
Convex Optimization & Machine Learning

Algorithms

mcuturi@i.kyoto-u.ac.jp

Most slides in this lecture are taken from

CO&ML 1

http://www.stanford.edu/~boyd/cvxbook/

Unconstrained

Convex Optimization

Algorithms

• terminology and assumptions

• gradient descent method

• steepest descent method

• Newton’s method

• self-concordant functions

• implementation

CO&ML 2

Unconstrained minimization

minimize f(x)

• f convex, twice continuously differentiable (hence dom f open)

• we assume optimal value p⋆ = infx f(x) is attained (and finite)

unconstrained minimization methods

• produce sequence of points x(k) ∈ dom f , k = 0, 1, . . . with

f(x(k)) → p⋆

• can be interpreted as iterative methods for solving optimality condition

∇f(x⋆) = 0

CO&ML 3

Initial point and sublevel set

algorithms in this lecture require a starting point x(0) such that

• x(0) ∈ dom f

• sublevel set S = {x | f(x) ≤ f(x(0))} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

• equivalent to condition that epi f is closed

• true if dom f = Rn

• true if f(x) → ∞ as x→ ddom f

examples of differentiable functions with closed sublevel sets:

f(x) = log(
m∑

i=1

exp(aTi x+ bi)), f(x) = −
m∑

i=1

log(bi − aTi x)

CO&ML 4

Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

∇2f(x) � mI for all x ∈ S

implications

• for x, y ∈ S,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖x− y‖22

hence, S is bounded

• p⋆ > −∞, and for x ∈ S,

f(x)− p⋆ ≤ 1

2m
‖∇f(x)‖22

useful as stopping criterion (if you know m)

CO&ML 5

Strong convexity: Proof of f(x)− p⋆ ≤ 1
2m‖∇f(x)‖22

• By convexity f(y) ≥ f(x) +∇f(x)T (y − x) + m
2 ‖x− y‖22

• the RHS is a quadratic form in u
def
= y − x::: m

2 u
Tu+∇f(x)Tu+ f(x)

• Recall that a quadratic form Q(u) = u
TPu+ qTu+ c

◦ has gradient ∇Q(u) = 2Pu+ p
◦ is thus minimal for 2Pu = −p, that is u = −1

2P
−1p

• In this case, the r.h.s is thus minimal for y − x = −1
2 × 2

m∇f(x) = − 1
m∇f(x)

• We obtain the bound

f(y) ≥ f(x) +∇f(x)T
(
− 1

m
∇f(x)

)
+
m

2
× ‖ − 1

m
∇f(x)‖22

f(y) ≥ f(x)− 1

2m
‖∇f(x)‖22

• This bound is valid for any couple of points (x, y), in particular if f(y) = p⋆:

f(x)− p⋆ ≤ 1

2m
‖∇f(x)‖22.

CO&ML 6

Descent methods

CO&ML 7

Descent methods

x(k+1) = x(k) + t(k)∆x(k) with f(x(k+1)) < f(x(k))

• lighter notations: x+ = x+ t∆x ; x := x+ t∆x (insist on iterative process)

• ∆x is the step, or search direction. Can be any vector

• t is the step size, or step length which scales the step.

CO&ML 8

Descent methods

A descent method means that f(x(k+1)) < f(x(k))

• from convexity, we have that f(y) ≥ f(x) +∇f(x)T (y − x).

• Using this inequality with y = x+ t∆x, we get

f(y = x+ t∆x) ≥ f(x) + t∇f(x)T (∆x)

• If we need f(x+ t∆x)<f(x) then necessarily

∇f(x)T∆x < 0.

(i.e., ∆x is a descent direction)

CO&ML 9

General Descent methods

given a starting point x ∈ dom f .
repeat

1. Determine a descent direction ∆x.
2. Line search: Choose a step size t > 0.
3. Update: x := x+ t∆x.

until stopping criterion is satisfied.

CO&ML 10

Line search types

• exact line search: set t with the rule

t = argmin
u>0

f(x+ u∆x)

◦ each gradient step involves another optimization problem!
◦ only one variable, but usually too costly to solve exactly.
◦ in most cases, better to look for just a “good enough” step.

