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Convex optimization problems
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Convex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

• f0, f1, . . . , fm are convex; equality constraints are affine

• often written as

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

important property: feasible set of a convex optimization problem is convex
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Importance of a good formulation

minimize f0(x) = x2
1 + x2

2

subject to f1(x) = x1/(1 + x2
2) ≤ 0

h1(x) = (x1 + x2)
2 = 0

• f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex

• not a convex problem (according to our definition):

◦ f1 is not convex,
◦ h1 is not affine

• equivalent (but not identical) to the convex problem

minimize x2
1 + x2

2

subject to x1 ≤ 0
x1 + x2 = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal and y is optimal with f0(y) < f0(x)

x locally optimal means there is an R > 0 such that

z feasible, ‖z − x‖2 ≤ R =⇒ f0(z) ≥ f0(x)

consider z = θy + (1− θ)x with θ = R/(2‖y − x‖2)

• ‖y − x‖2 > R, so 0 < θ < 1/2

• z is a convex combination of two feasible points, hence also feasible

• ‖z − x‖2 = R/2 and

f0(z) ≤ θf0(x) + (1− θ)f0(y) < f0(x)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

∇f0(x)
T (y − x) ≥ 0 for all feasible y

−∇f0(x)

X
x

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x
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Optimality criterion for differentiable f0

• unconstrained problem: x is optimal if and only if

x ∈ dom f0, ∇f0(x) = 0
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Optimality criterion for differentiable f0

• equality constrained problem

minimize f0(x) subject to Ax = b

x is optimal if and only if there exists a ν such that

x ∈ dom f0, Ax = b, ∇f0(x) + ATν = 0
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Optimality criterion for differentiable f0

• equality constrained problem: x optimal iff there exists a ν such that

x ∈ dom f0, Ax = b, ∇f0(x) + ATν = 0

• Why? Remember ∇f0(x)
T (y − x) ≥ 0 for all feasible y.

• Yet, for any feasible y, ∃ν such that y = x+ ν and Aν = 0.

• For any ν such that Aν = 0 (ν in the null space N (A) of A),

∇f0(x)
Tν ≥ 0

• For ∇f0(x)
T , linear function, to be negative on a subspace, it must be 0.

Hence ∇f0(x) ⊥ N (A).

• This is equivalent to saying, since N (A)⊥ = R(AT ), that there exists ν such
that ∇f0(x) +ATν = 0.
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Optimality criterion for differentiable f0

• minimization over nonnegative orthant

minimize f0(x) subject to x � 0

x is optimal if and only if

x ∈ dom f0, x � 0,

{

∇f0(x)i ≥ 0 xi = 0
∇f0(x)i = 0 xi > 0

• Check p.142 of Boyd & Vandenberghe to see why.
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily obtained
from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

is equivalent to

minimize (over z) f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z
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• introducing equality constraints

minimize f0(A0x+ b0)
subject to fi(Aix+ bi) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . ,m

yi = Aix+ bi, i = 0, 1, . . . ,m

• introducing slack variables for linear inequalities

minimize f0(x)
subject to aTi x ≤ bi, i = 1, . . . ,m

is equivalent to

minimize (over x, s) f0(x)
subject to aTi x+ si = bi, i = 1, . . . ,m

si ≥ 0, i = 1, . . .m
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• epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

• minimizing over some variables

minimize f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize f̃0(x1)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

where f̃0(x1) = infx2 f0(x1, x2)
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Linear program (LP)

minimize cTx+ d
subject to Gx � h

Ax = b

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P
x⋆

−c
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Examples

diet problem: choose quantities x1, . . . , xn of n foods

• one unit of food j costs cj, contains amount aij of nutrient i

• healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet,

minimize cTx
subject to Ax � b, x � 0

piecewise-linear minimization

minimize maxi=1,...,m(aTi x+ bi)

equivalent to an LP

minimize t
subject to aTi x+ bi ≤ t, i = 1, . . . ,m
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Chebyshev center of a polyhedron

Chebyshev center of

P = {x | aTi x ≤ bi, i = 1, . . . ,m}

is center of largest inscribed ball

B = {xc + u | ‖u‖2 ≤ r}

xchebxcheb

• aTi x ≤ bi for all x ∈ B if and only if

sup{aTi (xc + u) | ‖u‖2 ≤ r} = aTi xc + r‖ai‖2 ≤ bi

• hence, xc, r can be determined by solving the LP

maximize r
subject to aTi xc + r‖ai‖2 ≤ bi, i = 1, . . . ,m
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Quadratic program (QP)

minimize (1/2)xTPx+ qTx+ r
subject to Gx � h

Ax = b

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)
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Examples

least-squares
minimize ‖Ax− b‖22

• analytical solution x⋆ = A†b (A† is pseudo-inverse)

