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Convex optimization problem

standard form convex optimization problem

minimize  fo(x)
subject to fz(:c) i=1,....,m
ax—bz, 1=1,...,p

e fo, f1, ..., fm are convex; equality constraints are affine

e often written as

minimize  fo(x)
subject to fz( )<0, i=1,....,m
Ax =10

important property: feasible set of a convex optimization problem is convex
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Importance of a good formulation

minimize  fo(z) = 2% + 23
subject to  fi(z) =21/(1+23) <0

e fo is convex; feasible set {(z1,x2) | r1 = —x2 < 0} is convex
e not a convex problem (according to our definition):

o f1 is not convex,
o hi iIs not affine

e equivalent (but not identical) to the convex problem
minimize  z% + 13

subject to x1 <0
I + To = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal
proof: suppose x is locally optimal and y is optimal with fo(y) < fo(x)

x locally optimal means there is an R > 0 such that

z feasible, |z—z|: <R = fo(z) > fo(x)

consider z = 0y + (1 — 0)x with 0 = R/(2||ly — x||2)

o |ly—zl2>R,s00<6<1/2
e 2 is a convex combination of two feasible points, hence also feasible

e ||z—z|2=R/2 and

fo(z) < 0fo(x) + (1 —0)fo(y) < fo(x)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f

x is optimal if and only if it is feasible and

Vfolx)! (y —x) >0 for all feasible y

if nonzero, V fy(x) defines a supporting hyperplane to feasible set X at x
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Optimality criterion for differentiable f

e unconstrained problem: z is optimal if and only if

r € dom fj, V fo(x) =0
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Optimality criterion for differentiable f

e equality constrained problem
minimize fo(x) subjectto Az =10
x is optimal if and only if there exists a v such that

x € dom fo, Ax = b, Vfo(x) + ATv =0
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Optimality criterion for differentiable f

e equality constrained problem: x optimal iff there exists a v such that

x € dom fo, Ax = b, Vfo(x) + ATv =0

e Why? Remember V fo(z)! (y —2) >0 for all feasible y.
e Yet, for any feasible y, dv such that y = x 4+ v and Av = 0.
e For any v such that Av =0 (v in the null space NV (A) of A),

Vfolx)'v >0

e For Vfo(ac)T, linear function, to be negative on a subspace, it must be O.
Hence V fo(x) L N(A).

e This is equivalent to saying, since N'(A)L = R(AT), that there exists v such
that Vfo(z) + ATv = 0.
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Optimality criterion for differentiable f

e minimization over nonnegative orthant
minimize fo(x) subjectto x >0

x is optimal if and only if

—
rcdomfy, xx0, { Vio(z)i=0 z;>0

e Check p.142 of Boyd & Vandenberghe to see why.
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily obtained
from the solution of the other, and vice-versa

some common transformations that preserve convexity:

e eliminating equality constraints
minimize  fo(x)
subject to fz( ) <0, i=1,....m
Ax =0
Is equivalent to

minimize (over z) fo(Fz + x)
subject to filFz+x9) <0, 71=1,...,m

where F' and zg are such that

Ar=b <= x = Fz+ xg for some z
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e introducing equality constraints

minimize  fo(Aoz + bo)
subject to  f;(A;x+b;) <0, 1=1,...

Is equivalent to

minimize (over x, v;) fo(yo)
subject to fily;) <0, 1=1,...

yZ:AZCIZ‘—I—bZ, i:(),l,...,m

e introducing slack variables for linear inequalities

minimize  fo(x)
subject to a;fa; <b;,, 1=1,....,m

Is equivalent to

minimize (over z, s) fo(x)

subject to alr+s;=0b; i=1,...
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e epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to fo(x)

e minimizing over some variables

minimize  fo(x1, 72)
subject to  fi(z1) <0, 1=1,...,m

Is equivalent to

minimize  fo(x1)
subject to  fi(z1) <0, i=1,....m

where fo(z1) = infg, fo(z1,22)