CO&ML 11

Line search types

• backtracking line search

◦ two parameters: α ∈ (0, 1/2), β ∈ (0, 1)

◦ starting at t = 1, repeat t := βt until

f(x+ t∆x) < f(x) + αt∇f(x)T∆x

◦ graphical interpretation: backtrack until t ≤ t0

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T∆xf(x) + t∇f(x)T∆x

CO&ML 12

Gradient descent method

general descent method with ∆x = −∇f(x)

given a starting point x ∈ dom f .
repeat

1. ∆x := −∇f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

• stopping criterion usually of the form ‖∇f(x)‖2 ≤ ǫ

• convergence result: for strongly convex f ,

f(x(k))− p⋆ ≤ ck(f(x(0))− p⋆)

c ∈ (0, 1) depends on m, x(0), line search type

• very simple, but often very slow; rarely used in practice

CO&ML 13

quadratic problem in R2

f(x) = (1/2)(x21 + γx22) (γ > 0)

with exact line search, starting at x(0) = (γ, 1):

x
(k)
1 = γ

(
γ − 1

γ + 1

)k

, x
(k)
2 =

(
−γ − 1

γ + 1

)k

• very slow if γ ≫ 1 or γ ≪ 1

• example for γ = 10:

x1

x
2

x(0)

x(1)

−10 0 10

−4

0

4

CO&ML 14

nonquadratic example

f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

x(0)

x(1)

x(2)

x(0)

x(1)

backtracking line search exact line search

CO&ML 15

a problem in R100

f(x) = cTx−
500∑

i=1

log(bi − aTi x)

f−
fs

t

k

exact l.s.

backtracking l.s.

0 50 100 150 200
10−4

10−2

100

102

104

‘linear’ convergence, i.e., a straight line on a semilog plot

CO&ML 16

Steepest descent method

normalized steepest descent direction (at x, for norm ‖ · ‖):

∆xnsd = argmin{∇f(x)Tv | ‖v‖ = 1}

interpretation: for small v,

f(x+ v) ≈ f(x) +∇f(x)Tv

direction ∆xnsd is (unit-norm) step with most negative directional derivative

unnormalized steepest descent direction

∆xsd = ‖∇f(x)‖∗∆xnsd

satisfies ∇f(x)T∆xsd = −‖∇f(x)‖2∗
steepest descent method

• general descent method with ∆x = ∆xsd

• convergence properties similar to gradient descent

CO&ML 17

examples

• Euclidean norm: ∆xsd = −∇f(x)
• quadratic norm ‖x‖P = (xTPx)1/2 (P ∈ Sn

++): ∆xsd = −P−1∇f(x)
• ℓ1-norm: ∆xsd = −(∂f(x)/∂xi)ei, where |∂f(x)/∂xi| = ‖∇f(x)‖∞

unit balls and normalized steepest descent directions for a quadratic norm and the
ℓ1-norm:

−∇f(x)

∆xnsd

−∇f(x)

∆xnsd

CO&ML 18

choice of norm for steepest descent

Consider again the function f(x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

−1

−0.8

−0.6

−0.4

−0.2

0

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

2.5

3

3.5

4

4.5

5

5.5

6

x

exp(x+3 y−0.1)+exp(x−3 y−0.1)+exp(−x−0.1)

y

x

y

exp(x+3 y−0.1)+exp(x−3 y−0.1)+exp(−x−0.1)

−1 −0.8 −0.6 −0.4 −0.2 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

• We consider two different elliptic norms to define the nsd:

P1 =

[
2 0
0 8

]
, P2 =

[
8 0
0 2

]

CO&ML 19

choice of norm for steepest descent

x(0)

x(1)
x(2)

x(0)

x(1)

x(2)

• steepest descent with backtracking line search, left ‖·‖P1, right ‖·‖P2,

• ellipses show {x | ‖x− x(k)‖P = 1}

steepest descent with quadratic norm ‖ · ‖P
m

simple gradient descent with ‖·‖2 after change of variables x̄ = P 1/2x

• shows choice of P has strong effect on speed of convergence

CO&ML 20

Newton step (2nd Order)