• can add linear constraints, e.g., l � x � u

linear program with random cost

minimize c̄Tx+ γxTΣx = EcTx+ γ var(cTx)
subject to Gx � h, Ax = b

• c is random vector with mean c̄ and covariance Σ

• hence, cTx is random variable with mean c̄Tx and variance xTΣx

• γ > 0 is risk aversion parameter; controls the trade-off between expected cost
and variance (risk)
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Quadratically constrained quadratic program (QCQP)

minimize (1/2)xTP0x+ qT0 x+ r0
subject to (1/2)xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

Ax = b

• Pi ∈ Sn
+; objective and constraints are convex quadratic

• if P1, . . . , Pm ∈ Sn
++, feasible region is intersection of m ellipsoids and an

affine set
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Second-order cone programming

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)

• inequalities are called second-order cone (SOC) constraints:

(Aix+ bi, c
T
i x+ di) ∈ second-order cone in Rni+1

• for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP

• more general than QCQP and LP
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m,

there can be uncertainty in c, ai, bi

two common approaches to handling uncertainty (in ai, for simplicity)

• deterministic model: constraints must hold for all ai ∈ Ei

minimize cTx
subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m,

• stochastic model: ai is random variable; constraints must hold with
probability η

minimize cTx
subject to Prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m
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deterministic approach via SOCP

• choose an ellipsoid as Ei:

Ei = {āi + Piu | ‖u‖2 ≤ 1} (āi ∈ Rn, Pi ∈ Rn×n)

center is āi, semi-axes determined by singular values/vectors of Pi

• robust LP

minimize cTx
subject to aTi x ≤ bi ∀ai ∈ Ei, i = 1, . . . ,m

is equivalent to the SOCP

minimize cTx
subject to āTi x+ ‖P T

i x‖2 ≤ bi, i = 1, . . . ,m

(follows from sup‖u‖2≤1(āi + Piu)
Tx = āTi x+ ‖P T

i x‖2)
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stochastic approach via SOCP

• assume ai is Gaussian with mean āi, covariance Σi (ai ∼ N (āi,Σi))

• aTi x is Gaussian r.v. with mean āTi x, variance xTΣix; hence

Prob(aTi x ≤ bi) = Φ

(

bi − āTi x

‖Σ1/2
i x‖2

)

where Φ(x) = (1/
√
2π)

∫ x

−∞
e−t2/2 dt is CDF of N (0, 1)

• robust LP

minimize cTx
subject to Prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m,

with η ≥ 1/2, is equivalent to the SOCP

minimize cTx

subject to āTi x+Φ−1(η)‖Σ1/2
i x‖2 ≤ bi, i = 1, . . . ,m
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Geometric programming

monomial function

f(x) = cxa1
1 xa2

2 · · ·xan
n , dom f = Rn

++

with c > 0; exponent αi can be any real number

posynomial function: sum of monomials

f(x) =
K
∑

k=1

ckx
a1k
1 x

a2k
2 · · ·xank

n , dom f = Rn
++

geometric program (GP)

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p

with fi posynomial, hi monomial
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Geometric program in convex form

change variables to yi = log xi, and take logarithm of cost, constraints

• monomial f(x) = cxa1
1 · · ·xan

n transforms to

log f(ey1, . . . , eyn) = aTy + b (b = log c)

• posynomial f(x) =
∑K

k=1 ckx
a1k
1 x

a2k
2 · · ·xank

n transforms to

log f(ey1, . . . , eyn) = log

(

K
∑

k=1

ea
T
k y+bk

)

(bk = log ck)

• geometric program transforms to convex problem

minimize log
(

∑K
k=1 exp(a

T
0ky + b0k)

)

subject to log
(

∑K
k=1 exp(a

T
iky + bik)

)

≤ 0, i = 1, . . . ,m

Gy + d = 0

CO&ML 25



Semidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · ·+ xnFn +G � 0

Ax = b

with Fi, G ∈ Sk

• inequality constraint is called linear matrix inequality (LMI)

• includes problems with multiple LMI constraints: for example,

x1F̂1 + · · ·+ xnF̂n + Ĝ � 0, x1F̃1 + · · ·+ xnF̃n + G̃ � 0

is equivalent to single LMI

x1

[

F̂1 0

0 F̃1

]

+ x2

[

F̂2 0

0 F̃2

]

+ · · ·+ xn

[

F̂n 0

0 F̃n

]

+

[

Ĝ 0

0 G̃

]

� 0
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Duality
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Duality

• Duality theory:

◦ Keep this in mind: only a long list of simple inequalities. . . .
◦ In the end: very powerful results at low technical/numerical cost.
◦ A few important, intuitive theorems.