CO&ML 13



Linear program (LP)

minimize clz+d
subjectto Gx =X h
Ax =b
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron
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Examples

diet problem: choose quantities z1, .. ., x, of n foods

e one unit of food j costs c;, contains amount a;; of nutrient %

e healthy diet requires nutrient 7 in quantity at least b;

to find cheapest healthy diet,

minimize ¢!z

subjectto Axr >b, x>0

piecewise-linear minimization
minimize max;—1 . n(alx + b;)
equivalent to an LP

minimize
subject to a;fr’a:—l—bz- <t, 1=1,....,m
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Chebyshev center of a polyhedron

Chebyshev center of »\

P={x|alex<b;, i=1,...,m}
is center of largest inscribed ball

B={zc+ul|ul2 <7}

e alz <b; for all x € B if and only if

sup{a; (zc+u) | |Jull2 <7} = a] zc + rllal]2 < b;

e hence, x., r can be determined by solving the LP

maximize 7
subject to  alx.+7llai2 <b;, i=1,...,m
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Quadratic program (QP)

minimize (1/2)z' Pz +qlx +r
subject to Gax <X h
Arx =D
e P cS", soobjective is convex quadratic

e minimize a convex quadratic function over a polyhedron
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Examples

least-squares
minimize ||Az — b||3

e analytical solution 2* = ATh (AT is pseudo-inverse)

e can add linear constraints, e.g., | 2 x < u

linear program with random cost

minimize ¢lz + 21Xz = Eclz + yvar(cl )
subjectto Gx = h, Ax =05

e c is random vector with mean ¢ and covariance X

T T

e hence, ¢z is random variable with mean &'z and variance 21Xz

e v > 0 is risk aversion parameter; controls the trade-off between expected cost
and variance (risk)
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Quadratically constrained quadratic program (QCQP)

minimize
subject to  (1/2)z' Pz +q¢lz+7; <0, i=1,...,m

(1/2):1:TP0:1: + qga: + 79

Ax =0b

e P, € S"'; objective and constraints are convex quadratic

o ifPl,...,PmES
affine set
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Second-order cone programming

minimize 1z
subject to || Az + il < clz+d;, i=1,...,m
Frx=g
(A; € R"*" F € RP™™)
e inequalities are called second-order cone (SOC) constraints:
(A;x + b;, c;-r:c + d;) € second-order cone in R7it1

e for n; = 0, reduces to an LP; if ¢; = 0, reduces to a QCQP

e more general than QCQP and LP
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Robust linear programming

the parameters in optimization problems are often uncertain, e.q., in an LP

minimize clz
subject to alx <b;, i=1,...,m,
there can be uncertainty in ¢, a;, b;

two common approaches to handling uncertainty (in a;, for simplicity)

e deterministic model: constraints must hold for all a; € &;

minimize ¢!z

subject to alx <b;foralla; €&, i=1,...,m,
e stochastic model: a; is random variable; constraints must hold with

probability n

minimize ¢!z

subject to Prob(alz <b;))>mn, i=1,...,m
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deterministic approach via SOCP

e choose an ellipsoid as &;:
i = {C_LZ' + PZ’LL ‘ HUHQ < 1} (dz‘ -~ Rn, Pz -~ Ran)

center is a;, semi-axes determined by singular values/vectors of P;

e robust LP

minimize c x
subject to alx <b;, Va, €&, i=1,...,m

~

is equivalent to the SOCP

minimize ey

subject to  alz + ||[Plz|a <b;, i=1,...,m

(follows from sup,,<1(@: + Pu)'z = aj = + || P z||2)
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stochastic approach via SOCP

e assume a; is Gaussian with mean a;, covariance ; (a; ~ N(a;, %;))

T

7

Iz is Gaussian r.v. with mean a

- x, variance =1 Y;x; hence

b, —al
Prob(a; z < b;) = ® 1/? u
12, "zl
where ®(z) = (1/v/27) [*_e™"'/2dt is CDF of N(0,1)
e robust LP
minimize clz
subject to Prob(alz <b;)) >n, i=1,...,m,

with n > 1/2, is equivalent to the SOCP

minimize ey

subject to  alx + <I>_1(77)||E;/2:1:H2 <b;, i=1....m
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Geometric programming

monomial function

f@) = exfiag? ol

with ¢ > 0; exponent «; can be any real number

posynomial function: sum of monomials

K

f(z)

n Y

k=1
geometric program (GP)

minimize  fo(x)
subject to  fi(x) < 1,

hi(x) =1, 1
with f; posynomial, h; monomial

CO&ML
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Geometric program in convex form

change variables to y; = log x;, and take logarithm of cost, constraints

e monomial f(x) = cx{'---z% transforms to

log f(e¥:,...,e") =aly +b (b =logc)