∆xnt = −∇2f(x)−1∇f(x)

interpretations

• x+∆xnt minimizes second order approximation

f̂(x+ v) = f(x) +∇f(x)Tv + 1

2
vT∇2f(x)v

• x+∆xnt solves linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) +∇2f(x)v = 0

f

f̂

(x, f(x))

(x + ∆xnt, f(x + ∆xnt))

f ′

f̂ ′

(x, f ′(x))

(x + ∆xnt, f
′(x + ∆xnt))

CO&ML 21

• ∆xnt is steepest descent direction at x in local Hessian norm

‖u‖∇2f(x) =
(
uT∇2f(x)u

)1/2

x

x + ∆xnt

x + ∆xnsd

dashed lines are contour lines of f ; ellipse is {x+ v | vT∇2f(x)v = 1}
arrow shows −∇f(x)

CO&ML 22

Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

a measure of the proximity of x to x⋆

properties

• gives an estimate of f(x)− p⋆, using quadratic approximation f̂ :

f(x)− inf
y
f̂(y) =

1

2
λ(x)2

• equal to the norm of the Newton step in the quadratic Hessian norm

λ(x) =
(
∆xnt∇2f(x)∆xnt

)1/2

• directional derivative in the Newton direction: ∇f(x)T∆xnt = −λ(x)2

• affine invariant (unlike ‖∇f(x)‖2)

CO&ML 23

Newton’s method

given a starting point x ∈ dom f , tolerance ǫ > 0.
repeat

1. Compute the Newton step and decrement.

∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).
2. Stopping criterion. quit if λ2/2 ≤ ǫ.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x+ t∆xnt.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f̃(y) = f(Ty) with starting point y(0) = T−1x(0) are

y(k) = T−1x(k)

CO&ML 24

Classical convergence analysis

assumptions

• f strongly convex on S with constant m

• ∇2f is Lipschitz continuous on S, with constant L > 0:

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants η ∈ (0,m2/L), γ > 0 such that

• if ‖∇f(x)‖2 ≥ η, then f(x(k+1))− f(x(k)) ≤ −γ
• if ‖∇f(x)‖2 < η, then

L

2m2
‖∇f(x(k+1))‖2 ≤

(
L

2m2
‖∇f(x(k))‖2

)2

CO&ML 25

damped Newton phase (‖∇f(x)‖2 ≥ η)

• most iterations require backtracking steps

• function value decreases by at least γ

• if p⋆ > −∞, this phase ends after at most (f(x(0))− p⋆)/γ iterations

quadratically convergent phase (‖∇f(x)‖2 < η)

• all iterations use step size t = 1

• ‖∇f(x)‖2 converges to zero quadratically: if ‖∇f(x(k))‖2 < η, then

L

2m2
‖∇f(xl)‖2 ≤

(
L

2m2
‖∇f(xk)‖2

)2l−k

≤
(
1

2

)2l−k

, l ≥ k

CO&ML 26

conclusion: number of iterations until f(x)− p⋆ ≤ ǫ is bounded above by

f(x(0))− p⋆

γ
+ log2 log2(ǫ0/ǫ)

• γ, ǫ0 are constants that depend on m, L, x(0)

• second term is small (of the order of 6) and almost constant for practical
purposes

• in practice, constants m, L (hence γ, ǫ0) are usually unknown

• provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)

CO&ML 27

Examples

example in R2

x(0)

x(1)

k

f
(x

(k
))

−
p
⋆

0 1 2 3 4 5
10−15

10−10

10−5

100

105

• backtracking parameters α = 0.1, β = 0.7

• converges in only 5 steps

• quadratic local convergence

CO&ML 28

example in R100 (page 16)

f−
fs

t

k

exact line search

backtracking

0 2 4 6 8 10
10−15

10−10

10−5

100

105

k

st
ep

si
ze

t(
k
)

exact line search

backtracking

0 2 4 6 8
0

0.5

1

1.5

2

• backtracking parameters α = 0.01, β = 0.5

• backtracking line search almost as fast as exact l.s. (and much simpler)

• clearly shows two phases in algorithm

CO&ML 29

example in R10000 (with sparse ai)

f(x) = −
10000∑

i=1

log(1− x2i)−
100000∑

i=1

log(bi − aTi x)

f−
fs

t

k
0 5 10 15 20

10−5

100

105

• backtracking parameters α = 0.01, β = 0.5.