• In a LP context:

◦ Dual problem provides a different interpretation on the same problem.
◦ Essentially assigns cost (“displeasure” measure) to constraints.
◦ Provides alternative algorithms (dual-simplex).

• In a more general context:

◦ Very powerful tool to give approximate solutions to intractable problems.
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Duality : the general case
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Optimization problem

• Consider the following mathematical program:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where x ∈ D ⊂ Rn with optimal value p⋆.

• No particular assumptions on D and the functions f and h (nothing about
convexity, linearity, continuity, etc.)

• Very generic (includes linear programming and many other problems)
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Lagrangian

We form the Lagrangian of this problem:

L(x,λ, µ) = f0(x) +
m
∑

i=1

λifi(x) +

p
∑

i=1

µihi(x).

Variables λ ∈ Rm and µ ∈ Rp are called Lagrange multipliers.

• The Lagrangian is a penalized version of the original objective

• The Lagrange multipliers λi, µi control the weight of the penalties.

• The Lagrangian is a smoothed version of the hard problem, we have turned
x ∈ C into penalties that take into account the constraints that define C.
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Lagrange dual function

• We originally have

L(x,λ, µ) = f0(x) +
m
∑

i=1

λifi(x) +

p
∑

i=1

µihi(x)

• The penalized problem is here:

g(λ, µ) = infx∈D L(x,λ, µ)
= infx∈D f0(x) +

∑m
i=1 λifi(x) +

∑p
i=1 µihi(x)

• The function g(λ, µ) is called the Lagrange dual function.

◦ Easier to solve than the original one (the constraints are gone)
◦ Can often be computed explicitly (more later)
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Lower bound

• The function g(λ, µ) produces a lower bound on p⋆.

• Lower bound property: If λ ≥ 0, then g(λ, µ) ≤ p⋆

• Why?

◦ If x̃ is feasible,
⊲ fi(x̃) ≤ 0 and thus λifi(x̃) ≤ 0
⊲ hi(x̃) = 0, and thus µihi(x̃) = 0

◦ thus by construction of L:

g(λ, µ) = inf
x∈D

L(x, λ, µ) ≤ L(x̃, λ, µ) ≤ f0(x̃)

◦ This is true for any feasible x̃, so it must be true for the optimal one, which
means g(λ, µ) ≤ f0(x

⋆) = p⋆.
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Lower bound

• We have a systematic way of producing lower bounds on the optimal value
p⋆ of the original problem:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

by computing the value for a given (λ, µ) couple where λ ≥ 0.

• We can look for the best possible one. . .
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Dual problem

• We can define the Lagrange dual problem:

maximize g(λ, µ)
subject to λ ≥ 0

in the variables λ ∈ Rm and µ ∈ Rp.

• Finds the best, that is highest, possible lower bound g(λ, µ) on the optimal
value p⋆ of the original (now called primal) problem.

• We call its optimal value d⋆
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Dual problem

• For each given x, the function

L(x, λ, µ) = f0(x) +
m
∑

i=1

λifi(x) +

p
∑

i=1

µihi(x)

is linear in the variables λ and µ.

• This means that the function

g(λ, µ) = inf
x∈D

L(x, λ, µ)

is a minimum of linear functions of (λ, µ), so it must be concave in (λ, µ)

• This means that the dual problem is always a concave maximization problem,
whatever f, g, h’s properties are.
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Weak duality

We have shown the following property called weak duality:

d⋆ ≤ p⋆

the optimal value of the dual is
always less than the optimal value of the primal problem.

• We haven’t made any assumptions on the problem... no mention of convexity

• Weak duality always hold

• Produces lower bounds on the problem at low cost

Are there cases where d⋆=p⋆?
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Strong duality

When d⋆ = p⋆ for a class of problems: strong duality.