: K
e posynomial f(z) =Y, cxpxi*as? - - xn"* transforms to

K

log f(e¥t, ..., e") = log <Z eagerbk) (b = log ci)
k=1

e geometric program transforms to convex problem

minimize  log Zle exp(ag,y + bOk))
subject to log Zle exp(ajy + bzk)> <0, i=1,....m
Gy+d=20
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Semidefinite program (SDP)

minimize ¢!z

subject to x1Fy + a0l + -+ x,F,+ G <0
Ax =b

with I, G € S”

e inequality constraint is called linear matrix inequality (LMI)

e includes problems with multiple LMI constraints: for example,

A ~

is equivalent to single LMI

0 I, 0 E 0 G 0
N N - N 1 =<0
561[0 F1]—|—£82[O F2]—|— —I—:C[O Fn]—l—lo G]_
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Duality

e Duality theory:

o Keep this in mind: only a long list of simple inequalities. . . .
o In the end: very powerful results at low technical /numerical cost.
o A few important, intuitive theorems.

e In a LP context:

o Dual problem provides a different interpretation on the same problem.
o Essentially assigns cost ( “displeasure” measure) to constraints.
o Provides alternative algorithms (dual-simplex).

e In a more general context:

o Very powerful tool to give approximate solutions to intractable problems.

CO&ML
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Optimization problem

e Consider the following mathematical program:

minimize  fy(x)
subject to  f;(x) <

where x € D C R" with optimal value p*.

e No particular assumptions on D and the functions f and h (nothing about
convexity, linearity, continuity, etc.)

e Very generic (includes linear programming and many other problems)

CO&ML
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Lagrangian

We form the Lagrangian of this problem:

L(x, A, p) ) + ZAzfz + > pihi(x)
i=1

Variables A € R™ and p € R? are called Lagrange multipliers.

e The Lagrangian is a penalized version of the original objective
e The Lagrange multipliers \;, iu; control the weight of the penalties.

e The Lagrangian is a smoothed version of the hard problem, we have turned
x € C' into penalties that take into account the constraints that define C.
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Lagrange dual function

e We originally have
p
L(x, A, p) +Z>\zfz +Zuihz‘(x)
i=1

e The penalized problem is here:

g(A, ) =infxep L(x, A, p)
= infyep fo(x) + D ,0q Aifi(x) + D20 pihi(x)

e The function g(\, u) is called the Lagrange dual function.

o Easier to solve than the original one (the constraints are gone)
o Can often be computed explicitly (more later)
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Lower bound

e The function g(A, ) produces a lower bound on p*.
e Lower bound property: If A > 0, then g(\, p) < p*
e Why?
o If x is feasible,
> fi(X) <0 and thus \;f;(z) <0

> hz()~() = O, and thus ,Lbzhz(fi‘) =0
o thus by construction of L:

g(A p) = nf L(x, A, ) < L% A, p) < fo(X)

o This is true for any feasible x, so it must be true for the optimal one, which

means g(\, 1) < fo(x*) = p*.

CO&ML
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Lower bound

e We have a systematic way of producing lower bounds on the optimal value
p* of the original problem:

minimize  fo(x)
subject to  fi(x) <

by computing the value for a given (), 1) couple where A\ > 0.

e We can look for the best possible one. . .
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Dual problem

e We can define the Lagrange dual problem:

maximize g(\, )
subjectto A >0

in the variables A € R™ and i € R?.

e Finds the best, that is highest, possible lower bound g(\, ;1) on the optimal
value p* of the original (now called primal) problem.

e We call its optimal value d*

CO&ML
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Dual problem

e For each given x, the function
m p
L(x, A 1) = fo(®) + ) Xifi(x) + > pihi(x)
i=1 i=1

is linear in the variables A and L.

e [ his means that the function

g(A p) = inf L(x, A, p)

is @ minimum of linear functions of (A, i), so it must be concave in (A, i)

e This means that the dual problem is always a concave maximization problem,
whatever f, g, h's properties are.
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Weak duality

We have shown the following property called weak duality:

d*ép*

the optimal value of the dual is
always less than the optimal value of the primal problem.

e We haven't made any assumptions on the problem... no mention of convexity
e Weak duality always hold

e Produces lower bounds on the problem at low cost

Are there cases where d*=p*?
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Strong duality

When d* = p* for a class of problems: strong duality.

e Because d* is a lower bound on the optimal value p*, if both are equal for
some (X, A, i), the current point must be optimal

e For most convex problems, we have strong duality. (see next slide)
e The difference p* — d* is called the duality gap

e The duality gap measures how optimal the current solution (x, A, i) is.