• performance similar as for small examples

CO&ML 30

A few words on Self-concordance

shortcomings of classical convergence analysis

• depends on unknown constants (m, L, . . .)

• bound is not affinely invariant, although Newton’s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

• does not depend on any unknown constants

• gives affine-invariant bound

• applies to special class of convex functions (‘self-concordant’ functions)

• developed to analyze polynomial-time interior-point methods for convex
optimization

• Please check Boyd & Vandenberghe book for a review!

CO&ML 31

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

H∆x = g

where H = ∇2f(x), g = −∇f(x)

via Cholesky factorization

H = LLT , ∆xnt = L−TL−1g, λ(x) = ‖L−1g‖2

• cost (1/3)n3 flops for unstructured system

• cost ≪ (1/3)n3 if H sparse, banded

CO&ML 32

example of dense Newton system with structure

f(x) =
n∑

i=1

ψi(xi) + ψ0(Ax+ b), H = D +ATH0A

• assume A ∈ Rp×n, dense, with p≪ n

• D diagonal with diagonal elements ψ′′
i (xi); H0 = ∇2ψ0(Ax+ b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n3)

method 2: factor H0 = L0L
T
0 ; write Newton system as

D∆x+ATL0w = −g, LT
0A∆x− w = 0

eliminate ∆x from first equation; compute w and ∆x from

(I + LT
0AD

−1ATL0)w = −LT
0AD

−1g, D∆x = −g −ATL0w

cost: 2p2n (dominated by computation of LT
0AD

−1AL0)

CO&ML 33

Convex Optimization Algorithms With

Equality Constraints

• equality constrained minimization

• Newton’s method with equality constraints

• infeasible start Newton method

• implementation

CO&ML 34

Equality constrained minimization

minimize f(x)
subject to Ax = b

• f convex, twice continuously differentiable

• A ∈ Rp×n with RankA = p

• we assume p⋆ is finite and attained

optimality conditions: x⋆ is optimal iff there exists a ν⋆ such that

∇f(x⋆) +ATν⋆ = 0, Ax⋆ = b

CO&ML 35

equality constrained quadratic minimization (with P ∈ Sn
+)

minimize (1/2)xTPx+ qTx+ r
subject to Ax = b

optimality condition: [
P AT

A 0

] [
x⋆

ν⋆

]
=

[
−q
b

]

• coefficient matrix is called KKT matrix

• KKT matrix is nonsingular if and only if

Ax = 0, x 6= 0 =⇒ xTPx > 0

• equivalent condition for nonsingularity: P +ATA ≻ 0

CO&ML 36

Newton step

Newton step of f at feasible x is given by (1st block) of solution of

[
∇2f(x) AT

A 0

] [
∆xnt
w

]
=

[
−∇f(x)

0

]

interpretations

• ∆xnt solves second order approximation (with variable v)

minimize f̂(x+ v) = f(x) +∇f(x)Tv + (1/2)vT∇2f(x)v
subject to A(x+ v) = b

• equations follow from linearizing optimality conditions

∇f(x+∆xnt) +ATw = 0, A(x+∆xnt) = b

CO&ML 37

Newton decrement

λ(x) =
(
∆xTnt∇2f(x)∆xnt

)1/2
=

(
−∇f(x)T∆xnt

)1/2

properties

• gives an estimate of f(x)− p⋆ using quadratic approximation f̂ :

f(x)− inf
Ay=b

f̂(y) =
1

2
λ(x)2

• directional derivative in Newton direction:

d

dt
f(x+ t∆xnt)

∣∣∣∣
t=0

= −λ(x)2

• in general, λ(x) 6=
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

CO&ML 38

Newton’s method with equality constraints

given starting point x ∈ dom f with Ax = b, tolerance ǫ > 0.

repeat
1. Compute the Newton step and decrement ∆xnt, λ(x).
2. Stopping criterion. quit if λ2/2 ≤ ǫ.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x+ t∆xnt.

