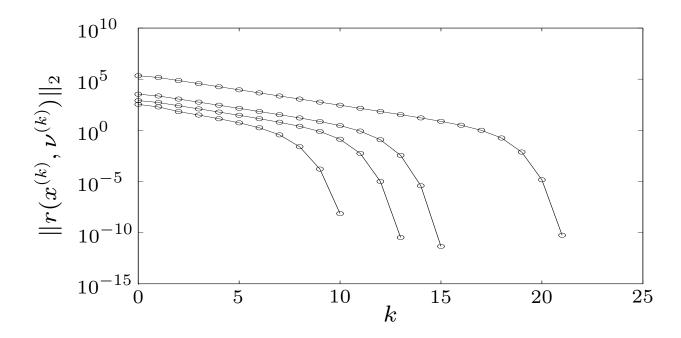
$$\begin{bmatrix} H + A^T Q A & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = -\begin{bmatrix} g + A^T Q h \\ h \end{bmatrix}$$


with $Q \succeq 0$ for which $H + A^T Q A \succ 0$, and apply elimination

Equality constrained analytic centering


primal problem: minimize $-\sum_{i=1}^{n} \log x_i$ subject to Ax = bdual problem: maximize $-b^T \nu + \sum_{i=1}^{n} \log(A^T \nu)_i + n$

three methods for an example with $A \in \mathbf{R}^{100 \times 500}$, different starting points


1. Newton method with equality constraints (requires $x^{(0)} \succ 0$, $Ax^{(0)} = b$)

2. Newton method applied to dual problem (requires $A^T \nu^{(0)} \succ 0$)

3. infeasible start Newton method (requires $x^{(0)} \succ 0$)

complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

$$\begin{bmatrix} \operatorname{\mathbf{diag}}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ w \end{bmatrix} = \begin{bmatrix} \operatorname{\mathbf{diag}}(x)^{-1} \mathbb{1}_{d,d} \\ 0 \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = b$

2. solve Newton system $A \operatorname{diag}(A^T \nu)^{-2} A^T \Delta \nu = -b + A \operatorname{diag}(A^T \nu)^{-1} \mathbb{1}_{d,d}$

3. use block elimination to solve KKT system

$$\begin{bmatrix} \operatorname{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \nu \end{bmatrix} = \begin{bmatrix} \operatorname{diag}(x)^{-1} \mathbb{1}_{d,d} \\ Ax - b \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = 2Ax - b$

conclusion: in each case, solve $ADA^Tw = h$ with D positive diagonal

Network flow optimization

minimize
$$\sum_{i=1}^{n} \phi_i(x_i)$$

subject to $Ax = b$

- directed graph with n arcs, p+1 nodes
- x_i : flow through arc i; ϕ_i : cost flow function for arc i (with $\phi''_i(x) > 0$)
- node-incidence matrix $\tilde{A} \in \mathbf{R}^{(p+1) \times n}$ defined as

$$\tilde{A}_{ij} = \begin{cases} 1 & \text{arc } j \text{ leaves node } i \\ -1 & \text{arc } j \text{ enters node } i \\ 0 & \text{otherwise} \end{cases}$$

- reduced node-incidence matrix $A \in \mathbf{R}^{p \times n}$ is \tilde{A} with last row removed
- $b \in \mathbf{R}^p$ is (reduced) source vector
- $\operatorname{\mathbf{Rank}} A = p$ if graph is connected

KKT system

$$\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = - \left[\begin{array}{c} g \\ h \end{array}\right]$$

- $H = \operatorname{diag}(\phi_1''(x_1), \dots, \phi_n''(x_n))$, positive diagonal
- solve via elimination:

$$AH^{-1}A^Tw = h - AH^{-1}g, \qquad Hv = -(g + A^Tw)$$

sparsity pattern of coefficient matrix is given by graph connectivity

$$\begin{split} (AH^{-1}A^T)_{ij} \neq 0 & \iff (AA^T)_{ij} \neq 0 \\ & \iff \text{ nodes } i \text{ and } j \text{ are connected by an arc} \end{split}$$

The real deal: General Convex Problems

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- complexity analysis via self-concordance
- generalized inequalities

Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, \dots, m$ (1
 $Ax = b$

- f_i convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{\mathbf{Rank}} A = p$
- we assume p^{\star} is finite and attained
- we assume problem is strictly feasible: there exists \tilde{x} with

$$\tilde{x} \in \operatorname{\mathbf{dom}} f_0, \qquad f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, \qquad A\tilde{x} = b$$

hence, strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$

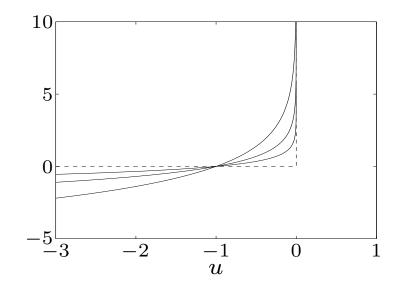
subject to $Fx \leq g$
 $Ax = b$

with dom $f_0 = \mathbf{R}_{++}^n$

• differentiability may require reformulating the problem, e.g., piecewise-linear minimization or ℓ_{∞} -norm approximation via LP

Logarithmic barrier

reformulation of (1) via indicator function:


minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

where $I_{-}(u) = 0$ if $u \leq 0$, $I_{-}(u) = \infty$ otherwise (indicator function of **R**₋)

approximation via logarithmic barrier

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

- an equality constrained problem
- for t > 0, $-(1/t)\log(-u)$ is a smooth approximation of I_-
- approximation improves as $t \to \infty$

CO&ML

logarithmic barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \mathbf{dom} \,\phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}$$

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

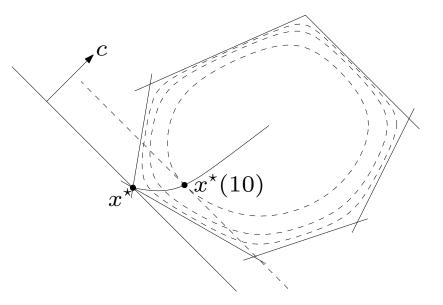
$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Central path

• for t > 0, define $x^{\star}(t)$ as the solution of

minimize $tf_0(x) + \phi(x)$ subject to Ax = b


(for now, assume $x^{\star}(t)$ exists and is unique for each t > 0)

• central path is $\{x^{\star}(t) \mid t > 0\}$

example: central path for an LP

minimize $c^T x$ subject to $a_i^T x \leq b_i, \quad i = 1, \dots, 6$

hyperplane $c^T x = c^T x^\star(t)$ is tangent to level curve of ϕ through $x^\star(t)$

Dual points on central path

 $x = x^{\star}(t)$ if there exists a w such that

$$t\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0, \qquad Ax = b$$

• therefore, $x^{\star}(t)$ minimizes the Lagrangian

$$L(x,\lambda^{\star}(t),\nu^{\star}(t)) = f_0(x) + \sum_{i=1}^m \lambda_i^{\star}(t)f_i(x) + \nu^{\star}(t)^T (Ax - b)$$

where we define $\lambda_i^\star(t) = 1/(-tf_i(x^\star(t)) \text{ and } \nu^\star(t) = w/t$

• this confirms the intuitive idea that $f_0(x^*(t)) \to p^*$ if $t \to \infty$:

$$p^{\star} \geq g(\lambda^{\star}(t), \nu^{\star}(t))$$

= $L(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t))$
= $f_0(x^{\star}(t)) - m/t$

Interpretation via KKT conditions

$$x=x^{\star}(t)$$
 , $\lambda=\lambda^{\star}(t)$, $\nu=\nu^{\star}(t)$ satisfy

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, Ax = b
- 2. dual constraints: $\lambda \succeq 0$
- 3. approximate complementary slackness: $-\lambda_i f_i(x) = 1/t$, $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

Force field interpretation

centering problem (for problem with no equality constraints)

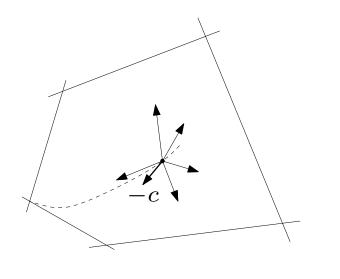
minimize
$$tf_0(x) - \sum_{i=1}^{m} \log(-f_i(x))$$

force field interpretation

- $tf_0(x)$ is potential of force field $F_0(x) = -t\nabla f_0(x)$
- $-\log(-f_i(x))$ is potential of force field $F_i(x) = (1/f_i(x))\nabla f_i(x)$