CO&ML
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Slater’s conditions
Example of sufficient conditions for strong duality:
e Slater’s conditions. Consider the following problem:
minimize  fo(x)
subject to  f;(x) <0, i=1,...,m
Ax=b, 1=1,...,p
where all the f;(x) are convex and assume that:

there exists x € D: f;(x) <0, Ax=b, i=1,....m

in other words there is a strictly feasible point, then strong duality holds.

e Many other versions exist. . .
e Often easy to check.

e Let's see for linear programs.
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Duality: linear programming

e Take a linear program in standard form:

minimize c¢ix

subjectto Ax=Db
x > 0 ( which is equivalent to — x < 0)

e We can form the Lagrangian:

Lx,\p) =ct'x — M'x + puf'(Ax — b)

e and the Lagrange dual function:

g\, p) = infc L(x, A, p)

= infyctx — M'x + pt' (Ax — b)

CO&ML
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Duality: linear programming

e For linear programs, the Lagrange dual function can be computed explicitly:
g\ p) =infyclx — Mx+ p?'(Ax —b)

= infy(c — A+ AT pu)I'x —blpy
e This is either —b’'j1 or —00, so we finally get:

—bly ife—A+ATpu=0
—00 otherwise

g(A, p) = {

o If g(\, ) = —o0 we say that (A, ) are outside the domain of the dual.

CO&ML
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Duality: linear programming
e With g(\, i) given by:

—bly ife—A+ATp=0
—00 otherwise

o) = {

e we can write the dual program as:

maximize  g(\, i)
subjectto A >0

e which is again, writing the domain explicitly:

maximize —bl
subjectto c— A+ ATp =0
A>0

CO&ML
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e After simplification:

c—A+ATu=0
A>0

Duality: linear programming

— c+A'u>0

e we conclude that the dual of the linear program:

e is given by:

e equivalently:

CO&ML
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minimize c’x

subject to Ax=Db (primal)
x>0

maximize —bly

subject to —ATu<c¢  (dual)

maximize b’
subject to AT < c
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Dual Linear Program

Up to now, what have we introduced?

A vector of parameters 1 € R™, one coordinate by constraint.

For any 1 and any feasible x of the primal = a lower bound on the primal.
For some u the lower bound is —oo, not useful.

The dual problem computes the biggest lower bound.

We discard values of p which give —oo lower bounds.

This the way dual constraints are defined.

The dual is another linear program in dimensions R"*", that is

o n constraints,
o m variables.

CO&ML
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From Primal to Dual for general LP’s

e Some notations: for A €

R™*™ we write

o a; for the n column vectors
o A, for the m row vectors of A.

e Following a similar reasoning we can flip from primal to dual changing

© O O O O

the constraints linear relationships A,
the constraints constants b,
the constraints directions (<, >, =)
non-negativity conditions,
the objective
minimize clx maximize u''b
subject to Al x>b;, i€ M subjectto u; >0 i€ M,
AZTXsz'; 1 € M, i <0 1 € My
A%FX =b;,, 1€ M;j i free 1 € Mjy
;>0 jEN; pla; <c; jeN
;<0 j€EN pta; >c; jeN;
X j free 7 € Ny uTaj = Cj 7 € N3
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Dual Linear Program

e In summary, for any kind of constraint,

primal minimize maximize dual
> b; >0

constraints < b; <0 variables
— b; free
>0 < ¢j

variables <0 > ¢ constraints
free = Cj

e For simple cases and in matrix form,

minimize clx . T

: maximize b* 1

subjectto Ax=b = subiect to ATy < ¢
x> 0 J H

L e maximize b

minimize c’ X cubiect to ATy — ¢
subjectto Ax > b ) H

w0
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