• a feasible descent method: x(k) feasible and f(x(k+1)) < f(x(k))

• affine invariant

CO&ML 39

Newton step at infeasible points

extends to infeasible x (i.e., Ax 6= b)

linearizing optimality conditions at infeasible x (with x ∈ dom f) gives

[
∇2f(x) AT

A 0

] [
∆xnt
w

]
= −

[
∇f(x)
Ax− b

]
(1)

primal-dual interpretation

• write optimality condition as r(y) = 0, where

y = (x, ν), r(y) = (∇f(x) +ATν,Ax− b)

• linearizing r(y) = 0 gives r(y +∆y) ≈ r(y) +Dr(y)∆y = 0:

[
∇2f(x) AT

A 0

] [
∆xnt
∆νnt

]
= −

[
∇f(x) +ATν

Ax− b

]

same as (1) with w = ν +∆νnt

CO&ML 40

Infeasible start Newton method

given starting point x ∈ dom f , ν, tolerance ǫ > 0, α ∈ (0, 1/2), β ∈ (0, 1).

repeat
1. Compute primal and dual Newton steps ∆xnt, ∆νnt.
2. Backtracking line search on ‖r‖2.

t := 1.
while ‖r(x+ t∆xnt, ν + t∆νnt)‖2 > (1− αt)‖r(x, ν)‖2, t := βt.

3. Update. x := x+ t∆xnt, ν := ν + t∆νnt.
until Ax = b and ‖r(x, ν)‖2 ≤ ǫ.

• not a descent method: f(x(k+1)) > f(x(k)) is possible

• directional derivative of ‖r(y)‖22 in direction ∆y = (∆xnt,∆νnt) is

d

dt
‖r(y +∆y)‖2

∣∣∣∣
t=0

= −‖r(y)‖2

CO&ML 41

Solving KKT systems

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]

solution methods

• LDLT factorization

• elimination (if H nonsingular)

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

• elimination with singular H: write as

[
H +ATQA AT

A 0

] [
v
w

]
= −

[
g +ATQh

h

]

with Q � 0 for which H +ATQA ≻ 0, and apply elimination

CO&ML 42

Equality constrained analytic centering

primal problem: minimize −∑n
i=1 log xi subject to Ax = b

dual problem: maximize −bTν +∑n
i=1 log(A

Tν)i + n

three methods for an example with A ∈ R100×500, different starting points

1. Newton method with equality constraints (requires x(0) ≻ 0, Ax(0) = b)

k

f
(x

(k
))

−
p
⋆

0 5 10 15 2010−10

10−5

100

105

CO&ML 43

2. Newton method applied to dual problem (requires ATν(0) ≻ 0)

k

p
⋆
−

g
(ν

(k
))

0 2 4 6 8 1010−10

10−5

100

105

3. infeasible start Newton method (requires x(0) ≻ 0)

k

‖
r
(x

(k
)
,
ν
(k

))
‖
2

0 5 10 15 20 2510−15

10−10

10−5

100

105

1010

CO&ML 44

complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

[
diag(x)−2 AT

A 0

] [
∆x
w

]
=

[
diag(x)−1

1d,d

0

]

reduces to solving Adiag(x)2ATw = b

2. solve Newton system Adiag(ATν)−2AT∆ν = −b+ Adiag(ATν)−1
1d,d

3. use block elimination to solve KKT system

[
diag(x)−2 AT

A 0

] [
∆x
∆ν

]
=

[
diag(x)−1

1d,d

Ax− b

]

reduces to solving Adiag(x)2ATw = 2Ax− b

conclusion: in each case, solve ADATw = h with D positive diagonal

CO&ML 45

Network flow optimization

minimize
∑n

i=1 φi(xi)
subject to Ax = b

• directed graph with n arcs, p+ 1 nodes

• xi: flow through arc i; φi: cost flow function for arc i (with φ′′i (x) > 0)