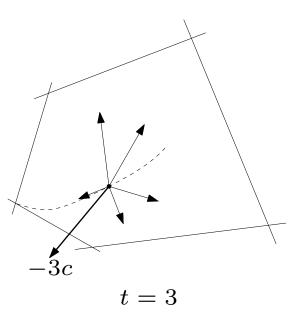
the forces balance at $x^{\star}(t)$:

$$F_0(x^{\star}(t)) + \sum_{i=1}^m F_i(x^{\star}(t)) = 0$$


example

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$


- objective force field is constant: $F_0(x) = -tc$
- constraint force field decays as inverse distance to constraint hyperplane:

$$F_i(x) = \frac{-a_i}{b_i - a_i^T x}, \qquad \|F_i(x)\|_2 = \frac{1}{\mathbf{dist}(x, \mathcal{H}_i)}$$

where $\mathcal{H}_i = \{x \mid a_i^T x = b_i\}$

t = 1

Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$. repeat

- 1. Centering step. Compute $x^{\star}(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. *Update.* $x := x^{\star}(t)$.
- 3. Stopping criterion. quit if $m/t < \epsilon$.
- 4. Increase t. $t := \mu t$.

- terminates with $f_0(x) p^* \le \epsilon$ (stopping criterion follows from $f_0(x^*(t)) p^* \le m/t$)
- centering usually done using Newton's method, starting at current \boldsymbol{x}
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu = 10-20$
- several heuristics for choice of $t^{(0)}$

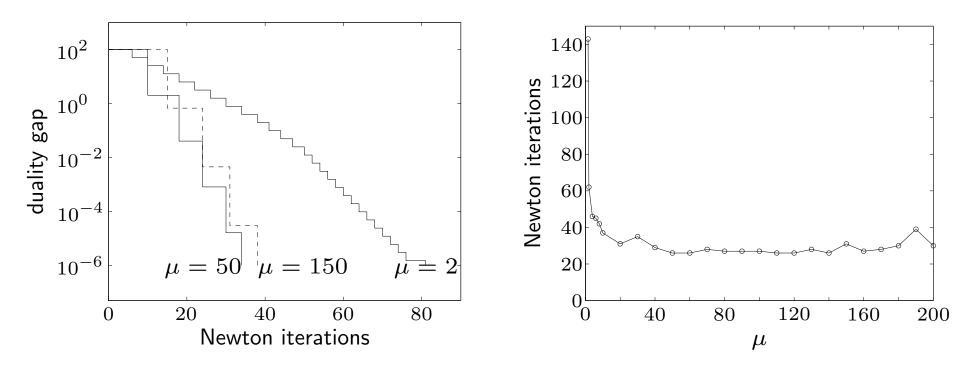
Convergence analysis

number of outer (centering) iterations: exactly

 $\left\lceil \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$

plus the initial centering step (to compute $x^{\star}(t^{(0)})$)

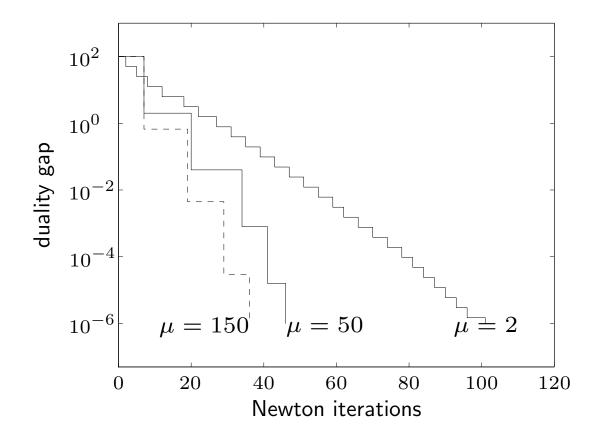
centering problem


```
minimize tf_0(x) + \phi(x)
```

see convergence analysis of Newton's method

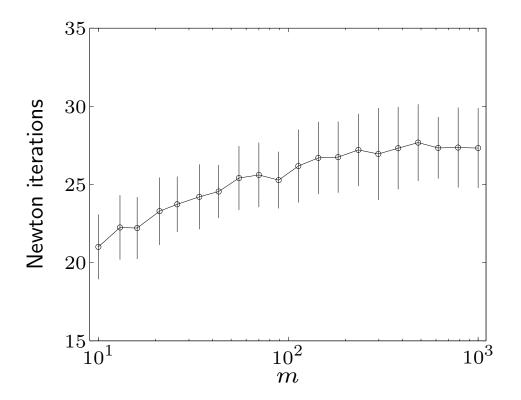
- $tf_0 + \phi$ must have closed sublevel sets for $t \ge t^{(0)}$
- classical analysis requires strong convexity, Lipschitz condition
- analysis via self-concordance requires self-concordance of $tf_0 + \phi$