• Because d⋆ is a lower bound on the optimal value p⋆, if both are equal for
some (x, λ, µ), the current point must be optimal

• For most convex problems, we have strong duality. (see next slide)

• The difference p⋆ − d⋆ is called the duality gap

• The duality gap measures how optimal the current solution (x, λ, µ) is.
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Slater’s conditions

Example of sufficient conditions for strong duality:

• Slater’s conditions. Consider the following problem:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b, i = 1, . . . , p

where all the fi(x) are convex and assume that:

there exists x ∈ D : fi(x) < 0, Ax = b, i = 1, . . . ,m

in other words there is a strictly feasible point, then strong duality holds.

• Many other versions exist. . .

• Often easy to check.

• Let’s see for linear programs.
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Duality: the simple example of linear

programming
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Duality: linear programming

• Take a linear program in standard form:

minimize cTx
subject to Ax = b

x ≥ 0 ( which is equivalent to − x ≤ 0)

• We can form the Lagrangian:

L(x, λ, µ) = cTx− λTx+ µT (Ax− b)

• and the Lagrange dual function:

g(λ, µ) = infxL(x, λ, µ)

= infx c
Tx− λTx+ µT (Ax− b)
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Duality: linear programming

• For linear programs, the Lagrange dual function can be computed explicitly:

g(λ, µ) = infx c
Tx − λTx+ µT (Ax− b)

= infx(c− λ+ATµ)Tx− bTµ

• This is either −bTµ or −∞, so we finally get:

g(λ, µ) =

{

−bTµ if c− λ+ ATµ = 0
−∞ otherwise

• If g(λ, µ) = −∞ we say that (λ, µ) are outside the domain of the dual.
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Duality: linear programming

• With g(λ, µ) given by:

g(λ, µ) =

{

−bTµ if c− λ+ ATµ = 0
−∞ otherwise

• we can write the dual program as:

maximize g(λ, µ)
subject to λ ≥ 0

• which is again, writing the domain explicitly:

maximize −bTµ
subject to c− λ+ATµ = 0

λ ≥ 0
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Duality: linear programming

• After simplification:

{

c− λ+ATµ = 0
λ ≥ 0

⇐⇒ c+ATµ ≥ 0

• we conclude that the dual of the linear program:

minimize cTx
subject to Ax = b (primal)

x ≥ 0

• is given by:
maximize −bTµ
subject to −ATµ ≤ c (dual)

• equivalently:
maximize bTµ
subject to ATµ ≤ c
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Dual Linear Program

Up to now, what have we introduced?

• A vector of parameters µ ∈ Rm, one coordinate by constraint.

• For any µ and any feasible x of the primal = a lower bound on the primal.

• For some µ the lower bound is −∞, not useful.

• The dual problem computes the biggest lower bound.

• We discard values of µ which give −∞ lower bounds.

• This the way dual constraints are defined.

• The dual is another linear program in dimensions Rn×m, that is

◦ n constraints,
◦ m variables.
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From Primal to Dual for general LP’s

• Some notations: for A ∈ Rm×n we write

◦ aj for the n column vectors
◦ Ai for the m row vectors of A.

• Following a similar reasoning we can flip from primal to dual changing

◦ the constraints linear relationships A,
◦ the constraints constants b,
◦ the constraints directions (≤,≥,=)
◦ non-negativity conditions,
◦ the objective

minimize cTx maximize µTb
subject to AT

i x ≥ bi, i ∈ M1 subject to µi ≥ 0 i ∈ M1

AT
i x ≤ bi, i ∈ M2 µi ≤ 0 i ∈ M2

AT
i x = bi, i ∈ M3 µi free i ∈ M3

xj ≥ 0 j ∈ N1 µTaj ≤ cj j ∈ N1

xj ≤ 0 j ∈ N1 µTaj ≥ cj j ∈ N2

xj free j ∈ N1 µTaj = cj j ∈ N3

(1)
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Dual Linear Program

• In summary, for any kind of constraint,

primal minimize maximize dual

constraints
≥ bi ≥ 0

variables≤ bi ≤ 0
= bi free

variables
≥ 0 ≤ cj

constraints≤ 0 ≥ cj
free = cj

• For simple cases and in matrix form,

minimize cTx
subject to Ax = b

x ≥ 0
⇒ maximize bTµ

subject to ATµ ≤ c

minimize cTx
subject to Ax ≥ b

⇒
maximize bTµ
subject to ATµ = c

µ ≥ 0
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