• node-incidence matrix Ã ∈ R(p+1)×n defined as

Ãij =





1 arc j leaves node i
−1 arc j enters node i
0 otherwise

• reduced node-incidence matrix A ∈ Rp×n is Ã with last row removed

• b ∈ Rp is (reduced) source vector

• RankA = p if graph is connected

CO&ML 46

KKT system

[
H AT

A 0

] [
v
w

]
= −

[
g
h

]

• H = diag(φ′′1(x1), . . . , φ
′′
n(xn)), positive diagonal

• solve via elimination:

AH−1ATw = h−AH−1g, Hv = −(g +ATw)

sparsity pattern of coefficient matrix is given by graph connectivity

(AH−1AT)ij 6= 0 ⇐⇒ (AAT)ij 6= 0

⇐⇒ nodes i and j are connected by an arc

CO&ML 47

The real deal: General Convex Problems

• inequality constrained minimization

• logarithmic barrier function and central path

• barrier method

• feasibility and phase I methods

• complexity analysis via self-concordance

• generalized inequalities

CO&ML 48

Inequality constrained minimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
(1)

• fi convex, twice continuously differentiable

• A ∈ Rp×n with RankA = p

• we assume p⋆ is finite and attained

• we assume problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi(x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence, strong duality holds and dual optimum is attained

CO&ML 49

Examples

• LP, QP, QCQP, GP

• entropy maximization with linear inequality constraints

minimize
∑n

i=1 xi log xi
subject to Fx � g

Ax = b

with dom f0 = Rn
++

• differentiability may require reformulating the problem, e.g., piecewise-linear
minimization or ℓ∞-norm approximation via LP

CO&ML 50

Logarithmic barrier

reformulation of (1) via indicator function:

minimize f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b

where I−(u) = 0 if u ≤ 0, I−(u) = ∞ otherwise (indicator function of R−)

approximation via logarithmic barrier

minimize f0(x)− (1/t)
∑m

i=1 log(−fi(x))
subject to Ax = b

• an equality constrained problem

• for t > 0, −(1/t) log(−u) is a smooth
approximation of I−

• approximation improves as t→ ∞

u
−3 −2 −1 0 1

−5

0

5

10

CO&ML 51

logarithmic barrier function

φ(x) = −
m∑

i=1

log(−fi(x)), domφ = {x | f1(x) < 0, . . . , fm(x) < 0}

• convex (follows from composition rules)

• twice continuously differentiable, with derivatives

∇φ(x) =

m∑

i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =

m∑

i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑

i=1

1

−fi(x)
∇2fi(x)

CO&ML 52

Central path

• for t > 0, define x⋆(t) as the solution of

minimize tf0(x) + φ(x)
subject to Ax = b

(for now, assume x⋆(t) exists and is unique for each t > 0)

• central path is {x⋆(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx⋆(t) is tangent to level
curve of φ through x⋆(t)

c

x⋆ x⋆(10)

CO&ML 53

Dual points on central path

x = x⋆(t) if there exists a w such that

t∇f0(x) +
m∑

i=1

1

−fi(x)
∇fi(x) +ATw = 0, Ax = b

• therefore, x⋆(t) minimizes the Lagrangian

L(x, λ⋆(t), ν⋆(t)) = f0(x) +
m∑

i=1

λ⋆i (t)fi(x) + ν⋆(t)T (Ax− b)

where we define λ⋆i (t) = 1/(−tfi(x⋆(t)) and ν⋆(t) = w/t

• this confirms the intuitive idea that f0(x
⋆(t)) → p⋆ if t→ ∞:

p⋆ ≥ g(λ⋆(t), ν⋆(t))

= L(x⋆(t), λ⋆(t), ν⋆(t))