Examples


inequality form LP (m = 100 inequalities, n = 50 variables)

- starts with x on central path ($t^{(0)} = 1$, duality gap 100)
- terminates when $t = 10^8$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \geq 10$

geometric program (m = 100 inequalities and n = 50 variables)


minimize
$$\log \left(\sum_{k=1}^{5} \exp(a_{0k}^T x + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{5} \exp(a_{ik}^T x + b_{ik}) \right) \le 0, \quad i = 1, \dots, m$

family of standard LPs ($A \in \mathbb{R}^{m \times 2m}$)

minimize
$$c^T x$$

subject to $Ax = b$, $x \succeq 0$

 $m = 10, \ldots, 1000$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100:1 ratio

CO&ML

Feasibility and phase I methods

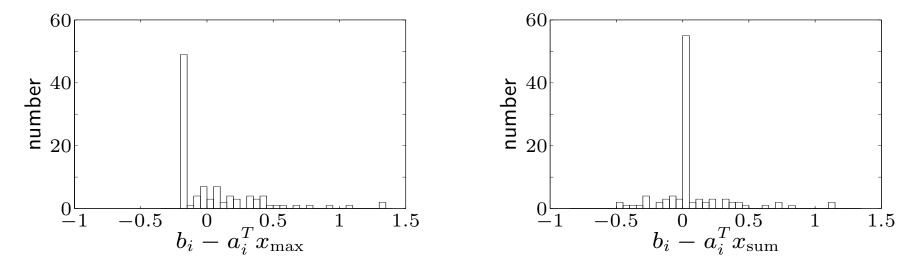
feasibility problem: find x such that

$$f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b \tag{2}$$

phase I: computes strictly feasible starting point for barrier method

basic phase I method

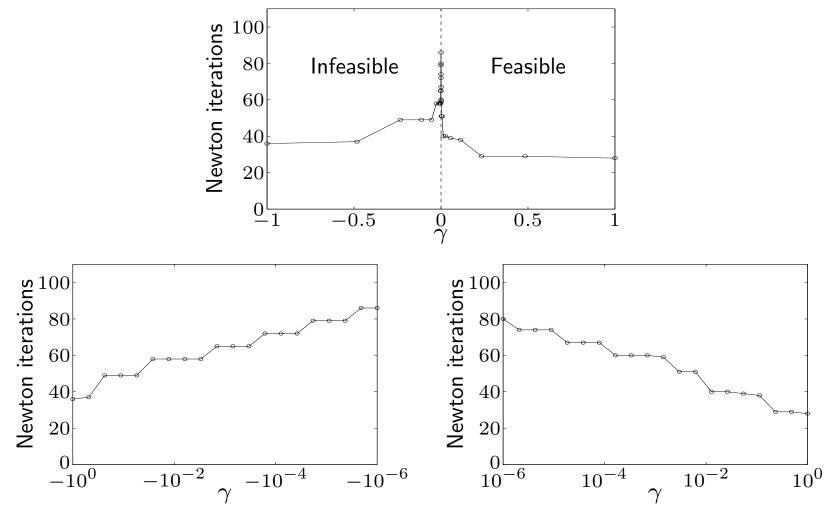
minimize (over
$$x, s$$
) s
subject to $f_i(x) \le s, \quad i = 1, \dots, m$ (3)
 $Ax = b$


- if x, s feasible, with s < 0, then x is strictly feasible for (2)
- if optimal value \bar{p}^{\star} of (3) is positive, then problem (2) is infeasible
- if $\bar{p}^{\star} = 0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^{\star} = 0$ and not attained, then problem (2) is infeasible

sum of infeasibilities phase I method

minimize
$$\mathbb{1}_{d,d}^T s$$

subject to $s \succeq 0$, $f_i(x) \leq s_i$, $i = 1, \dots, m$
 $Ax = b$


for infeasible problems, produces a solution that satisfies many more inequalities than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

left: basic phase I solution; satisfies 39 inequalities right: sum of infeasibilities phase I solution; satisfies 79 solutions **example:** family of linear inequalities $Ax \preceq b + \gamma \Delta b$