= f0(x
⋆(t))−m/t

CO&ML 54

Interpretation via KKT conditions

x = x⋆(t), λ = λ⋆(t), ν = ν⋆(t) satisfy

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, Ax = b

2. dual constraints: λ � 0

3. approximate complementary slackness: −λifi(x) = 1/t, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +
m∑

i=1

λi∇fi(x) +ATν = 0

difference with KKT is that condition 3 replaces λifi(x) = 0

CO&ML 55

Force field interpretation

centering problem (for problem with no equality constraints)

minimize tf0(x)−
∑m

i=1 log(−fi(x))

force field interpretation

• tf0(x) is potential of force field F0(x) = −t∇f0(x)
• − log(−fi(x)) is potential of force field Fi(x) = (1/fi(x))∇fi(x)

the forces balance at x⋆(t):

F0(x
⋆(t)) +

m∑

i=1

Fi(x
⋆(t)) = 0

CO&ML 56

example
minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

• objective force field is constant: F0(x) = −tc
• constraint force field decays as inverse distance to constraint hyperplane:

Fi(x) =
−ai

bi − aTi x
, ‖Fi(x)‖2 =

1

dist(x,Hi)

where Hi = {x | aTi x = bi}

−c

−3c

t = 1 t = 3

CO&ML 57

Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.
2. Update. x := x⋆(t).
3. Stopping criterion. quit if m/t < ǫ.
4. Increase t. t := µt.

• terminates with f0(x)− p⋆ ≤ ǫ (stopping criterion follows from
f0(x

⋆(t))− p⋆ ≤ m/t)

• centering usually done using Newton’s method, starting at current x

• choice of µ involves a trade-off: large µ means fewer outer iterations, more
inner (Newton) iterations; typical values: µ = 10–20

• several heuristics for choice of t(0)

CO&ML 58

Convergence analysis

number of outer (centering) iterations: exactly

⌈
log(m/(ǫt(0)))

log µ

⌉

plus the initial centering step (to compute x⋆(t(0)))

centering problem
minimize tf0(x) + φ(x)

see convergence analysis of Newton’s method

• tf0 + φ must have closed sublevel sets for t ≥ t(0)

• classical analysis requires strong convexity, Lipschitz condition

• analysis via self-concordance requires self-concordance of tf0 + φ

CO&ML 59

Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

Newton iterations

d
u
al
it
y
g
ap

µ = 2µ = 50 µ = 150

0 20 40 60 80

10−6

10−4

10−2

100

102

µ

N
ew

to
n
it
er
at
io
n
s

0 40 80 120 160 200
0

20

40

60

80

100

120

140

• starts with x on central path (t(0) = 1, duality gap 100)

• terminates when t = 108 (gap 10−6)

• centering uses Newton’s method with backtracking

• total number of Newton iterations not very sensitive for µ ≥ 10

CO&ML 60

geometric program (m = 100 inequalities and n = 50 variables)

minimize log
(∑5

k=1 exp(a
T
0kx+ b0k)

)

subject to log
(∑5

k=1 exp(a
T
ikx+ bik)

)
≤ 0, i = 1, . . . ,m

Newton iterations

d
u
al
it
y
g
ap

µ = 2µ = 50µ = 150

0 20 40 60 80 100 120

10−6

10−4

10−2

100

102

CO&ML 61

family of standard LPs (A ∈ Rm×2m)

minimize cTx
subject to Ax = b, x � 0

m = 10, . . . , 1000; for each m, solve 100 randomly generated instances

m

N
ew

to
n
it
er
at
io
n
s

101 102 103
15

20

25

30

35

number of iterations grows very slowly as m ranges over a 100 : 1 ratio

CO&ML 62

Feasibility and phase I methods

feasibility problem: find x such that

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over x, s) s
subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b
(3)

• if x, s feasible, with s < 0, then x is strictly feasible for (2)

• if optimal value p̄⋆ of (3) is positive, then problem (2) is infeasible

• if p̄⋆ = 0 and attained, then problem (2) is feasible (but not strictly);
if p̄⋆ = 0 and not attained, then problem (2) is infeasible

CO&ML 63

sum of infeasibilities phase I method

minimize 1
T
d,ds

subject to s � 0, fi(x) ≤ si, i = 1, . . . ,m
Ax = b

for infeasible problems, produces a solution that satisfies many more inequalities
than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

bi − aT
i xmax

n
u
m
b
er

−1 −0.5 0 0.5 1 1.5
0

20

40

60

n
u
m
b
er

−1 −0.5 0 0.5 1 1.5
0

20

40

60

bi − aT
i xsum

left: basic phase I solution; satisfies 39 inequalities
right: sum of infeasibilities phase I solution; satisfies 79 solutions

CO&ML 64

example: family of linear inequalities Ax � b+ γ∆b

• data chosen to be strictly feasible for γ > 0, infeasible for γ ≤ 0

• use basic phase I, terminate when s < 0 or dual objective is positive

γ

N
ew

to
n
it
er
at
io
n
s

Infeasible Feasible

−1 −0.5 0 0.5 1
0

20

40

60

80

100

γ

N
ew

to
n
it
er
at
io
n
s

−100 −10−2 −10−4 −10−6
0

20

40

60

80

100

γ

N
ew

to
n
it
er
at
io
n
s

10−6 10−4 10−2 100
0

20

40

60

80

100

number of iterations roughly proportional to log(1/|γ|)

CO&ML 65

Complexity analysis via self-concordance

same assumptions as on page 49, plus:

• sublevel sets (of f0, on the feasible set) are bounded

• tf0 + φ is self-concordant with closed sublevel sets

second condition

• holds for LP, QP, QCQP

• may require reformulating the problem, e.g.,

minimize
∑n

i=1 xi log xi
subject to Fx � g

−→ minimize
∑n

i=1 xi log xi
subject to Fx � g, x � 0

• needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply

CO&ML 66

Newton iterations per centering step: from self-concordance theory

#Newton iterations ≤ µtf0(x) + φ(x)− µtf0(x
+)− φ(x+)

γ
+ c

• bound on effort of computing x+ = x⋆(µt) starting at x = x⋆(t)

• γ, c are constants (depend only on Newton algorithm parameters)

• from duality (with λ = λ⋆(t), ν = ν⋆(t)):

µtf0(x) + φ(x)− µtf0(x
+)− φ(x+)

= µtf0(x)− µtf0(x
+) +

m∑

i=1

log(−µtλifi(x+))−m logµ

≤ µtf0(x)− µtf0(x
+)− µt

m∑

i=1

λifi(x
+)−m−m logµ

≤ µtf0(x)− µtg(λ, ν)−m−m logµ

= m(µ− 1− logµ)

CO&ML 67

total number of Newton iterations (excluding first centering step)

#Newton iterations ≤ N =

⌈
log(m/(t(0)ǫ))

logµ

⌉(
m(µ− 1− logµ)

γ
+ c

)

µ

N

1 1.1 1.2
0

1 104

2 104

3 104

4 104

5 104

figure shows N for typical values of γ, c,

m = 100,
m

t(0)ǫ
= 105

• confirms trade-off in choice of µ

• in practice, #iterations is in the tens; not very sensitive for µ ≥ 10

CO&ML 68

polynomial-time complexity of barrier method

• for µ = 1 + 1/
√
m:

N = O

(√
m log

(
m/t(0)

ǫ

))

• number of Newton iterations for fixed gap reduction is O(
√
m)

• multiply with cost of one Newton iteration (a polynomial function of problem
dimensions), to get bound on number of flops

this choice of µ optimizes worst-case complexity; in practice we choose µ fixed
(µ = 10, . . . , 20)

CO&ML 69

Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.
2. Update. x := x⋆(t).
3. Stopping criterion. quit if (

∑
i θi)/t < ǫ.

4. Increase t. t := µt.

• only difference is duality gap m/t on central path is replaced by
∑

i θi/t

• number of outer iterations:

⌈
log((

∑
i θi)/(ǫt

(0)))

logµ

⌉

CO&ML 70