- data chosen to be strictly feasible for $\gamma > 0$, infeasible for $\gamma \le 0$
- use basic phase I, terminate when s < 0 or dual objective is positive

number of iterations roughly proportional to $\log(1/|\gamma|)$

Complexity analysis via self-concordance

same assumptions as on page 49, plus:

- sublevel sets (of f_0 , on the feasible set) are bounded
- $tf_0 + \phi$ is self-concordant with closed sublevel sets

second condition

- holds for LP, QP, QCQP
- may require reformulating the problem, e.g.,

 $\begin{array}{lll} \text{minimize} & \sum_{i=1}^{n} x_i \log x_i & \longrightarrow & \text{minimize} & \sum_{i=1}^{n} x_i \log x_i \\ \text{subject to} & Fx \leq g & & \text{subject to} & Fx \leq g, & x \geq 0 \end{array}$

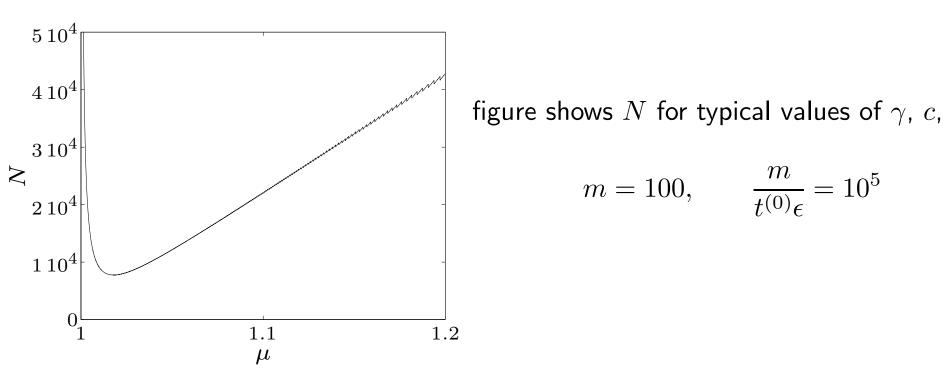
 needed for complexity analysis; barrier method works even when self-concordance assumption does not apply Newton iterations per centering step: from self-concordance theory

$$\# \text{Newton iterations} \leq \frac{\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)}{\gamma} + c$$

- bound on effort of computing $x^+ = x^*(\mu t)$ starting at $x = x^*(t)$
- γ , c are constants (depend only on Newton algorithm parameters)
- from duality (with $\lambda = \lambda^*(t)$, $\nu = \nu^*(t)$):

$$\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)$$

$$= \mu t f_0(x) - \mu t f_0(x^+) + \sum_{i=1}^m \log(-\mu t \lambda_i f_i(x^+)) - m \log \mu$$


$$\leq \mu t f_0(x) - \mu t f_0(x^+) - \mu t \sum_{i=1}^m \lambda_i f_i(x^+) - m - m \log \mu$$

$$\leq \mu t f_0(x) - \mu t g(\lambda, \nu) - m - m \log \mu$$

$$= m(\mu - 1 - \log \mu)$$

total number of Newton iterations (excluding first centering step)

$$\# \text{Newton iterations} \le N = \left\lceil \frac{\log(m/(t^{(0)}\epsilon))}{\log \mu} \right\rceil \left(\frac{m(\mu - 1 - \log \mu)}{\gamma} + c \right)$$

- confirms trade-off in choice of μ
- in practice, #iterations is in the tens; not very sensitive for $\mu \ge 10$

polynomial-time complexity of barrier method

• for
$$\mu = 1 + 1/\sqrt{m}$$
:
$$N = O\left(\sqrt{m}\log\left(\frac{m/t^{(0)}}{\epsilon}\right)\right)$$

- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops

this choice of μ optimizes worst-case complexity; in practice we choose μ fixed ($\mu=10,\ldots,20)$

Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$. repeat

- 1. Centering step. Compute $x^{\star}(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. *Update.* $x := x^{\star}(t)$.
- 3. Stopping criterion. quit if $(\sum_i \theta_i)/t < \epsilon$.
- 4. Increase t. $t := \mu t$.

- only difference is duality gap m/t on central path is replaced by $\sum_i \theta_i/t$
- number of outer iterations:

$$\left\lceil \frac{\log((\sum_i \theta_i) / (\epsilon t^{(0)}))}{\log \mu} \right\rceil$$